本申请是以下申请的分案申请:申请日:2012年7月28日;申请号:2012103843984;发明名称:“用于电能传输系统的介电材料”。
背景技术:
本发明总的涉及电能传输系统,特别涉及基于谐振的非接触电能传输系统。
在某些需要瞬时或持续的能量传输,但是互连导线不方便的应用中需要非接触电能传输。一种非接触电能传输方法是电磁感应方法,该电磁感应方法基于以下原理工作:第一变压器线圈产生主磁场,临近第一变压器线圈的第二变压器线圈产生相应的电压。第二变压器线圈接收的磁场的减少是两个线圈之间的距离的平方的函数,因此对于大于几毫米的距离,第一和第二线圈之间的耦合是微弱的。
另一种非接触电能传输方法试图通过谐振感应耦合提高感应电能传输的效率。发射器和接收器元件以相同的频率谐振,最大感应发生在谐振频率处。然而,这样的谐振感应对负载和间隙变化敏感。
需要一种有效的非接触电能传输系统,其可以用比目前可接受的距离分隔更长距离的线圈进行工作并且当经受偏移或负载变化时有效。此外,还需要适应性和有效的材料,其具有高介电特性和低介电损耗角正切(losstangent),能以所需的频率范围用于电能传输系统。
发明简述
简要地,在一个实施方案中,提供了一种电能传输系统。该电能传输系统包括场聚焦元件,该场聚焦元件包含介电材料。该介电材料包括含有(mg1-xsrx)ytio(2+y)的氧化物材料,其中x可以在值0和1之间变化,使得0≤x≤1,而y可以是0、1或2。
在一个实施方案中,提供一种电能传输系统。该电能传输系统包括连接到电源的第一线圈和连接到负载的第二线圈;和包括介电材料且设置在第一线圈和第二线圈之间的场聚焦元件。该介电材料包括含有(mg1-xsrx)ytio(2+y)的氧化物材料,其中x可以在值0和1之间变化,使得0≤x≤1,而y可以是0、1或2。
附图说明
当参考附图阅读以下详述时,本发明的这些和其他特征、方面和优点将变得更易于理解,其中在整个附图中类似的字符代表类似的部件,其中:
图1示出了根据本发明的一个实施方案的示例性非接触电能传输系统;
图2示出了根据本发明的多个实施方案的场聚焦元件的多个示例性结构;和
图3示出了根据本发明的一个实施方案的嵌入材料的多个示例性结构。
附图标记
10-示例性系统
12-第一线圈
14-电源
16-第二线圈
18-场聚焦元件
20-负载
22,24-场聚焦元件的开口端
50-单环线圈
52-开口环结构
54-螺旋结构
56-瑞士卷结构
58-螺旋线圈
发明详述
本发明的实施方案包括电能传输系统和可用于电能传输系统的介电材料。
在下面的说明书和随后的权利要求中,除非上下文清楚地另外指明,否则单数形式“一”和“该”包括复数个对象。
非接触电能传输系统一般特征在于第一和第二线圈之间的短距离电能传输。例如,感应电能传输系统的一个实施方案采用第一线圈和第二线圈来在电流隔离的两个电路之间传输电能。当连接到电源时,在第一线圈周围建立磁场。从第一线圈传输到第二线圈的电量与连接第二线圈的第一磁场的水平成比例。电力变压器采用高导磁性磁芯来连接第一和第二线圈之间的磁场,并且因而获得近似至少大约98%的效率。然而,当非接触电能传输配置这样的系统时,两个线圈之间的空气间隙降低了磁场耦合。这样降低的耦合影响了非接触电能传输系统的效率。
本文公开的某些实施方案提供了一种加强的非接触电能传输系统,该电能传输系统对负载变化的敏感性降低,在线圈偏移时具有有效的电能传输,并具有提高电能传输效率的场聚焦结构。
图1示出了根据本发明实施方案的非接触电能传输系统10的实例,其包括连接到电源14且构造成产生磁场(未示出)的第一线圈12。第二线圈16构造成接收来自第一线圈12的电能。本文使用的术语“第一线圈”也可以称为“第一线圈”,而术语“第二线圈”也可以称为“第二线圈”。第一和第二线圈可以由任意具有良好导电性的材料例如铜制成。场聚焦元件18设置在第一线圈12和第二线圈16之间以聚焦来自电源14的磁场。在另一个实施方案中,场聚焦元件可以用来聚焦电场和/或电磁场。术语“磁场聚焦元件”和“场聚焦元件”可交换地使用。在一个实施方案中,磁场聚焦元件18构造成自谐振线圈并在通过第一线圈激励时具有驻波电流分布。在另一个实施方案中,磁场聚焦元件包括作为有源阵或无源阵运行的多个谐振器,每个谐振器构造成具有驻波电流分布的自谐振线圈。在另一个实施方案中,磁场聚焦元件包括多个这样的谐振器组,每个这样的谐振器组在特定相位被激励。可以理解成,当通过不同相位激励谐振器组时,可以在期望的方向增强场聚焦。
磁场聚焦元件18还构造成将磁场聚焦到第二线圈16上,增强第一线圈12和第二线圈16之间的耦合。在一个实施方案中,通过在场聚焦元件18中产生驻波电流分布而在磁场聚焦元件18的周围产生不均匀的磁场分布。在图示的实施方案中,作为一个实例,场聚焦元件18放置得更接近第一线圈12。在某些系统中将场聚焦元件18放置得更接近第二线圈16可能是有益的。负载20连接到第二线圈16以利用来自电源14传输的电能。在某些实施方案中,非接触电能传输系统10还可以构造成同时将电能从第二线圈传输至第一线圈,这样该系统能够双向传输电能。可能的负载的非限制性实例包括灯泡、电池、计算机、传感器或任何需要电能运行的设备。
非接触电能传输系统10可以用于将电能从电源14传输到负载20。在一个实施方案中,电源14包括单相ac发电机或三相ac发电机结合电能转化电子器件以将ac电能转化为更高频率。当以磁场聚焦元件18的谐振频率激励第一线圈12时,在场聚焦元件的两个开放端(22,24)之间的磁场聚焦元件18中产生了驻波电流分布。该驻波电流分布导致了磁场聚焦元件18周围的不均匀磁场分布。这种不均匀的电流分布构造成将磁场聚焦在任何期望的方向,例如,在这个实例中沿第二线圈16的方向。当在谐振频率运行时,甚至对磁场聚焦元件18的小的激励也会沿磁场聚焦元件的长度25产生大幅的电流分布。这个不均匀分布的大电流幅度导致在第二线圈16的方向产生放大的和聚焦的磁场,这使得电能传输更高效。
图2示出了根据本发明的多个实施方案的场聚焦元件的结构的多个实例。在一个实施方案中,场聚焦元件包括单环线圈50。在另一个实施方案中,场聚焦元件包括多个线匝,例如开口环结构52、螺旋结构54、瑞士卷(swiss-roll)结构56或螺旋线圈58。用于特定应用的结构的选择由场聚焦元件的尺寸和自谐振频率来决定。例如,在低功率应用中(例如,小于约1瓦特),最高约1000mhz的谐振频率是可行的。在高功率应用(例如,从约100瓦特到约500千瓦)中,大约几百khz的谐振频率是可行的。
在本发明的电能传输系统的一个实施方案中,场聚焦元件18的谐振器可以由例如介电谐振腔形式的介电材料制成。用于场聚焦元件的介电材料期望具有高介电常数(介电常数,ε)和低损耗角正切。高介电常数有助于获得给定较小尺寸的谐振器的低谐振频率,而低损耗角正切期望将介电损耗保持在可接受的限度内。
在一个实施方案中,场聚焦元件18包括自谐振线圈,该自谐振线圈在谐振频率激励时将磁场聚焦。谐振器是任何形状的自谐振线圈,它的自谐振频率取决于自身固有电容和自感。线圈的自谐振频率取决于线圈几何参数。例如,就螺旋谐振器线圈来说,谐振频率使得螺旋的整个长度是电磁激励的半波长或多个半波长。结果,由于空间限制,设计这些低频的谐振器是个挑战。使谐振器的尺寸小型化的方法之一是将谐振器嵌入到高介电常数介质中。
在一个实施方案中,场聚焦元件18的谐振器或谐振器阵列被嵌入到了具有高介电常数的材料或是具有高磁导率的磁性材料或具有高介电常数和高磁导率的磁-介电介质中,以获得具有较小尺寸的谐振器的较低谐振频率。高磁导率材料提高了谐振器的自感,而高介电常数材料提高了谐振器的自身固有电容,以降低谐振频率。在另一个实施方案中,高磁导率材料还构造成增加第一线圈和场聚焦元件之间以及场聚焦元件与第二线圈之间的耦合。
当谐振器被嵌入到介电介质中时,线圈匝之间的匝间电容增大,这反过来有助于降低谐振器的谐振频率。具有高介电常数,则谐振器的尺寸可能大程度减小。高介电常数的另一个优点是将电场限制在谐振器中,这样随着辐射损失变小提高了电能传输的效率。但是具有高介电常数的材料选择的一个设计标准是该材料在工作频率的损耗角正切。低介电损耗角正切确保了最大的耦合效率。如果损耗角正切高,在谐振器中热量形式的损耗可能高。
在功率水平高时热损耗的问题是重要的。对于低功率水平,高损耗角正切值是可以接受的。在功率水平超过1kw的应用中期望高介电常数和非常低的损耗角正切的介电材料。高介电常数有助于在几百khz的频率获得小型化的谐振器而低损耗角正切有助于降低电介质中的损耗。
通过高介电常数和低损耗角正切材料能得到的电能传输系统具有包括电动车辆充电器、向旋转负载传输电能、采矿车辆的非接触充电的应用,其中该电能传输水平大约是几kw。具有高介电常数和高损耗介电材料的电能传输系统可以用于像海底连接器的应用中,其中电能水平是几毫瓦。
具有不同形状的高介电常数材料可以充当谐振器的嵌入材料。例如,高介电常数的圆形介电盘可以充当某些频率谐振器的嵌入材料。在这种情况下谐振频率由谐振器的几何构造和嵌入材料决定。图3给出了可以用作场聚焦元件的不同形状的非限制实例。
高介电常数材料也可以用作金属表面上的薄膜或厚膜涂层以产生类似瑞士卷结构56的场聚焦结构。瑞士卷的不同层之间的高介电常数增加了结构的电容,并因此显著地降低了频率。
在高介电常数材料中嵌入谐振器材料通常涉及一些谐振器和嵌入材料在一起的加工。例如,形成紧凑的金属和陶瓷层组合包括许多工艺挑战。不同的金属和陶瓷的熔点、烧结点或软化点的不同可能会阻碍谐振器期望特性的实现。热膨胀差异和不同的烧结性能可能会在紧凑的结构中引起裂缝或间隙。
在有其他材料存在时材料的特性可以发生改变。例如,如果金属谐振器材料和陶瓷介电材料要加工在一起用于形成谐振器结构,加工条件可能不得不被设计成保留谐振器材料的金属性能不被过度氧化的同时,同时加工陶瓷介电材料以提供场聚焦元件结构所需的物理强度。通常,在高温下烧结陶瓷材料以产生结构的物理强度。然而,在高温下烧结陶瓷材料会增加陶瓷材料的粒径,因此很可能降低陶瓷材料的介电特性。
所以,有益的是考虑可以在一起加工的谐振器材料和高介电常数材料。此外,期望低温加工方法来加工嵌入到高介电常数介电材料中的谐振器材料。
在一个实施方案中,一种材料的组合可以用于嵌入谐振器。例如,具有高介电常数的两种或更多种材料的混合物或具有高磁导率的两种或更多种材料可以用作嵌入材料。在另一个实施方案中,两种或更多种材料的混合物,每种具有高介电常数或高磁导率,可以用作嵌入材料。在一个实施方案中,介电材料包括具有有益的介电特性的氧化物材料和有助于该氧化物材料的烧结性能的第二氧化物材料。
本发明人发现材料的密度在材料的介电特性中扮演着重要的角色。不用使材料经受非常高的烧结温度而获得致密的介电材料有助于提高氧化物材料的介电特性。如果介电材料的微观结构是致密的,该材料在材料本体中包括更少的气孔。空气通常具有比介电材料低的介电常数,因此当空气存在于材料中时,预期会导致总体较低的介电常数。
对于陶瓷氧化物材料,另一种具有低熔点的氧化物材料可以用作致密化助剂。可以用作陶瓷氧化物化合物的致密化助剂的第二氧化物材料的非限制实例包括氧化铜(cuo)、五氧化二钒(v2o5)、氧化锂(li2o3)和三氧化二铋(bi2o3)。
在电能传输系统的一个实施方案中,介电材料以决体材料形式存在并是多晶,具有晶粒和晶界。在氧化物材料系统中提高晶界电导可以改善介电特性。
在电能传输系统的一个实施方案中,包含在场聚焦元件中的上述任何材料掺杂含铋材料,例如氧化铋。在另一个实施方案中,铋在用于场聚焦元件的多晶材料的晶界中以金属相存在。在相关实施方案中,掺杂氧化铋并在介电材料的晶界中还原变成金属铋。在一个实施方案中,通过将bi2o3和tio2与煅烧过的氧化物材料混合来将氧化铋引入晶界,然后将介电材料形成为可结合到场聚焦元件18的块体形式并烧结。在一个实施方案中,小于约3摩尔%的bi2o3.3tio2存在于介电材料中。在一个实施方案中,bi2o3.3tio2以约0.01摩尔%到1摩尔%的范围存在于介电材料中。在一个实施方案中,氧化物材料具有晶界中的金属铋相。发现该氧化物材料的介电常数通过在晶界中含有金属铋相而显著增大。
例如但不限于氧化钛(tio2)和多种钛化合物的材料是显示低损耗角正切值的实例。在一个实施方案中,介电材料作为块体材料使用。本文使用的术语“块体材料”表示具有三维结构的任何材料,该三维结构的所有边都大于约1mm。在一个实施方案中,介电材料用作涂层。该涂层可以是薄膜形式或厚膜形式。本文使用的“薄膜”具有小于约100微米的厚度,而厚膜可以具有约100微米到约1毫米的厚度。
在一个实施方案中,期望采用在期望应用的某个频率范围其介电特性诸如介电常数和损耗角正切实质上稳定的介电材料。本文的术语“实质上稳定”的意思是数值的变化不会导致电能传输系统的性能变化超过约10%。因此,所需的频率范围的值和宽度可以根据使用场聚焦元件的应用来变化。在一个实施方案中,期望的频率范围是从约100hz到约100mhz。在一些实施方案中,期望的频率范围是从约1khz到约100khz。在另一个实施方案中,期望的频率范围是从约100khz到约1mhz。在另一实施方案中,期望的频率范围是从约1mhz到约5mhz。
具有低介电损耗角正切和高介电常数的材料当用作嵌入材料或谐振腔时,其相对于具有低介电常数和高损耗角正切的材料,可有效地作用于提高谐振器自身固有电容。因此,在谐振器的工作频率处既具有高介电常数又具有低介电损耗角正切的材料期望用于场聚焦元件18。
期望用于电能传输系统的场聚焦元件18中的介电材料具有等于或大于约10的高介电常数和尽可能低的损耗角正切。在一个实施方案中,对于用于场聚焦元件的介电材料,等于或小于约0.1的损耗角正切是可接受的。在后面的一个实施方案中,对于介电材料,期望等于或小于约0.01的损耗角正切。
在一个实施方案中,提供具有式(mg1-xsrx)ytio(2+y)的材料系统用于例如上述电能传输系统的场聚焦元件18,其中0≤x≤1,且y=0、1或2。为了简单起见,这个材料系统自此称为“氧化物材料”。本文使用的术语“大于零”是指故意加入预期的组分,而不是可作为杂质存在的偶然数量。酌情考虑常规测量和工艺变化,本文采用的范围的端点包括所指数量之上和之下的偶然变化。在一个实施方案中,提供的电能传输系统包括作为介电材料的氧化物材料。
本文采用的符号(mg1-xsrx)ytio(2+y)是包括混合物和化合物的理论式,该混合物和化合物用该式来表示规定的比率,且并不意味着单个化合物以可通过标准表征技术确定的方式存在。简言之,上式规定的材料实际上可作为多个相存在,总的来看,它具有由该式规定的总组成。
在介电材料的氧化物材料中,改变了钛、镁和锶的水平并研究了它们对于良好的介电特性的影响。因此,在一个实施方案中,提供电能传输介电材料使得x,y=0。因而,在这个实施方案中,介电材料包括二氧化钛。在一个实施方案中,介电材料是tio2系统,而在其它买施方案中,介电材料可以包含提高介电性能或协助加工介电材料的其他介电化合物或其他附加材料。例如,具有约1重量%cuo的tio2相对于纯的tio2提高了材料在较低频率的介电常数,而不在损耗角正切值上做出让步。含有约1摩尔%bi2o3.3tio2的tio2提高了介电常数并且显著地降低了损耗角正切值。在一个实施方案中,tio2与第二氧化物材料2mgo.sio2相结合。在另一个实施方案中,介电材料连同tio2包含最多约70重量%的2mgo.sio2材料。
表1提供了基于tio2的介电材料的实验加工细节和结果。在表中,“材料”栏是指陶瓷材料的不同组合;“条件”是用于当前实验的陶瓷材料的加工条件。rt代表“室温”。提供了在特定频率下测量的介电常数(dc)和介质损耗角正切(dlt),该特定频率在“所处频率”栏表示。“频率范围”栏表示陶瓷材料用于场聚焦元件特别有利的大概频率范围。
表1.
在一个买施方案中,提供介电材料的氧化物材料使得x=0且y=1。因此,在这个实施方案中,介电材料包含钛酸镁(mgtio3)。在一个实施方案中,介电材料是mgtio3系统。在一个实例中,当在约230-400khz的频率范围操作时,通过在约1400℃温度下烧结3小时制备的mgtio3材料显示出约15的介电常数和小于约0.01的介电损耗角正切。在约293khz的频率处,mgtio3显示出约15的介电常数和约2.00e-04的损耗角正切值。
在一些实施方案中,介电材料可以包括提高介电性能或协助加工介电材料的其他介电化合物或其他附加材料。例如,随mgtio3加入的某些材料可以提高mgtio3系统的介电特性。cuo、bi2o3.3tio2、五氧化二钒(v2o5)等是可以与mgtio3结合来使介电特性得到潜在的提升的附加材料的一些实例。
在一个实施方案中,提供介电材料的氧化物材料使得x=1且y=1。因此,在这个实施方案中,介电材料包含钛酸锶(srtio3)。在一个实施方案中,介电材料是srtio3系统。在一个实例中,当在约7-9.5mhz的频率范围操作时,通过在约1350℃温度下烧结约6个小时制备的srtio3材料显示出约50的介电常数和小于约0.001的介电损耗角正切。在约7.5mhz的频率处,srtio3显示出约46的介电常数和约3.00e-06的损耗角正切值。
在一个实施方案中,0<x<1且y=1,形成具有钛酸锶镁(mgxsr(1-x)tio3)的钛酸盐系统。在另一个实施方案中,0≤x≤1且y=2,形成具有钛酸锶镁(mgxsr(1-x))2tio4的钛盐酸系统。
上面提供的实施例描述了包含在介电材料中的不同的氧化物材料,该介电材料可以用于上面提供的场聚焦元件18中。发现本文提供的不同的材料系统在一些频率范围,总的覆盖了约230khz到约10mhz宽的频率范围内是有益的。虽然本文提供了一些特定的实施例,但是本领域技术人员可理解掺杂剂组合、水平、得到的特性和工作频率范围的变化。
虽然本文已经说明和描述了本发明的仅某些特征,但是本领域技术人员可以想到很多修改和变化。因此,可以理解附加的权利要求旨在覆盖落入本发明的真正精神范围内的所有这些修改和变化。