本发明属于磨削加工磨料技术领域,涉及一种锆刚玉磨料及其制备方法。
背景技术:
锆刚玉磨料的特点是韧性好、强度高,将氧化铝和氧化锆的硬度、强度和抗冲击韧性、抗磨性有机的结合在一起。在磨削加工过程中,用锆刚玉磨料制成的砂轮表面不易堵塞,产热量较少,适用的应用领域为重负荷的高速磨削和存在较高应力的磨削加工。
锆刚玉磨料常用的制备方法包括溶胶-凝胶法、化学共沉淀法和固相烧结法。溶胶-凝胶法相对其他方法制备的锆刚玉磨料组分与纯度高,晶粒的尺寸更加均匀,即将反应物在液相下或液态溶剂中混合均匀并进行反应,反应生成稳定的溶胶,经干燥蒸发去除液体介质,再破碎选取一定尺寸和粒度的颗粒,经烧结后成为磨料。
制备锆刚玉磨料时,氧化铝的来源,添加剂种类和比例,烧结工艺都会对磨料的颗粒大小,单颗粒抗压强度造成影响。因此通过工艺优化制备一种性能好的锆刚玉磨料可以满足重负荷的高速磨削和存在较高应力的磨削加工需求。
技术实现要素:
本发明的目的是提供一种锆刚玉磨料及其制备方法,能够满足重负荷的高速磨削和存在较高应力的磨削加工需求。
本发明是通过以下技术方案实现的:
一种锆刚玉磨料,以化学纯硝酸铝(al(no3)3·9h2o)和氯氧锆(zrocl2)为原料,外加复相添加剂及稀土金属氧化物;所述的复相添加剂体系为tio2/sio2或mgo/tio2,占最终磨料的质量百分比为1-5wt.%;;所述的稀土金属氧化物为y2o3,占最终磨料的质量百分比为0-13wt.%且不为0;按照以下步骤进行:
(1)以化学纯硝酸铝(al(no3)3·9h2o)和氯氧锆(zrocl2)为原料,溶于水后过滤除去杂质,配成铝离子的水溶液;
(2)向步骤(1)所得水溶液中以每秒2滴的速率滴加浓度为1mol/l的稀氨水,并不断搅拌,调节ph在9-9.5之间,继续搅拌使其完全反应,凝胶化,当观察到溶液中出现团聚状物质出现时停止搅拌,然后真空泵真空抽滤,用去离子水冲洗三遍凝胶后得到锆刚玉磨料前驱体;
(3)以化学纯硝酸铝(al(no3)3·9h2o)为原料,加入分散剂聚乙二醇,配制成水溶液,滴加氨水,调节溶液的ph在9-9.5之间,后经抽滤、洗涤、干燥、研磨,烧结后球磨得到的超细α-al2o3晶种;
(4)按照质量配比2:3配制tio2/sio2添加剂或者按照质量配比1:6配制mgo/tio2添加剂,加入到步骤(2)得到的锆刚玉磨料前驱体中,继续加入稀土金属氧化物y2o3和步骤(3)得到的α-al2o3晶种,以去离子水为介质,混合均匀,然后干燥得到干凝胶,将所得干凝胶捣碎,过60-80目的筛选出粉料,加入聚乙二醇进行造粒得到前驱体颗粒;
(5)将步骤(4)所得前驱体颗粒在加热至1300~1400℃煅烧0.5h~1.5h或先升温到1400℃~1500℃后降温至1200℃~1300℃后煅烧1h~2h,随炉降温至室温,过60-80目筛得到锆刚玉磨料颗粒。
在上述技术方案中,所述添加剂中tio2/sio2的质量比恒定为2:3,mgo/tio2的质量比恒定为1:6。
在上述技术方案中,步骤(1)中所述的铝离子水溶液的浓度为0.2-0.4mol/l。
在上述技术方案中,步骤(4)中的干燥温度为80℃-100℃,干燥时间为24h-36h。
在上述技术方案中,步骤(5)中所述的加热的加热速率为5-10℃/min,升温的升温速率为5-10℃/min,降温的降温速率为10-20℃/min。
与现有技术相比,本发明的优点及有益效果是:所引入的刚玉晶种比表面积大,晶粒细小均匀,促进烧结致密化,所得到的锆刚玉磨料晶粒为等轴状,晶粒尺寸为100-300nm,单颗粒抗压强度最高可达35-40n。
附图说明
图1为锆刚玉磨料的扫描电镜照片。
具体实施方式
下面结合附图1与具体的实施方式对本发明作进一步详细描述。需要说明的是:下述实施例是说明性的,不是限定性的,不能以下述实施例来限定本发明的保护范围。以下实施例中所需要的原料均为市售。球磨机为德国fritsch(飞驰)p5四罐行星式球磨机,箱式电阻炉为黄骅光明实验仪器设备有限公司的sx-2.5-10tc型一体式箱式电阻炉,恒应力抗压强度试验机为上海倾技仪器仪表科技有限公司的qjyl-2000型恒应力抗压强度试验机。
实施例1
一种锆刚玉磨料,以化学纯硝酸铝(al(no3)3·9h2o)和氯氧锆(zrocl2)为原料,外加占最终磨料的质量百分比为1wt.%的复相添加剂tio2/sio2及占最终磨料的质量百分比为2wt.%稀土金属氧化物y2o3,所述添加剂中tio2/sio2的质量比恒定为2:3,按照以下步骤进行:
(1)以化学纯硝酸铝(al(no3)3·9h2o)和氯氧锆(zrocl2)为原料,溶于水后过滤除去杂质,配成铝离子浓度为0.2mol/l的水溶液;
(2)向步骤(1)所得水溶液中以每秒2滴的速率滴加浓度为1mol/l的稀氨水,并不断搅拌,调节ph为9,继续搅拌使其完全反应,凝胶化,当观察到溶液中出现团聚状物质出现时停止搅拌,然后真空泵真空抽滤,用去离子水冲洗三遍凝胶后得到锆刚玉磨料前驱体;
(3)以化学纯硝酸铝(al(no3)3·9h2o)为原料,加入分散剂聚乙二醇,配制成水溶液,滴加氨水,调节溶液的ph为9,后经抽滤、洗涤、干燥、研磨,烧结后球磨得到的超细α-al2o3晶种;
(4)按照质量配比2:3配制tio2/sio2添加剂加入到步骤(2)得到的锆刚玉磨料前驱体中,继续加入稀土金属氧化物y2o3和步骤(3)得到的α-al2o3晶种,以去离子水为介质,混合均匀,然后在80℃条件下干燥24h,得到干凝胶,将所得干凝胶捣碎,过60目的筛选出粉料,加入聚乙二醇进行造粒得到前驱体颗粒;
(5)将步骤(4)所得前驱体颗粒在加热至1300煅烧0.5h,随炉降温至室温,过60筛得到锆刚玉磨料颗粒。
所得锆刚玉陶瓷颗粒晶粒为等轴状,细小均匀,晶粒尺寸为100nm,致密度高,单颗粒抗压强度达到39.69n。
实施例2
一种锆刚玉磨料,以化学纯硝酸铝(al(no3)3·9h2o)和氯氧锆(zrocl2)为原料,外加占最终磨料的质量百分比为1wt.%的复相添加剂mgo/tio2及占最终磨料的质量百分比为2wt.%稀土金属氧化物y2o3,所述添加剂中mgo/tio2的质量比恒定为1:6,按照以下步骤进行:
(1)以化学纯硝酸铝(al(no3)3·9h2o)和氯氧锆(zrocl2)为原料,溶于水后过滤除去杂质,配成铝离子浓度为0.2mol/l的水溶液;
(2)向步骤(1)所得水溶液中以每秒2滴的速率滴加浓度为1mol/l的稀氨水,并不断搅拌,调节ph为9,继续搅拌使其完全反应,凝胶化,当观察到溶液中出现团聚状物质出现时停止搅拌,然后真空泵真空抽滤,用去离子水冲洗三遍凝胶后得到锆刚玉磨料前驱体;
(3)以化学纯硝酸铝(al(no3)3·9h2o)为原料,加入分散剂聚乙二醇,配制成水溶液,滴加氨水,调节溶液的ph为9,后经抽滤、洗涤、干燥、研磨,烧结后球磨得到的超细α-al2o3晶种;
(4)按照质量配比1:6配制mgo/tio2添加剂加入到步骤(2)得到的锆刚玉磨料前驱体中,继续加入稀土金属氧化物y2o3和步骤(3)得到的α-al2o3晶种,以去离子水为介质,混合均匀,然后在80℃条件下干燥24h,得到干凝胶,将所得干凝胶捣碎,过60目的筛选出粉料,加入聚乙二醇进行造粒得到前驱体颗粒;
(5)将步骤(4)所得前驱体颗粒在加热至1300煅烧0.5h,随炉降温至室温,过60筛得到锆刚玉磨料颗粒。
所得锆刚玉陶瓷颗粒晶粒为等轴状,细小均匀,晶粒尺寸为250nm,致密度高,单颗粒抗压强度达到36.95n。
实施例3
一种锆刚玉磨料,以化学纯硝酸铝(al(no3)3·9h2o)和氯氧锆(zrocl2)为原料,外加占最终磨料的质量百分比为2wt.%的复相添加剂tio2/sio2及占最终磨料的质量百分比为4wt.%稀土金属氧化物y2o3,所述添加剂中tio2/sio2的质量比恒定为2:3,按照以下步骤进行:
(1)以化学纯硝酸铝(al(no3)3·9h2o)和氯氧锆(zrocl2)为原料,溶于水后过滤除去杂质,配成铝离子浓度为0.4mol/l的水溶液;
(2)向步骤(1)所得水溶液中以每秒2滴的速率滴加浓度为1mol/l的稀氨水,并不断搅拌,调节ph为9.5,继续搅拌使其完全反应,凝胶化,当观察到溶液中出现团聚状物质出现时停止搅拌,然后真空泵真空抽滤,用去离子水冲洗三遍凝胶后得到锆刚玉磨料前驱体;
(3)以化学纯硝酸铝(al(no3)3·9h2o)为原料,加入分散剂聚乙二醇,配制成水溶液,滴加氨水,调节溶液的ph为9.5,后经抽滤、洗涤、干燥、研磨,烧结后球磨得到的超细α-al2o3晶种;
(4)按照质量配比2:3配制tio2/sio2添加剂加入到步骤(2)得到的锆刚玉磨料前驱体中,继续加入稀土金属氧化物y2o3和步骤(3)得到的α-al2o3晶种,以去离子水为介质,混合均匀,然后在100℃条件下干燥36h,得到干凝胶,将所得干凝胶捣碎,过80目的筛选出粉料,加入聚乙二醇进行造粒得到前驱体颗粒;
(5)将步骤(4)所得前驱体颗粒先升温到1400℃后降温至1200℃℃后煅烧1h,随炉降温至室温,过80筛得到锆刚玉磨料颗粒。
所得锆刚玉陶瓷颗粒晶粒为等轴状,细小均匀,晶粒尺寸为100nm,致密度高,单颗粒抗压强度达到39.20n。
实施例4
一种锆刚玉磨料,以化学纯硝酸铝(al(no3)3·9h2o)和氯氧锆(zrocl2)为原料,外加占最终磨料的质量百分比为2wt.%的复相添加剂mgo/tio2及占最终磨料的质量百分比为4wt.%稀土金属氧化物y2o3,所述添加剂中mgo/tio2的质量比恒定为1:6,按照以下步骤进行:
(1)以化学纯硝酸铝(al(no3)3·9h2o)和氯氧锆(zrocl2)为原料,溶于水后过滤除去杂质,配成铝离子浓度为0.4mol/l的水溶液;
(2)向步骤(1)所得水溶液中以每秒2滴的速率滴加浓度为1mol/l的稀氨水,并不断搅拌,调节ph为9.5,继续搅拌使其完全反应,凝胶化,当观察到溶液中出现团聚状物质出现时停止搅拌,然后真空泵真空抽滤,用去离子水冲洗三遍凝胶后得到锆刚玉磨料前驱体;
(3)以化学纯硝酸铝(al(no3)3·9h2o)为原料,加入分散剂聚乙二醇,配制成水溶液,滴加氨水,调节溶液的ph为9.5,后经抽滤、洗涤、干燥、研磨,烧结后球磨得到的超细α-al2o3晶种;
(4)按照质量配比1:6配制mgo/tio2添加剂加入到步骤(2)得到的锆刚玉磨料前驱体中,继续加入稀土金属氧化物y2o3和步骤(3)得到的α-al2o3晶种,以去离子水为介质,混合均匀,然后在100℃条件下干燥36h,得到干凝胶,将所得干凝胶捣碎,过80目的筛选出粉料,加入聚乙二醇进行造粒得到前驱体颗粒;
(5)将步骤(4)所得前驱体颗粒先升温到1400℃后降温至1200℃℃后煅烧1h,随炉降温至室温,过80筛得到锆刚玉磨料颗粒。
所得锆刚玉陶瓷颗粒晶粒为等轴状,细小均匀,晶粒尺寸为300nm,致密度高,单颗粒抗压强度达到38.02n。
本发明的优点及有益效果是:所引入的刚玉晶种比表面积大,晶粒细小均匀,促进烧结致密化,所得到的锆刚玉磨料晶粒为等轴状,晶粒尺寸为100-300nm,单颗粒抗压强度最高可达39.69n。
根据发明内容进行工艺参数的调整均可实现锆刚玉磨料的制备,且表现出与上述实施例基本一致的性能。以上对本发明做了示例性的描述,应该说明的是,在不脱离本发明的核心的情况下,任何简单的变形、修改或者其他本领域技术人员能够不花费创造性劳动的等同替换均落入本发明的保护范围。