一种碳化硅‑六铝酸钙复合耐火材料的制作方法

文档序号:14133982阅读:471来源:国知局

本发明属于耐火材料技术领域,主要涉及一种碳化硅-六铝酸钙复合的耐火材料。



背景技术:

耐火材料在使用中有些强调高温下的保温隔热性,有些要求苛刻的高温结构强度,还有一大类主要用作高温熔体的反应器,这类材料要求耐高温的同时,优良的抗渣性能是追求的主要目标。如煤气化领域的水煤浆气化装置,其是将煤与水制成浆料后泵送如气化炉中在高温高压下制备co和h2等化工气体用于合成化工产品的煤气化用先进装置,该装置内腔由耐火材料构成,耐火材料衬长期处于1300~1500℃的高温、2.0~8.7mpa的高压以及由co和h2等强还原气体构成的气氛环境,与此同时煤中灰分及煤浆中添加剂形成的sio2、cao、feox、al2o3、mgo、tio2、k2o、na2o等成分为主的熔渣沿着耐火材料炉内壁流淌,对耐火材料造成的侵蚀渗透十分严重;水煤浆气化炉所用的耐火材料是目前工业应用中对抗渣性要求最高的耐火材料之一。

目前水煤浆煤气炉普遍采用高铬砖(cr2o3-al2o3-zro2材料,cr2o3>75wt%)为炉衬向火面耐火材料,其高温力学性能好,抗渣性优异。高铬砖良好的抗渣性得益于cr2o3在熔渣中具有极低的溶解度。然而铬资源有限且制备成本高,含铬耐火材料价格昂贵,特别是含铬耐火材料在原料制备、生产、使用以及用后可能存在潜在的cr6+危害。

对水煤浆气化炉用高铬砖损毁形式进行分析,熔渣对高铬材料的化学侵蚀量小,主要是由于熔渣向高铬中内部渗透形成变质层,变质层在各项性能方面(特别是热膨胀系数)与未渗入渣的原砖层存在差异,在温度波动和气流冲刷下产生剥落。通常水煤浆气化炉渣中偏酸性的氧化物如sio2、al2o3等成分占比要高于偏碱性的氧化物如cao、feox、mgo、k2o、na2o等,因而,常规的煤气化渣呈酸性。以cr2o3和al2o3为主的高铬砖为偏酸性耐火材料,其抵抗常规气化炉炉渣的能力较强。但随着煤气化的深入发展,优质煤成本的提高以及资源的紧缺,低品质煤被作为气化原料已成为煤气化发展的必然趋势。一些低品质煤其灰分中含有大量cao、na2o、k2o等碱金属和碱土金属氧化物,使得煤渣呈碱性,且腐蚀性显著增强,传统的高铬砖在该环境下使用时受熔渣侵蚀十分严重,且有cr6+生成的危险。耐碱侵蚀性好的、绿色无铬的耐火材料才能适应这种特殊煤气化的使用要求。

煤熔渣以氧化物组分为主,与大多数氧化物耐火材料相似相溶,而非氧化物与氧化物熔渣具有良好的不润湿性,抗酸碱性渣的性能良好。sic是一类价格低廉、应用广泛的非氧化物耐火原料,以其为主要原料制备的al2o3-sic-c在钢铁冶金方面得到大量应用,si3n4结合的sic制品具有良好的抗冰晶石侵蚀性能在电解铝方面应用广泛。但是,sic材料也存在着烧结性差、易氧化等缺点。sic是一种共价键结合的非氧化物,自身烧结性差,2200℃以上的极高温度下才能有一定烧结,实现自结合,因而耐火材料中常用氧化物结合或其它非氧化物结合制备含sic的复合耐火材料。

在水煤浆气化炉内整体看看作是co和h2为主的还原性气氛,但在烧嘴附近的燃烧区域存在局部氧化气氛,且操作中烧嘴区域的位置在动态变化,完全采用非氧化物耐火材料存在被氧化失效的危险,因而采用具有一定抗氧化能力的氧化物结合碳化硅更为可行。传统的粘土结合碳化硅使用温度低,抗渣性差,无法满足要求。采用什么类型的氧化物来与sic材料复合,实现复合材料高效抵御偏碱性熔渣的侵蚀和渗透的同时,又具有一定的抗氧化能力,是一项解决如水煤浆气化炉这类高温苛刻环境下耐火材料长寿和环保的技术难题。



技术实现要素:

为解决上述技术问题,本发明的目的是提出一种碳化硅-六铝酸钙复合的耐火材料。

本发明为完成上述目的采用如下技术方案:

一种碳化硅-六铝酸钙复合的耐火材料,其特征在于:所述耐火材料的原料包括有骨料和基质;所述的骨料采用sic质量分数≥98.0%,粒度范围为0.1~5mm的碳化硅颗粒,加入比例为原料总质量的60%~85%;所述的基质中还包含有预合成原料六铝酸钙;所述的预合成原料六铝酸钙中al2o3+cao的总质量分数≥98.0%,其中al2o3的质量分数不低于90%,密度不低于2.8g/cm3,粒度范围为10~90μm,加入比例为原料总质量的10%~35%;所述的基质中还加入有在高温烧成时反应生成为六铝酸钙的氧化钙和氧化铝;所述的基质中还加入有抗氧化剂;所述的骨料、基质与结合剂混匀后成型,经干燥后在埋炭或氮气气氛保护下烧成制得以sic为主晶相、六铝酸钙为次晶相的碳化硅-六铝酸钙复合耐火材料;碳化硅-六铝酸钙复合耐火材料中sic质量分数为58.5~85%、al2o3质量分数为13.0~37.5%、cao质量分数为1.0~3.5%;在碳化硅-六铝酸钙复合耐火材料的烧成过程中,最高烧成温度为1450~1600℃。

所述的基质中还加入有碳化硅细粉或微粉。

所述的氧化铝是电熔白刚玉细粉、板状刚玉细粉、α-al2o3微粉、活性氧化铝微粉中的一种或多种组合,al2o3的质量分数≥99.0%,其中电熔白刚玉细粉的粒度范围为43~74μm,板状刚玉细粉的粒度范围为43~74μm,α-al2o3微粉的粒度范围为d50=2~5μm,活性氧化铝微粉的粒度范围为d50=0.5~2μm。

所述的氧化钙是氧化钙细粉或者高温反应后可生成氧化钙的化合物,氧化钙的添加量以cao计为小于等于原料总质量的1%。

高温反应后可生成氧化钙的所述化合物为碳酸钙或氢氧化钙。

所述的抗氧化剂为al、c、aln、b4c、bn等物质的一种或多种复合,为细粉或微粉,粒度范围为5~50μm,抗氧化剂的加入量不大于复合材料原料总质量的2%。

所述的结合剂,是一种树脂类有机物粘结剂,为酚醛树脂、水溶性树脂、糠醛树脂中的一种;结合剂在干燥和高温烧成时绝大部分已烧失,上述原料总质量不包含结合剂的加入质量。

本发明中要求sic质量分数≥98.0%,是因为若碳化硅纯度低,其中的杂质如sio2、fe2o3、na2o、k2o等高温下易形成低熔点物质,降低耐火材料的高温力学性能和抗渣性;要求碳化硅颗粒有一定的粒度范围,一方面有利于制品的成型和产品的光洁度和外观,另一方面,有利于使基质充分填充间隙,提高致密度和结合性能。

六铝酸钙(caal12o19,简写为ca6)是cao-al2o3系中al2o3含量最高的铝酸钙相,其转熔温度高达1875℃,在还原气氛(co)中的稳定性高;在碱性环境中的化学稳定性好;在熔渣中的溶解度低,且与熔渣的润湿性低;热膨胀系数与al2o3相近,可以和氧化铝以任何比例配合使用;碳化硅颗粒在烧成和使用的高温环境下表层会微弱氧化形成sio2,该sio2与六铝酸钙中的al2o3、cao易于在碳化硅表层生成al2o3-cao-sio2玻璃相,使非氧化物的sic与氧化物的六铝酸钙形成较强的结合;六铝酸钙在高温下吸收渣中的cao等碱性物质,生成其它具有较高熔点的铝酸钙矿相,提高了渗入耐火材料基体中的渣的粘度;六铝酸钙存在针状(棒状)和片状(平板状)2种微观结构,烧结原料以及原位生成的六铝酸钙基本为片状结构,这种片状结构的六铝酸钙在该类耐火材料中使用将有3方面的优点:1)吸收断裂能,阻止裂纹扩展,提高了材料的抗热震性;2)比表面积大,有利于和sic颗粒的结合,提高了材料的机械强度;3)片状结构的六铝酸钙热导率低,而sic材料本身热导率较现有的氧化物材料来说高出了许多,添加六铝酸钙可有效降低sic复合材料的热导率;预合成的六铝酸钙为烧结法人工合成原料,除ca6晶相外,可能还残留有刚玉、ca2、ca等相,以及微量杂质构成的玻璃相;本发明将材料抗渣性作为重点,因而要求添加的六铝酸钙原料尽量的高纯,杂质含量低;化学计量的六铝酸钙中al2o3的质量百分比为91.6%,cao的质量百分比为8.4%。较高的al2o3比例能保障合成的六铝酸钙原料中除了ca6相外,残余相为刚玉、ca2等高温矿物相,从而保证材料的高温强度;而且,由于六铝酸钙在合成中存在难于致密化的问题,气孔率太高、密度过低的六铝酸钙会降低复合材料的致密度,熔渣极易渗入,导致抗渣性降低;该耐火材料中六铝酸钙为主要结合相需要起到将碳化硅颗粒粘接在一起的目的,要求在工艺烧成温度下该材料有较高的活性,同时能均匀包裹在碳化硅颗粒周围,因而六铝酸钙粉料若太粗,烧结活性差、制品强度低;若太细,活性太高,烧成时制品收缩大,成品率低。

电熔白刚玉细粉和板状刚玉细粉的添加在一定程度上可以防止烧成时基质收缩过大;α-al2o3微粉和活性氧化铝微粉添加的目的主要是促进高温下的烧结,提高耐火材料的常温和高温强度,另一方面也是为了和配料中的cao成分高温下原位反应生成新的六铝酸钙。

为了提高制品的力学强度、改善抗渣性和抗热震性,本发明中添加氧化钙和氧化铝,依靠高温烧成时二者反应原位生成活性较高、与基体结合更紧密的六铝酸钙。

在该耐火制品烧成和使用过程中存在局部被氧化的可能性,为延缓碳化硅的氧化同时不降低材料的抗渣性能,本发明选取的几种抗氧化剂在高温下优先于碳化硅被氧化,且生产的氧化产物al2o3、sialon以及硼酸盐等能起到增强六铝酸钙和sic颗粒的结合,提高致密度和抗渣性的效果;但过多的抗氧化剂添加会造成制品的膨胀开裂,因而控制其加入总量为2%。

树脂类有机物是一类以碳为主的结合剂,结合强度高,特别是在该烧成工艺下烧成时会形成残炭,该残炭具有碳纳米管或碳纤维的显微结构,抗氧化性强,同时为制品增韧增强。

本发明提出的一种碳化硅-六铝酸钙复合的耐火材料,采用上述技术方案,具有以下有益效果;

气化炉熔渣主要由cao、sio2、feox、al2o3、mgo、k2o、na2o等氧化物组分构成,高温下对氧化物耐火材料的溶解、侵蚀、渗透较为严重;本发明以碳化硅颗粒为骨料降低了熔渣与耐火材料之间的润湿性,提高了抗渣性;以六铝酸钙材料为基质,高温下吸收渣中碱性氧化物,提高渣在界面处的黏度同时形成保护膜防止熔渣向耐火材料中的渗透,有效提高了复合材料抗碱性渣的侵蚀能力;同时,添加氧化铝、氧化钙,以及以有机树脂为结合剂,原位反应生成的六铝酸钙、碳纳米管等改善了材料的微观组织结构,提高了材料的机械强度和抗热震性;与现有技术相比,本发明产品不含氧化铬,价格低廉、绿色环保,具有强度高、抗热震性好,抗碱性熔渣侵蚀性和抗熔渣渗透性优异的特点,是一种高温、还原性气氛下具有优异抗碱性渣侵蚀的环保型耐火材料。

具体实施方式

结合给出的实施例,对本发明加以说明,但不构成对本发明的任何限制。

实施例1:

分别称取粒度大于10μm小于等于90μm的化学组成为w(al2o3+cao)≥98.0%、al2o3≈90%、密度约3.0g/cm3的烧结六铝酸钙细粉35kg,粒度大于43μm小于等于74μm的化学组成为w(al2o3)≥99.0%的电熔白刚玉细粉3kg,分析纯氧化钙细粉1kg,粒度大于20μm小于等于50μm的金属铝粉1kg,经球磨机充分预混,制备成基质细粉;称取w(sic)≥98.0%的电熔碳化硅颗粒,其中粒度大于0.1mm小于等于1mm的颗粒15kg,粒度大于1mm小于等于3mm的颗粒30kg,粒度大于3mm小于等于5mm的颗粒15kg加入碾轮式混砂机中混匀;向颗粒料中加入结合剂酚醛树脂约3kg,搅拌后加入预混后的基质细粉,充分混合后,困料;摩擦压砖机成型坯体,110℃干燥后,坯体装入铺设填充有石墨粉的匣钵内埋炭处理,于电阻炉内1450℃烧成,即得碳化硅-六铝酸钙复合的耐火制品。该制品的性能参数如下表,该材料在还原气氛下使用,具有良好的抗熔渣侵蚀性和渗透性。

实施例2:

分别称取粒度大于10μm小于等于90μm的化学组成为w(al2o3+cao)≥98.5%、al2o3≈91%、密度约3.05g/cm3的烧结六铝酸钙细粉27kg,粒度大于43μm小于等于74μm的化学组成为w(al2o3)≥99.0%的板状刚玉细粉5kg,碳酸钙细粉1.5kg,粒度大于20μm小于等于50μm的金属铝粉1.5kg,经球磨机充分预混,制备成基质细粉;称取w(sic)≥98.0%的电熔碳化硅颗粒,其中粒度大于0.1mm小于等于1mm的颗粒15kg,粒度大于1mm小于等于3mm的颗粒30kg,粒度大于3mm小于等于4mm的颗粒25kg加入碾轮式混砂机中混匀;向颗粒料中加入结合剂水溶性树脂约4kg,搅拌后加入预混后的基质细粉,充分混合后,困料;摩擦压砖机成型坯体,110℃干燥后,坯体装入气氛保护的电阻炉内持续通入99.9%的n2气于1500℃烧成,即得碳化硅-六铝酸钙复合的耐火制品。该制品的性能参数如下表,该材料在还原气氛下使用,具有良好的抗熔渣侵蚀性和渗透性。

实施例3:

分别称取粒度大于10μm小于等于74μm的化学组成为w(al2o3+cao)≥99.0%、al2o3≈92%、密度约2.8g/cm3的烧结六铝酸钙细粉15kg,粒度大于43μm小于等于74μm的化学组成为w(al2o3)≥99.0%的电熔白刚玉细粉7.5kg,粒度d50=5μm、w(al2o3)≥99.0%的α-al2o3微粉5kg,氧化钙细粉0.5kg,粒度大于30μm小于等于50μm的球形石墨粉2kg,经球磨机充分预混,制备成基质细粉;称取w(sic)≥98.5%的电熔碳化硅颗粒,其中粒度大于0.1mm小于等于0.5mm的颗粒15kg,粒度大于0.5mm小于等于1.43mm的颗粒20kg,粒度大于1.43mm小于等于3mm的颗粒35kg加入碾轮式混砂机中混匀;向颗粒料中加入结合剂糠醛树脂约5kg,搅拌后加入预混后的基质细粉,充分混合后,困料;摩擦压砖机成型坯体,110℃干燥后,坯体装入铺设填充有石墨粉的匣钵内埋炭处理,于电阻炉内1550℃烧成,即得碳化硅-六铝酸钙复合的耐火制品。该制品的性能参数如下表,该材料在还原气氛下使用,具有良好的抗熔渣侵蚀性和渗透性。

实施例4:

分别称取粒度大于20μm小于等于43μm的化学组成为w(al2o3+cao)≥98.0%、al2o3≈90%、密度约2.9g/cm3的烧结六铝酸钙细粉15kg,粒度d50=4μm、w(al2o3)≥99.0%的α-al2o3微粉9kg,工业级碳酸钙细粉0.5kg,粒度大于20μm小于等于50μm的aln粉0.5kg,经球磨机充分预混,制备成基质细粉;称取w(sic)≥98.0%的电熔碳化硅颗粒,其中粒度大于0.1mm小于等于1mm的颗粒15kg,粒度大于1mm小于等于3mm的颗粒35kg,粒度大于3mm小于等于5mm的颗粒25kg加入碾轮式混砂机中混匀;向颗粒料中加入结合剂酚醛树脂约5kg,搅拌后加入预混后的基质细粉,充分混合后,困料;摩擦压砖机成型坯体,110℃干燥后,坯体装入铺设填充有石墨粉的匣钵内埋炭处理,于燃气窑内1600℃烧成,即得碳化硅-六铝酸钙复合的耐火制品。该制品的性能参数如下表,该材料在还原气氛下使用,具有良好的抗熔渣侵蚀性和渗透性。

实施例5:

分别称取粒度大于10μm小于等于90μm的化学组成为w(al2o3+cao)≥99.0%、al2o3≈92%、密度约3.0g/cm3的烧结六铝酸钙细粉12kg,粒度d50=1μm、w(al2o3)≥99.5%的活性氧化铝微粉6.7kg,分析纯试剂氧化钙细粉1kg,粒度大于20μm小于等于50μm的b4c粉0.3kg,经球磨机充分预混,制备成基质细粉;称取w(sic)≥98.0%的电熔碳化硅颗粒,其中粒度大于0.1mm小于等于1mm的颗粒15kg,粒度大于1mm小于等于3mm的颗粒35kg,粒度大于3mm小于等于5mm的颗粒30kg加入碾轮式混砂机中混匀;向颗粒料中加入结合剂酚醛树脂约4kg,搅拌后加入预混后的基质细粉,充分混合后,困料;摩擦压砖机成型坯体,110℃干燥后,坯体装入气氛保护的电阻炉内持续通入99.9%的n2气于1600℃烧成,即得碳化硅-六铝酸钙复合的耐火制品。该制品的性能参数如下表,该材料在还原气氛下使用,具有良好的抗熔渣侵蚀性和渗透性。

实施例6:

分别称取粒度大于10μm小于等于45μm的化学组成为w(al2o3+cao)≥99.5%、al2o3≈95%、密度约3.1g/cm3的烧结六铝酸钙细粉10kg,粒度d50=2μm、w(al2o3)≥99.0%的α-al2o3微粉3kg,氧化钙粉0.5kg,粒度大于5μm小于等于20μm的bn粉1.5kg,经球磨机充分预混,制备成基质细粉;称取w(sic)≥98.0%的电熔碳化硅颗粒,其中粒度大于0.1mm小于等于1mm的颗粒15kg,粒度大于1mm小于等于3mm的颗粒30kg,粒度大于3mm小于等于5mm的颗粒40kg加入碾轮式混砂机中混匀;向颗粒料中加入结合剂水溶性树脂约5kg,搅拌后加入预混后的基质细粉,充分混合后,困料;摩擦压砖机成型坯体,110℃干燥后,坯体装入气氛保护的电阻炉内持续通入99.9%的n2气于1500℃烧成,即得碳化硅-六铝酸钙复合的耐火制品。该制品的性能参数如下表,该材料在还原气氛下使用,具有良好的抗熔渣侵蚀性和渗透性。

实施例7:

分别称取粒度大于10μm小于等于90μm的化学组成为w(al2o3+cao)≥98.5%、al2o3≈92%、密度约3.0g/cm3的烧结六铝酸钙细粉25kg,粒度d50=0.5μm、w(al2o3)≥99.5%的活性氧化铝微粉2.5kg,碳酸钙粉0.5kg,粒度大于5μm小于等于50μm的金属铝粉和石墨粉各1kg,经球磨机充分预混,制备成基质细粉;称取w(sic)≥98.0%的电熔碳化硅颗粒,其中粒度大于0.1mm小于等于1mm的颗粒15kg,粒度大于1mm小于等于3mm的颗粒20kg,粒度大于3mm小于等于5mm的颗粒35kg加入碾轮式混砂机中混匀;向颗粒料中加入结合剂糠醛树脂约3.8kg,搅拌后加入预混后的基质细粉,充分混合后,困料;摩擦压砖机成型坯体,110℃干燥后,坯体装入铺设填充有石墨粉的匣钵内埋炭处理,于燃气窑内1600℃烧成,即得碳化硅-六铝酸钙复合的耐火制品。该制品的性能参数如下表,该材料在还原气氛下使用,具有良好的抗熔渣侵蚀性和渗透性。

实施例8:

分别称取粒度大于10μm小于等于90μm的化学组成为w(al2o3+cao)≥99.0%、al2o3≈92%、密度约2.95g/cm3的烧结六铝酸钙细粉20kg,粒度大于43μm小于等于74μm的化学组成为w(al2o3)≥99.5%的电熔白刚玉细粉3.8kg,粒度大于43μm小于等于74μm的化学组成为w(al2o3)≥99.5%的板状刚玉细粉5.5kg,粒度d50=2μm、w(al2o3)≥99.5%的活性氧化铝微粉3kg,碳酸钙细粉1.2kg,粒度大于5μm小于等于50μm的金属铝粉1kg、bn粉0.5kg,经球磨机充分预混,制备成基质细粉;称取w(sic)≥99.0%的电熔碳化硅颗粒,其中粒度大于0.1mm小于等于1mm的颗粒15kg,粒度大于1mm小于等于3mm的颗粒30kg,粒度大于3mm小于等于5mm的颗粒20kg加入碾轮式混砂机中混匀;向颗粒料中加入结合剂酚醛树脂约5.5kg,搅拌后加入预混后的基质细粉,充分混合后,困料;摩擦压砖机成型坯体,110℃干燥后,坯体装入气氛保护的电阻炉内持续通入99.9%的n2气于1600℃烧成,即得碳化硅-六铝酸钙复合的耐火制品。该制品的性能参数如下表,该材料在还原气氛下使用,具有良好的抗熔渣侵蚀性和渗透性。

实施例9:

分别称取粒度大于10μm小于等于90μm的化学组成为w(al2o3+cao)≥99.0%、al2o3≈92%、密度约3.05g/cm3的烧结六铝酸钙细粉15kg,粒度大于43μm小于等于74μm的化学组成为w(sic)≥98.5%的电熔碳化硅细粉5kg,粒度d50=2μm、w(al2o3)≥99.5%的α-al2o3微粉7kg,氢氧化钙细粉1kg,粒度大于5μm小于等于50μm的金属铝粉0.5kg、石墨粉1kg、aln粉0.5kg,经球磨机充分预混,制备成基质细粉;称取w(sic)≥98.0%的电熔碳化硅颗粒,其中粒度大于0.1mm小于等于1mm的颗粒15kg,粒度大于1mm小于等于3mm的颗粒20kg,粒度大于3mm小于等于5mm的颗粒35kg加入碾轮式混砂机中混匀;向颗粒料中加入结合剂酚醛树脂约5kg,搅拌后加入预混后的基质细粉,充分混合后,困料;摩擦压砖机成型坯体,110℃干燥后,坯体装入气氛保护的电阻炉内持续通入99.9%的n2气于1450℃烧成,即得碳化硅-六铝酸钙复合的耐火制品。该制品的性能参数如下表,该材料在还原气氛下使用,具有良好的抗熔渣侵蚀性和渗透性。

实施例10:

分别称取粒度大于10μm小于等于90μm的化学组成为w(al2o3+cao)≥99.0%、al2o3≈92%、密度约3.0g/cm3的烧结六铝酸钙细粉20kg,粒度d50=5μm的化学组成为w(sic)≥99.5%的碳化硅微粉5kg,粒度d50=1μm、w(al2o3)≥99.5%的活性氧化铝微粉7kg,碳酸钙细粉1kg,粒度大于5μm小于等于50μm的金属铝粉1kg,经球磨机充分预混,制备成基质细粉;称取w(sic)≥99.0%的电熔碳化硅颗粒,其中粒度大于0.1mm小于等于1mm的颗粒15kg,粒度大于1mm小于等于3mm的颗粒30kg,粒度大于3mm小于等于5mm的颗粒20kg加入碾轮式混砂机中混匀;向颗粒料中加入结合剂酚醛树脂约5.5kg,搅拌后加入预混后的基质细粉,充分混合后,困料;摩擦压砖机成型坯体,110℃干燥后,坯体装入铺设填充有石墨粉的匣钵内埋炭处理,于燃气窑内1500℃烧成,即得碳化硅-六铝酸钙复合的耐火制品。该制品的性能参数如下表,该材料在还原气氛下使用,具有良好的抗熔渣侵蚀性和渗透性。

实施例1—10所得各产品的化学成分、体积密度、显气孔率等采用国家推荐标准方法检测,结果如下表所示。力学强度结果表明,实施例1-10试样的常温抗折强度均大于5mpa,常温耐压强度大于40mpa;xrd分析结果表明实施例1-10试样中以sic为主晶相、六铝酸钙为次晶相。采用实施例1—10所得各产品制备坩埚试样与水煤浆气化炉用市售高铬砖(cr2o3-al2o3-zro2砖,cr2o3≈85wt%)进行平行抗渣对比实验,实验渣为商用水煤浆气化炉用后煤渣(渣主要成分cao、sio2、al2o3、feox、k2o、na2o、mgo,碱度m(cao+k2o+na2o+mgo+feox)/m(sio2+al2o3)=1.6),试验温度1500℃,实验气氛为流通的99.999%n2气氛保护,抗渣结果表明实施例各产品的渣蚀厚度略低于高铬砖,但渣渗透厚度仅为高铬砖中渣渗透深度的10~30%,表明本发明产品良好的抗碱性渣侵蚀性能和抗熔渣渗透性。实施例1—10所得各产品,采用gb/t13244-91含碳材料抗氧化性实验方法1400℃×2h实验,几乎看不到明显脱碳层,表明本发明产品具有较好的抗氧化性。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1