一种宽温区负温度系数热敏陶瓷材料及其制备方法与流程

文档序号:15467730发布日期:2018-09-18 19:39阅读:185来源:国知局

本发明属于功能陶瓷材料技术领域,更具体地,涉及一种宽温区负温度系数热敏陶瓷材料及其制备方法,尤其是一种BaTiO3基负温度系数(NTC)热敏陶瓷材料及其制备方法。



背景技术:

典型的NTC热敏陶瓷多是以锰、钴、镍等过渡金属氧化物为基的半导体陶瓷材料,其特点是材料的电阻率随环境温度上升而呈指数型下降,从而产生负的电阻温度(NTC)特性。利用这类陶瓷材料可制成各类温度传感器,具有结构简单、成本低廉及安全可靠等一系列优点而广泛应用于各种家用电器、汽车电子、自动控制以及电子设备等领域,具有很高的实用价值和经济价值。

以錳、钴、镍等过渡金属氧化物为基的半导体热敏陶瓷材料的导电机制十分复杂,一般认为属于极化子导电,而在多元材料体系中由于多种离子缺陷(金属缺位、离子变价等)的存在,其电导率的决定因素复杂而多变,但通常可以大致用如下数学表达式进行描述:

式中:ΔHf为电离缺陷激活能,ΔHm为载流子迁移激活能。一般情况下ΔHf、ΔHm都是与温度有关的参数,只有在误差允许的比较窄的温度范围内才可近似看做常数,此时(1)式可简化为:

由于以錳、钴、镍等过渡金属氧化物为基的NTC半导体热敏陶瓷材料的B值相关因素较多,导致不可能制备成测量温度范围很宽,且精度要求很高的温度传感器,只能分温区制备不同材料配比的传感器来实现宽温区精确测量。同时,此类半导体陶瓷材料技术上很难制备出低电阻率、高B值和高电阻率、低B值的热敏材料,因而限制了其应用领域和测量范围。

变换式(2)可得:

利用式(3)可求得材料B值,其中R1是对应温度为T1(如25℃)时的电阻值,R2是对应温度为T2(如85℃)时的电阻值。T1、T2也可根据元件的测量温度范围确定。

另一方面,众所周知,以钛酸钡为基的半导体陶瓷是一类典型的正温度系数(PTC)热敏材料,其特点是当温度上升到某一特定温度时(居里点或称开关温度点)其电阻率将猛增几个数量级,出现开关似的PTC效应,而在居里点之前电阻随温度变化很小,室温到居里温度区间电阻变化率不大于1个数量级。用这种材料的PTC效应作为发热体其发热功率几乎不随外加电压的变化而变化,因而有自动恒温的功能。同时,利用材料在居里温度以上的PTC特性也可制备成温度传感元件,但这种热敏元件测量温区很窄(一般为室温到100℃),应用范围有限,只有在汽车水温测量与控制方面等少数领域得到应用。

本发明采用缺陷化学和材料半导体化技术,对钛酸钡陶瓷进行掺杂改性,大幅提高材料居里温度以下的载流子浓度,从而提高材料的NTC效应并降低PTC效应,同时通过居里点的移动实现宽温区测量。



技术实现要素:

针对现有技术的以上缺陷或改进需求,本发明的目的在于提供一种宽温区负温度系数热敏陶瓷材料及其制备方法,其中通过对陶瓷材料关键的组成成分(包括具体成分的种类及它们之间的配比等),相应制备方法的整体流程工艺、各个反应步骤的条件参数(如反应的温度控制等)进行改进和进一步优选,通过对钛酸钡基半导体热敏陶瓷进行掺杂改性,能够获得钛酸钡基、测量温区达300度以上的宽温区NTC热敏陶瓷材料,尤其可针对錳、钴、镍过渡金属氧化物半导体热敏陶瓷的缺点,实现低电阻率、高B值和高电阻率、低B值的热敏材料的制备。本发明中的新型钛酸钡基NTC半导体热敏陶瓷,是一种测量温区达300度以上的宽温区NTC热敏陶瓷材料,该材料体系不仅测量范围宽,而且线性度(单对数坐标下)好、测试精度高;同时材料平均晶粒尺寸小(小于1微米)、陶瓷多晶体致密、可靠性高。

为实现上述目的,按照本发明的一个方面,提供了一种负温度系数热敏陶瓷材料,其特征在于,该负温度系数热敏陶瓷的原材料组成包括BaTiO3、TiO2、M1O、M2O、M3O、M4O以及M5O,并且BaTiO3、TiO2、M1O、M2O、M3O、M4O以及M5O七者的摩尔比满足(1-x-y):(x+y):v:w:x:y:y,其中,v=0.1~0.5,w=1.0~5.0,x=0~40.0,y=0.1~10.0;各个原材料的相互对应关系如下式所示:

(1-x-y)BaTiO3+(x+y)TiO2+vM1O+wM2O+xM3O+y(M4O+M5O);

此外,所述M1为Sm、Nd、Y、La、以及Nb中至少1种元素;

所述M2为Si、Al、以及Ti中的至少2种元素;

所述M3为Sr、以及Pb中的至少1种元素与Ca元素的组合;

所述M4为Sb、以及Bi中的至少1种元素;

所述M5为Na、K、以及Li中的至少1种元素。

作为本发明的进一步优选,所述M2中,Si、Al或者这两种元素之和(Si+Al)与Ti的摩尔比为2∶1;

所述M3中,Sr元素、Pb元素或者这两种元素之和(Sr+Pb)与Ca元素的摩尔比为3:1。

按照本发明的另一方面,本发明提供了上述负温度系数热敏陶瓷材料的制备方法,其特征在于,包括以下步骤:

(1)制备NTC粉体材料:

按BaTiO3、TiO2、M1O、M2O、M3O、M4O、M5O七者的目标摩尔比配比BaTiO3源粉末、Ti源粉末、M1源粉末、M2源粉末、M3源粉末、M4源粉末和M5源粉末,混合得到混合粉体;然后,将该混合粉体与预混液按(0.4~0.7)∶(0.6~0.3)的重量比进行球磨混合,所述预混液是按有机单体、交联剂与水按10:(0.5~1):100的重量比混合配制的;球磨后将球磨浆料置入容器中,加入催化剂和引发剂,静置使该球磨浆料凝固成胶状体;接着,将胶状体干燥后排胶,然后煅烧得到NTC粉体材料;

(2)制备NTC热敏陶瓷:

向所述步骤(1)得到的所述NTC粉体材料中加入粘合剂造粒,接着成型并在1250℃-1350℃的高温下烧结,即可得到NTC热敏陶瓷。

作为本发明的进一步优选,所述步骤(2)中,所述在1250℃-1350℃的高温下烧结,具体是先以150℃/h~200℃/h的升温速率升温至400℃~500℃并保温至少半小时;然后再先以150℃/h~250℃/h速率升温至800℃~1000℃并保温至少半小时,接着再以300℃/h~350℃/h的速率升温至1250℃~1350℃的烧结温度进行烧结处理,烧结处理完成后再以200℃/h~300℃/h的降温速率冷却。

作为本发明的进一步优选,在1250℃~1350℃的烧结温度下进行烧结处理的时间为1~3小时。

作为本发明的进一步优选,所述步骤(1)中,所述Ti源粉末为TiO2粉末,所述M1源粉末为M1的氧化物粉末,M2源粉末为M2的氧化物粉末,M3源粉末为M3的氧化物粉末或碳酸盐粉末,M4源粉末为M4的氧化物粉末,M5源粉末为M5的氧化物粉末或碳酸盐粉末;混合构成所述混合粉体的各种源粉末的粒径均小于500纳米。

作为本发明的进一步优选,所述步骤(1)中,所述催化剂和所述引发剂的添加量均分别满足每100ml球磨浆料1~5ml。

作为本发明的进一步优选,所述步骤(1)中,所述干燥是在100℃下进行干燥;所述排胶是在600℃下排胶(1~3)小时;所述煅烧是在750~950℃下保温(1~3)小时。

作为本发明的进一步优选,所述步骤(1)中,所述有机单体为丙烯酰胺(AM),所述交联剂为亚甲基双丙烯酰胺(MBAM),所述催化剂为四甲基乙二胺(TEMD),所述引发剂为质量百分浓度10%的过硫酸铵(APS)。

通过本发明所构思的以上技术方案,与现有技术相比,通过对钛酸钡基半导体热敏陶瓷进行特定组成成分及配比的掺杂改性,能够取得以下有益效果:

1、本发明涉及的新型钛酸钡基NTC热敏陶瓷材料具有测量温区宽、测量精确及稳定高等优点,同时材料的宏观电学性能包括:测量温区、常温电阻、材料B值等易于通过材料配方进行调整。例如,当x为20、y为5时,材料的测量温区为-60~180℃,常温电阻为100kΩ,材料B值为2000;当x为30、y为0.5时,材料的测量温区为-50~250℃,常温电阻为500Ω,材料B值为600等等。

本发明通过对钛酸钡基半导体热敏陶瓷进行掺杂改性,得到的具有特定成分组成的的陶瓷材料能够进一步作为负温度系数热敏陶瓷材料应用。在掺杂的成分组成中,M1中含有的Sm、Nd、Y、La等元素是作为半导体化元素掺入的,可以调整和控制材料电阻率,以适用于不同场合的测温需求;M2中含有的Si、Al、Ti等元素可以控制半导体陶瓷的晶粒尺寸和密度;M3中含有的Ca、Sr、Pb等元素可以调整测温元件的测量温度范围;M4中含有的Sb、Bi等元素可以调整半导体陶瓷材料的材料B值;M5中含有的Na、K、Li等元素也可以调整半导体陶瓷材料的材料B值。正是利用这些掺杂成分的整体综合作用,使得制得的钛酸钡基NTC热敏陶瓷材料具有测量温区宽、测量精确及稳定高的特点。

2、传统固相法制备热敏陶瓷粉体,在材料球磨混合工艺中一般都必须加入去离子水作为混合介质,若组分中含有Na、K等易溶于水的元素,在后续的脱水过程中将会造成易溶于水元素(如Na、K)的流失,导致化学计量比失配。为解决此类问题,本发明提出采用固相凝胶法制备粉体技术,解决了组分中含有的Na、K等易溶于水元素的流失问题,防止了化学计量比失配,保障了材料性能。

3、结合材料配方设计,提出采用急速升降温的烧结工艺制备热敏陶瓷,急速升至烧结温度使材料组成中的液相添加剂快速形成液相,包裹在晶粒表面形成一层保护膜,有效防止元素挥发。快速降温可抑制PTC效应的生长,有效提高NTC效应。

4、凝胶煅烧温度低,可避免子晶长大和团聚,保持了高活性,同时很大程度上减低了Pb、Bi等离子的挥发。

5、本发明制得的NTC热敏陶瓷晶粒尺寸细小,接近纳米级,瓷体致密,可确保材料的高可靠性和长寿命。

附图说明

图1是本发明的粉体制备流程图。

图2是本发明的烧结工艺图。

图3是本发明实施例1~6所得的各个样品电阻温度特性曲线图。

图4是本发明实施样品6的典型微观结构图。

具体实施方式

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。

本发明的宽温区NTC热敏陶瓷材料,其原材料组成为:

(1-x-y)BaTiO3+(x+y)TiO2+vM1O+wM2O+xM3O+y(M4O+M5O)(I)

式(I)中,v=0.1~0.5;w=1.0~5.0;x=0~40.0;y=0.1~10.0;均对应摩尔比含量。

成分中M1为Sm、Nd、Y、La、Nb等至少1种元素;M2为Si、Al、Ti等至少2种元素,其中Si或Al或这两种元素之和(Si+Al)与Ti的摩尔比为2∶1,即,Si与Ti的摩尔比为2∶1,或者Al与Ti的摩尔比为2∶1,或者(Si+Al)与Ti的摩尔比为2∶1;M3为Ca、Sr、Pb等,至少为Ca与Sr、Pb中1种元素组合,其中Ca与Pb或Sr,或Ca与(Pb+Sr)的摩尔比为1∶3,即,摩尔比Ca:Pb=1:3,或摩尔比Ca:Sr=1:3,或摩尔比Ca∶(Pb+Sr)=1∶3;M4为Sb、Bi等至少1种元素;M5为Na、K、Li等至少1种元素。初始原料均采用纯度为99.8%及以上的相关金属氧化物如Y2O3、Sm2O3、TiO2、Bi2O3等;或碳酸盐类如CaCO3、SrCO3等原材料;钛酸钡直接采用纯度大于99.8%的BaTiO3粉体。同时可以要求各种原料粉体的粒径小于800纳米。

M1中含有的Sm、Nd、Y、La等元素是作为半导体化元素掺入的,其目的是为调整和控制材料电阻率,以适用于不同场合的测温需求;

M2中含有的Si、Al、Ti等元素是为控制半导体陶瓷的晶粒尺寸和密度;

M3中含有的Ca、Sr、Pb等元素是为调整测温元件的测量温度范围;

M4中含有的Sb、Bi等元素为调整半导体陶瓷材料的材料B值;

M5中含有的Na、K、Li等元素为调整半导体陶瓷材料的材料B值。

本发明中的负温度系数热敏陶瓷材料,是由按式(I)组成配比的原材料,经煅烧后形成单一的钙钛矿结构,尤其是在1250℃-1350℃的高温下烧结得到的NTC热敏陶瓷(元件)。

本发明涉及的半导体NTC热敏陶瓷材料其制备方法还涉及特定的配料比、以及固相凝胶法制备纳米粉体与急速升降温烧成工艺等专有制备技术。具体介绍如下:

1、固相凝胶法制备纳米粉体

按式(I)配比进行配料:

(1-x-y)BaTiO3+(x+y)TiO2+vM1O+wM2O+xM3O+y(M4O+M5O)(I)

其中:v=0.1~0.5;w=1.0~5.0;x=0~40.0;y=0.1~10.0;均对应百分比含量;

由于组分中含有Na、K等易溶于水的成分,若采用传统固相法合成,由于通常都用压滤的方法将水分寄出,势必造成溶于水的Na、K等元素成分流失,引起化学计量比失配。但如果采用液相溶胶凝胶法(如CN101830698B),必须先将不溶于水的材料(如SiO2)制备成溶于水的如柠檬酸盐类,制造成本则会大幅度提高,为此本发明提出采用固相凝胶法制备粉体技术,具体流程如图1所示。

具体可包括以下步骤:

首先制备预混液,按照有机单体∶交联剂∶水=10∶(0.5~1)∶100的质量比进行预混液的配制,如图1所示。预混液制备完成后,将按式(I)配比称量好的混合粉体与预混液进行球磨混合,粉体∶预混液=(0.4~0.7):(0.6~0.3),该比例为质量比,球磨时间为1~3小时;

其次,球磨结束后,将球磨浆料置入容器中,一边搅拌一边加入催化剂,催化剂添加完毕后,继续搅拌浆料并滴加引发剂溶液,每100ml浆料需用催化剂和引发剂各1~5ml左右。滴完后静置,浆料会凝固成胶状体;

第三步将固化的胶体放入烘箱中于100℃下干燥;

第四步煅烧,胶体在600℃下排胶(1~3)小时,之后在750~950℃下烧成,保温(1~3)小时,便可得NTC粉体材料。

在所述预混液中有机单体可为丙烯酰胺(AM),交联剂可为亚甲基双丙烯酰胺(MBAM)。

所述催化剂可为四甲基乙二胺(TEMD),引发剂可为过浓度10%的硫酸铵(APS),配制方法是按质量比进行称量混合,APS∶H2O=1∶9。

2、制备NTC热敏陶瓷

将所得粉体加入粘合剂造粒、干压成型后在高温1250℃-1350℃下烧结1~3小时,即可得到NTC热敏陶瓷电阻。

由于材料组成中含有大量Na、K、Bi、Sb、Pb等易挥发元素,必须采用特殊的烧结工艺,本发明提出采用如图2所示的烧结工艺。

具体可以是先以150℃/h~200℃/h的升温速率升温至400℃~500℃并保温至少半小时,目的是排除坯体中的有机物(如成型中加入的粘合剂);然后再先以150℃/h~250℃/h速率升温至800℃~1000℃并保温至少半小时,接着再以300℃/h~350℃/h的速率升温至1250℃~1350℃的烧结温度进行烧结处理,从(800℃-1000℃)急速升至烧结温度(1250℃-1350℃)是为防止易挥发元素的挥发,其原理是:急速升至烧结温度可使材料组成中的液相添加剂快速形成液相,包裹在晶粒表面形成一层保护膜,可有效防止元素挥发。在(800℃-1000℃)温度段保温半小时的目的是为了使烧结炉更有效的快速升温,相当于中途休息,以备加力。烧结处理完成后再以200℃/h~300℃/h的降温速率冷却至室温,快速降温是为了抑制PTC效应的产生,有效提高NTC效应。

在本发明以下的1~6个实施例中,所用原料为钛酸钡(BaTiO3)、碳酸钙(CaCO3),碳酸钠(Na2CO3)、二氧化钛(TiO2)、三氧化二钇(Y2O3)、二氧化硅(SiO2)、氧化铋(Bi2O3)等,纯度均大于99.8%;所用有机单体为丙烯酰胺(AM),交联剂为亚甲基双丙烯酰胺(MBAM);催化剂为四甲基乙二胺(TEMD),引发剂为浓度10%的过硫酸铵(APS)。

样品配比及相关电学性能均列于表1和图3中。

表1各实施例材料配方表

1~6实施例分别采用表2及图2所示烧结工艺,材料B值烧结结果也列于表2中,电阻温度特性曲线见附图3。图4是实施例6的陶瓷材料显微结构图。

表2:各实施例烧结工艺及材料B值烧结结果表

除了上述实施例中所使用的有机单体外,本发明还可以采用其他溶胶凝胶用有机单体,以及相应的催化剂、引发剂等。

本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1