一种低温烧结稀土硫化物γ-Ln2S3红外透明陶瓷的方法与流程

文档序号:15778343发布日期:2018-10-30 15:54阅读:439来源:国知局

本发明属于材料技术领域,涉及低温烧结稀土硫化物γ-ln2s3(ln=la,ce,pr,nd,y)红外透明陶瓷的方法,具体涉及一种低温、超高压制备高稳定性、高致密度、高透过率稀土硫化物γ-ln2s3红外透明陶瓷的方法。



背景技术:

稀土硫化物γ-ln2s3(ln=la,ce,pr,nd,y),具有立方th3p4结构(带金属空位),可通过致密化烧结制成透明陶瓷。这类材料一般具有高于2000℃的熔点、大的机械强度、高的硬度、良好的热学稳定性以及优秀的抗雨蚀砂蚀能力,且由于ln-s键在红外区无吸收,使得γ-ln2s3在红外波段具有良好的透过率(由于稀土元素不同其吸收限存在一定差异),因此γ-ln2s3被认为是新一代红外窗口材料。

目前稀土硫化物γ-ln2s3的研究多数集中于粉体制备上,而将其热压制备成红外透明陶瓷的研究仅有少数关于γ-y2s3以及γ-la2s3的报道,其它γ-ln2s3(ln=ce,pr,nd)等化合物作为红外透明陶瓷的制备方法及性能尚未见文献报道。1981年g.p.skornyakov、m.e.surov、l.v.astaf′eva、g.n.dronovaanda.a.maslakov报道了γ-y2s3陶瓷的红外光谱图(opticalparametersofla2s3,y2s3,andeusceramics,journalofappliedspectroscopy,1981,34(2):247~249),提出γ-y2s3是一种红外透明陶瓷材料,但其透过率低,存在明显氧化物吸收带,且文中未提及制备技术细节;1981年a.a.kamarzin、k.e.mironov、v.v.sokolov、y.n.malovitsky、i.g.vasil′yeva通过高温熔体法生长出了毫米级γ-la2s3单晶(growthandpropertiesoflantanumandrare-earthmetalsesquisulfidecrystals,journalofcrystalgrowth,1981,52(4):619~622.),证实了γ-la2s3单晶的优异的光电性能及作为红外长波材料的潜力;1993年p.n.kumta、s.h.risbud将镧的醇盐前驱体真空热压烧结制备出了γ-la2s3透明陶瓷材料(lowtemperturechemicalroutestoformationandirpropertiesoflanthanumsesquisulfide(la2s3)ceramics,journalofmaterialsresearch,1993,8(6):1394~1410.),但由于镧的亲氧性导致γ-la2s3极易氧化,其报道的红外透过率低于25%;随后在1994年mstsai、mhhon通过ca2+的掺杂试图改善γ-la2s3的红外性能,制备了富la的cala2s4(hot-presssinteringandthepropertiesoflanthanum-richcalciumlanthanumsulfideceramic,journalofmaterialsresearch,1994,9(11):2939~2943.);peisenli、huanyongli等人也报道了ca2+,na+和bi3+掺杂的γ-la2s3陶瓷的热压制备与红外性能(ca2+掺杂γ-la2s3多晶的制备,人工晶体学报,2010,39(3):568~572;infraredtransmissionofna+dopedγ-la2s3ceramicsdensifiedbyhotpressing,journalofphysicsd-appliedphysics,2011,44(9):095402~095407;influenceofbi2s3ontheopticalpropertiesofγ-la2s3ceramics,scriptamaterialia,2011,64:1023~1027.),但由于该类材料的抗氧化能力极低,制备过程中痕量氧、吸附水分即可引起其氧化,因此所制备的陶瓷仍含严重的硫氧化物或氧化物杂质,而ln-o键在红外区一般都存在强吸收,从而导致所制材料红外透过率不高。2016年李焕勇、田雷远、丁文忠在发明专利cn106518073a《一种高红外透过率的γ-la2s3红外透明陶瓷制备方法》中提出利用水热法得到镧盐前驱体,后经掺杂na源后在较低温度下硫化得到稳定的纯相γ-la2s3粉体,随后将粉体真空热压烧结制备出一定透过率的γ-la2s3陶瓷,但该方法所使用粉体为200~300目,粒度较大,导致陶瓷均匀性较差,且需要的烧结温度高达1250~1350℃,此高温往往导致热压烧结过程中坯体仍易于氧化;总之,目前报道的陶瓷烧结技术普遍烧结温度较高,无法避免γ-ln2s3在烧结过程中极易氧化的问题,所得到的红外透明陶瓷均存在红外波段的硫氧化物强吸收峰且陶瓷均匀性较差,严重影响了γ-ln2s3红外透明陶瓷的性能和应用。因此发展一种新的低温制备稀土硫化物γ-ln2s3红外透明陶瓷的烧结工艺对该类材料的发展具有重要意义。



技术实现要素:

要解决的技术问题

为了避免现有技术的不足之处,本发明提出一种低温烧结稀土硫化物γ-ln2s3(ln=la,ce,pr,nd,y)红外透明陶瓷的方法,解决目前以γ-la2s3为代表的轻稀土硫化物陶瓷在热压制备中由于烧结温度高导致样品极易氧化从而透过率低以及该类材料难烧结、均匀性差等不足。

技术方案

一种低温烧结稀土硫化物γ-ln2s3红外透明陶瓷的方法,其特征在于步骤如下:

步骤1、纳米级多硫化物lns2粉体的制备:

将碳酸氢氧盐粉体ln(oh)co3·nh2o置于气氛管式炉中,通入气流量为30~50ml/min的ar气,管式炉以加热速率2~5℃/min升温;当炉温升至400~650℃时,将通入气体改成气流量为30~50ml/min的混合气体,保温2~4h后,将通入气体再改成流量为30~50ml/min的ar气,管式炉自然冷却至室温;

从炉内取出粉体,用去离子水和无水乙醇各洗涤粉体2次,然后将粉体放入真空干燥箱中,在80℃、真空度5.0pa下,干燥3~6小时,取出干燥粉体得到纳米级多硫化物lns2粉体;

所述ln(oh)co3·nh2o中n=1~8,表示ln(oh)co3·nh2o含有结晶水的程度即干燥程度;

步骤2、纳米γ-ln2s3多晶粉体的制备:

25℃下将nacl或nabr或nai粉体溶于蒸馏水和无水乙醇的混合液中,得到浓度为0.2~0.5mol/l的nacl或nabr或nai稀溶液;将该溶液逐滴滴到表面温度为250~300℃的石英玻璃上,使其迅速蒸干结晶,得到纳米级nacl或nabr或nai粉体;

再加入步骤1制得的纳米级多硫化物lns2粉体研磨混合后置于气氛管式炉中,通入气流量为30~50ml/min的ar气,管式炉以加热速率2~5℃/min升温;当炉温升至600~800℃时,将通入气体改成气流量为30~50ml/min的混合气体,继续使管式炉升温至750~900℃,保温3.5~4h后,管式炉自然冷却;当炉温低于600~700℃时,将通入气体再改成流量为30~50ml/min的ar气;

管式炉自然冷却至室温后从炉内取出粉体,用去离子水和无水乙醇各洗涤粉体2次,然后将粉体放入真空干燥箱中,在80℃、真空度5pa下,保持3~6小时干燥,取出干燥粉体后得到纳米γ-ln2s3多晶粉体;

所述纳米级nacl或nabr或nai粉体的称取量按物质的量之比为na:ln=(0.2~2):1;

步骤3、γ-ln2s3红外透明陶瓷的热压烧结制备:

将步骤2制得的纳米γ-ln2s3多晶粉体与纳米级nacl或nabr或nai粉体研磨混合后,装入模具中,置于热压炉中,通入流量为40~60ml/min的ar气作为保护气体,将压强加到0.5~5gpa,通气10~20min后将热压炉以30~90℃/min的速率升至600~900℃,再以30~60℃/min的速率降至500℃~800℃,保温1~5h后撤去压力,热压炉自然冷却至室温,得到热压块体γ-ln2s3陶瓷,将其抛光后获得红外波段最高透过率≥45%的γ-ln2s3红外透明陶瓷;

所述纳米级nacl或nabr或nai粉体添加量为纳米γ-ln2s3多晶粉体重量的1~9wt%;

所述步骤1~3中的ln=la,ce,pr,nd,y;

所述步骤1~2中的混合气体为ar气与cs2或ar气与h2s的混合气体,混合气体体积比为ar:cs2=1:1或ar:h2s=1:1。

所述碳酸氢氧盐粉体采用分析纯级碳酸氢氧盐粉体。

所述nacl或nabr或nai粉体分析纯级nacl或nabr或nai粉体。

所述步骤2蒸馏水和无水乙醇的混合液的体积比为1:1。

有益效果

本发明提出的一种低温烧结稀土硫化物γ-ln2s3(ln=la,ce,pr,nd,y)红外透明陶瓷的方法,在超高压力和相对低温下,可烧结制备出高稳定性、高致密度、高透过率的稀土硫化物红外透明陶瓷。与现有陶瓷烧结技术相比,该方法利用超高的压力以及纳米粉体有效降低了烧结温度,使得烧结温度低于γ-ln2s3氧化起始温度,可有效避免稀土硫化物多晶陶瓷烧结过程中易氧化的问题,同时纳米级粉体有利于解决其难烧结、均匀性差的难题,另外采用低熔点的助溶剂有利于实现致密化,超高的压力会抑制晶粒的异常长大,因此可获得微观组织一致性高且光学透过率好的γ-ln2s3透明陶瓷。同时该方法工艺简单,成本低,效率高,适合于大规模制备稀土硫化物红外透明陶瓷,具有广阔的应用前景。

现结合实施例对本发明作进一步描述:

实施例1:一种低温烧结γ-la2s3红外透明陶瓷的方法

步骤1纳米级多硫化物las2粉体的制备:称取5.0克分析纯级碳酸氢氧盐粉体la(oh)co3·nh2o(n=1~8),将粉体置于气氛管式炉中,通入气流量为30ml/min的ar气,管式炉以加热速率2℃/min升温;当炉温升至650℃时,将通入气体改成气流量为30ml/min的ar气与cs2的混合气体,其中混合气体体积比为ar:cs2为1:1,保温4h,保温结束后,将通入气体再改成气流量为30ml/min的ar气,管式炉自然冷却至室温;从炉内取出粉体,用去离子水和无水乙醇各洗涤粉体2次,然后将粉体放入真空干燥箱中,在80℃、真空度5.0pa下,干燥3小时,取出干燥粉体得到纳米级多硫化物las2粉体4.78克;

步骤2纳米γ-la2s3多晶粉体的制备:25℃下称取0.29克分析纯级nacl粉体溶于50ml蒸馏水和无水乙醇的混合液中,其中蒸馏水与无水乙醇的体积比为1:1,得到浓度为0.2mol/l的nacl稀溶液;将该溶液逐滴滴到表面温度为250℃的石英玻璃上,使其迅速蒸干结晶,得到纳米级nacl粉体0.28克;称取步骤1制得的纳米级多硫化物las2粉体4.5克;按物质的量之比为na:la=0.2:1称取纳米级nacl粉体0.26克;将纳米级多硫化物las2粉体与纳米级nacl粉体充分研磨混合均匀后置于气氛管式炉中,通入气流量为30ml/min的ar气,管式炉以加热速率2℃/min升温;当炉温升至700℃时,将通入气体改成气流量为30ml/min的ar气与cs2的混合气体,其中混合气体体积比为ar:cs2为1:1,继续使管式炉升温至810℃,保温3.5h,保温结束后,管式炉自然冷却;当炉温低于700℃时,将通入气体再改成气流量为30ml/min的ar气;管式炉自然冷却至室温后从炉内取出粉体,用去离子水和无水乙醇各洗涤粉体2次,然后将粉体放入真空干燥箱中,在80℃、真空度5pa下,保持3小时干燥,取出干燥粉体得到纳米γ-la2s3多晶粉体4.07克;

步骤3γ-la2s3红外透明陶瓷的热压烧结制备:称取步骤2制备的纳米γ-la2s3多晶粉体3.50克;按重量比1wt%称取纳米级nacl粉体0.035克;将纳米γ-la2s3多晶粉体与纳米级nacl粉体充分研磨混合均匀后,装入模具中,置于热压炉中,通入流量为40ml/min的ar气作为保护气体,将压强加到0.5gpa,通气10min后将热压炉以30℃/min的速率升至900℃,再以30℃/min的速率降至800℃,保温5h,保温结束后撤去压力,热压炉自然冷却至室温,得到热压块体γ-la2s3陶瓷,将其抛光后获得厚度为0.45mm,红外波段最高透过率为52%的γ-la2s3红外透明陶瓷。

实施例2:一种低温烧结γ-la2s3红外透明陶瓷的方法

步骤1纳米级多硫化物las2粉体的制备:称取5.0克分析纯级碳酸氢氧盐粉体la(oh)co3·nh2o(n=1~8),将粉体置于气氛管式炉中,通入气流量为40ml/min的ar气,管式炉以加热速率5℃/min升温;当炉温升至600℃时,将通入气体改成气流量为40ml/min的ar气与cs2的混合气体,其中混合气体体积比为ar:cs2为1:1,保温2h,保温结束后,将通入气体再改成气流量为40ml/min的ar气,管式炉自然冷却至室温;从炉内取出粉体,用去离子水和无水乙醇各洗涤粉体2次,然后将粉体放入真空干燥箱中,在80℃、真空度5.0pa下,干燥6小时,取出干燥粉体得到纳米级多硫化物las2粉体4.82克;

步骤2纳米γ-la2s3多晶粉体的制备:25℃下称取1.54克分析纯级nabr粉体溶于60ml蒸馏水和无水乙醇的混合液中,其中蒸馏水与无水乙醇的体积比为1:1,得到浓度为0.5mol/l的nabr稀溶液;将该溶液逐滴滴到表面温度为300℃的石英玻璃上,使其迅速蒸干结晶,得到纳米级nabr粉体1.50克;称取步骤1制得的纳米级多硫化物las2粉体4.5克;按物质的量之比为na:la=0.5:1称取纳米级nabr粉体1.14克;将纳米级多硫化物las2粉体与纳米级nabr粉体充分研磨混合均匀后置于气氛管式炉中,通入气流量为40ml/min的ar气,管式炉以加热速率5℃/min升温;当炉温升至700℃时,将通入气体改成气流量为40ml/min的ar气与cs2的混合气体,其中混合气体体积比为ar:cs2为1:1,继续使管式炉升温至810℃,保温3.5h,保温结束后,管式炉自然冷却;当炉温低于700℃时,将通入气体再改成气流量为40ml/min的ar气;管式炉自然冷却至室温后从炉内取出粉体,用去离子水和无水乙醇各洗涤粉体2次,然后将粉体放入真空干燥箱中,在80℃、真空度5pa下,保持6小时干燥,取出干燥粉体得到纳米γ-la2s3多晶粉体5.08克;

步骤3γ-la2s3红外透明陶瓷的热压烧结制备:称取步骤2制备的纳米γ-la2s3多晶粉体3.50克;按重量比5wt%称取纳米级nabr粉体0.175克;将纳米γ-la2s3多晶粉体与纳米级nabr粉体充分研磨混合均匀后,装入模具中,置于热压炉中,通入流量为60ml/min的ar气作为保护气体,将压强加到3gpa,通气20min后将热压炉以60℃/min的速率升至800℃,再以60℃/min的速率降至700℃,保温3h,保温结束后撤去压力,热压炉自然冷却至室温,得到热压块体γ-la2s3陶瓷,将其抛光后获得厚度为0.44mm,红外波段最高透过率为53%的γ-la2s3红外透明陶瓷。

实施例3:一种低温烧结γ-la2s3红外透明陶瓷的方法

步骤1纳米级多硫化物las2粉体的制备:称取5.0克分析纯级碳酸氢氧盐粉体la(oh)co3·nh2o(n=1~8),将粉体置于气氛管式炉中,通入气流量为50ml/min的ar气,管式炉以加热速率3℃/min升温;当炉温升至600℃时,将通入气体改成气流量为50ml/min的ar气与h2s的混合气体,其中混合气体体积比为ar:h2s为1:1,保温3h,保温结束后,将通入气体再改成气流量为50ml/min的ar气,管式炉自然冷却至室温;从炉内取出粉体,用去离子水和无水乙醇各洗涤粉体2次,然后将粉体放入真空干燥箱中,在80℃、真空度5.0pa下,干燥5小时,取出干燥粉体得到纳米级多硫化物las2粉体4.79克;

步骤2纳米γ-la2s3多晶粉体的制备:25℃下称取3.74克分析纯级nai粉体溶于50ml蒸馏水和无水乙醇的混合液中,其中蒸馏水与无水乙醇的体积比为1:1,得到浓度为0.5mol/l的nai稀溶液;将该溶液逐滴滴到表面温度为300℃的石英玻璃上,使其迅速蒸干结晶,得到纳米级nai粉体3.72克;称取步骤1制得的纳米级多硫化物las2粉体4.5克;按物质的量之比为na:la=1:1称取纳米级nai粉体3.32克;将纳米级多硫化物las2粉体与纳米级nai粉体充分研磨混合均匀后置于气氛管式炉中,通入气流量为50ml/min的ar气,管式炉以加热速率3℃/min升温;当炉温升至700℃时,将通入气体改成气流量为50ml/min的ar气与h2s的混合气体,其中混合气体体积比为ar:h2s为1:1,继续使管式炉升温至810℃,保温3.5h,保温结束后,管式炉自然冷却;当炉温低于700℃时,将通入气体再改成气流量为50ml/min的ar气;管式炉自然冷却至室温后从炉内取出粉体,用去离子水和无水乙醇各洗涤粉体2次,然后将粉体放入真空干燥箱中,在80℃、真空度5pa下,保持5小时干燥,取出干燥粉体得到纳米γ-la2s3多晶粉体6.71克;

步骤3γ-la2s3红外透明陶瓷的热压烧结制备:称取步骤2制备的纳米γ-la2s3多晶粉体3.50克;按重量比9wt%称取纳米级nai粉体0.315克;将纳米γ-la2s3多晶粉体与纳米级nai粉体充分研磨混合均匀后,装入模具中,置于热压炉中,通入流量为50ml/min的ar气作为保护气体,将压强加到5gpa,通气15min后将热压炉以90℃/min的速率升至600℃,再以50℃/min的速率降至500℃,保温1h,保温结束后撤去压力,热压炉自然冷却至室温,得到热压块体γ-la2s3陶瓷,将其抛光后获得厚度为0.40mm,红外波段最高透过率为55%的γ-la2s3红外透明陶瓷。

实施例4:一种低温烧结γ-ce2s3红外透明陶瓷的方法

步骤1纳米级多硫化物ces2粉体的制备:称取5.0克分析纯级碳酸氢氧盐粉体ce(oh)co3·nh2o(n=1~8),将粉体置于气氛管式炉中,通入气流量为40ml/min的ar气,管式炉以加热速率4℃/min升温;当炉温升至600℃时,将通入气体改成气流量为40ml/min的ar气与cs2的混合气体,其中混合气体体积比为ar:cs2为1:1,保温4h,保温结束后,将通入气体再改成气流量为40ml/min的ar气,管式炉自然冷却至室温;从炉内取出粉体,用去离子水和无水乙醇各洗涤粉体2次,然后将粉体放入真空干燥箱中,在80℃、真空度5.0pa下,干燥4小时,取出干燥粉体得到纳米级多硫化物ces2粉体4.56克;

步骤2纳米γ-ce2s3多晶粉体的制备:25℃下称取2.92克分析纯级nacl粉体溶于200ml蒸馏水和无水乙醇的混合液中,其中蒸馏水与无水乙醇的体积比为1:1,得到浓度为0.5mol/l的nacl稀溶液;将该溶液逐滴滴到表面温度为300℃的石英玻璃上,使其迅速蒸干结晶,得到纳米级nacl粉体2.89克;称取步骤1制得的纳米级多硫化物ces2粉体4.5克;按物质的量之比为na:ce=2:1称取纳米级nacl粉体2.57克;将纳米级多硫化物ces2粉体与纳米级nacl粉体充分研磨混合均匀后置于气氛管式炉中,通入气流量为50ml/min的ar气,管式炉以加热速率4℃/min升温;当炉温升至800℃时,将通入气体改成气流量为50ml/min的ar气与cs2的混合气体,其中混合气体体积比为ar:cs2为1:1,继续使管式炉升温至900℃,保温4h,保温结束后,管式炉自然冷却;当炉温低于800℃时,将通入气体再改成气流量为50ml/min的ar气;管式炉自然冷却至室温后从炉内取出粉体,用去离子水和无水乙醇各洗涤粉体2次,然后将粉体放入真空干燥箱中,在80℃、真空度5pa下,保持4小时干燥,取出干燥粉体得到纳米γ-ce2s3多晶粉体6.35克;

步骤3γ-ce2s3红外透明陶瓷的热压烧结制备:称取步骤2制备的纳米γ-ce2s3多晶粉体3.50克;按重量比6wt%称取纳米级nacl粉体0.210克;将纳米γ-ce2s3多晶粉体与纳米级nacl粉体充分研磨混合均匀后,装入模具中,置于热压炉中,通入流量为40ml/min的ar气作为保护气体,将压强加到3gpa,通气10min后将热压炉以60℃/min的速率升至900℃,再以40℃/min的速率降至800℃,保温2h,保温结束后撤去压力,热压炉自然冷却至室温,得到热压块体γ-ce2s3陶瓷,将其抛光后获得厚度为0.49mm,红外波段最高透过率为47%的γ-ce2s3红外透明陶瓷。

实施例5:一种低温烧结γ-ce2s3红外透明陶瓷的方法

步骤1纳米级多硫化物ces2粉体的制备:称取5.0克分析纯级碳酸氢氧盐粉体ce(oh)co3·nh2o(n=1~8),将粉体置于气氛管式炉中,通入气流量为40ml/min的ar气,管式炉以加热速率5℃/min升温;当炉温升至600℃时,将通入气体改成气流量为40ml/min的ar气与cs2的混合气体,其中混合气体体积比为ar:cs2为1:1,保温4h,保温结束后,将通入气体再改成气流量为40ml/min的ar气,管式炉自然冷却至室温;从炉内取出粉体,用去离子水和无水乙醇各洗涤粉体2次,然后将粉体放入真空干燥箱中,在80℃、真空度5.0pa下,干燥6小时,取出干燥粉体得到纳米级多硫化物ces2粉体4.77克;

步骤2纳米γ-ce2s3多晶粉体的制备:25℃下称取3.50克分析纯级nabr粉体溶于170ml蒸馏水和无水乙醇的混合液中,其中蒸馏水与无水乙醇的体积比为1:1,得到浓度为0.4mol/l的nabr稀溶液;将该溶液逐滴滴到表面温度为280℃的石英玻璃上,使其迅速蒸干结晶,得到纳米级nabr粉体3.45克;称取步骤1制得的纳米级多硫化物ces2粉体4.5克;按物质的量之比为na:ce=1.5:1称取纳米级nabr粉体3.40克;将纳米级多硫化物ces2粉体与纳米级nabr粉体充分研磨混合均匀后置于气氛管式炉中,通入气流量为50ml/min的ar气,管式炉以加热速率5℃/min升温;当炉温升至800℃时,将通入气体改成气流量为50ml/min的ar气与cs2的混合气体,其中混合气体体积比为ar:cs2为1:1,继续使管式炉升温至900℃,保温4h,保温结束后,管式炉自然冷却;当炉温低于800℃时,将通入气体再改成气流量为50ml/min的ar气;管式炉自然冷却至室温后从炉内取出粉体,用去离子水和无水乙醇各洗涤粉体2次,然后将粉体放入真空干燥箱中,在80℃、真空度5pa下,保持6小时干燥,取出干燥粉体得到纳米γ-ce2s3多晶粉体6.92克;

步骤3γ-ce2s3红外透明陶瓷的热压烧结制备:称取步骤2制备的纳米γ-ce2s3多晶粉体3.50克;按重量比6wt%称取纳米级nabr粉体0.210克;将纳米γ-ce2s3多晶粉体与纳米级nacl粉体充分研磨混合均匀后,装入模具中,置于热压炉中,通入流量为30ml/min的ar气作为保护气体,将压强加到5gpa,通气20min后将热压炉以90℃/min的速率升至800℃,再以50℃/min的速率降至700℃,保温1h,保温结束后撤去压力,热压炉自然冷却至室温,得到热压块体γ-ce2s3陶瓷,将其抛光后获得厚度为0.46mm,红外波段最高透过率为50%的γ-ce2s3红外透明陶瓷。

实施例6:一种低温烧结γ-pr2s3红外透明陶瓷的方法

步骤1纳米级多硫化物prs2粉体的制备:称取5.0克分析纯级碳酸氢氧盐粉体pr(oh)co3·nh2o(n=1~8),将粉体置于气氛管式炉中,通入气流量为50ml/min的ar气,管式炉以加热速率3℃/min升温;当炉温升至400℃时,将通入气体改成气流量为50ml/min的ar气与cs2的混合气体,其中混合气体体积比为ar:cs2为1:1,保温3.5h,保温结束后,将通入气体再改成气流量为50ml/min的ar气,管式炉自然冷却至室温;从炉内取出粉体,用去离子水和无水乙醇各洗涤粉体2次,然后将粉体放入真空干燥箱中,在80℃、真空度5.0pa下,干燥5小时,取出干燥粉体得到纳米级多硫化物prs2粉体4.87克;

步骤2纳米γ-pr2s3多晶粉体的制备:25℃下称取0.92克分析纯级nabr粉体溶于60ml蒸馏水和无水乙醇的混合液中,其中蒸馏水与无水乙醇的体积比为1:1,得到浓度为0.3mol/l的nabr稀溶液;将该溶液逐滴滴到表面温度为250℃的石英玻璃上,使其迅速蒸干结晶,得到纳米级nabr粉体0.88克;称取步骤1制得的纳米级多硫化物prs2粉体4.5克;按物质的量之比为na:pr=0.2:1称取纳米级nabr粉体0.45克;将纳米级多硫化物prs2粉体与纳米级nabr粉体充分研磨混合均匀后置于气氛管式炉中,通入气流量为40ml/min的ar气,管式炉以加热速率3℃/min升温;当炉温升至600℃时,将通入气体改成气流量为40ml/min的ar气与cs2的混合气体,其中混合气体体积比为ar:cs2为1:1,继续使管式炉升温至750℃,保温3.5h,保温结束后,管式炉自然冷却;当炉温低于600℃时,将通入气体再改成气流量为50ml/min的ar气;管式炉自然冷却至室温后从炉内取出粉体,用去离子水和无水乙醇各洗涤粉体2次,然后将粉体放入真空干燥箱中,在80℃、真空度5pa下,保持5小时干燥,取出干燥粉体得到纳米γ-pr2s3多晶粉体4.31克;

步骤3γ-pr2s3红外透明陶瓷的热压烧结制备:称取步骤2制备的纳米γ-pr2s3多晶粉体3.50克;按重量比5wt%称取纳米级nabr粉体0.175克;将纳米γ-pr2s3多晶粉体与纳米级nabr粉体充分研磨混合均匀后,装入模具中,置于热压炉中,通入流量为30ml/min的ar气作为保护气体,将压强加到4gpa,通气10min后将热压炉以50℃/min的速率升至700℃,再以60℃/min的速率降至600℃,保温3h,保温结束后撤去压力,热压炉自然冷却至室温,得到热压块体γ-pr2s3陶瓷,将其抛光后获得厚度为0.51mm,红外波段最高透过率为48%的γ-pr2s3红外透明陶瓷。

实施例7:一种低温烧结γ-nd2s3红外透明陶瓷的方法

步骤1纳米级多硫化物nds2粉体的制备:称取5.0克分析纯级碳酸氢氧盐粉体nd(oh)co3·nh2o(n=1~8),将粉体置于气氛管式炉中,通入气流量为40ml/min的ar气,管式炉以加热速率5℃/min升温;当炉温升至600℃时,将通入气体改成气流量为40ml/min的ar气与cs2的混合气体,其中混合气体体积比为ar:cs2为1:1,保温4h,保温结束后,将通入气体再改成气流量为40ml/min的ar气,管式炉自然冷却至室温;从炉内取出粉体,用去离子水和无水乙醇各洗涤粉体2次,然后将粉体放入真空干燥箱中,在80℃、真空度5.0pa下,干燥5小时,取出干燥粉体得到纳米级多硫化物nds2粉体4.80克;

步骤2纳米γ-nd2s3多晶粉体的制备:25℃下称取0.43克分析纯级nacl粉体溶于50ml蒸馏水和无水乙醇的混合液中,其中蒸馏水与无水乙醇的体积比为1:1,得到浓度为0.3mol/l的nacl稀溶液;将该溶液逐滴滴到表面温度为260℃的石英玻璃上,使其迅速蒸干结晶,得到纳米级nacl粉体0.41克;称取步骤1制得的纳米级多硫化物nds2粉体4.5克;按物质的量之比为na:nd=0.2:1称取纳米级nacl粉体0.25克;将纳米级多硫化物nds2粉体与纳米级nacl粉体充分研磨混合均匀后置于气氛管式炉中,通入气流量为30ml/min的ar气,管式炉以加热速率5℃/min升温;当炉温升至700℃时,将通入气体改成气流量为30ml/min的ar气与cs2的混合气体,其中混合气体体积比为ar:cs2为1:1,继续使管式炉升温至800℃,保温4h,保温结束后,管式炉自然冷却;当炉温低于700℃时,将通入气体再改成气流量为30ml/min的ar气;管式炉自然冷却至室温后从炉内取出粉体,用去离子水和无水乙醇各洗涤粉体2次,然后将粉体放入真空干燥箱中,在80℃、真空度5pa下,保持5小时干燥,取出干燥粉体得到纳米γ-nd2s3多晶粉体4.46克;

步骤3γ-nd2s3红外透明陶瓷的热压烧结制备:称取步骤2制备的纳米γ-nd2s3多晶粉体3.50克;按重量比7wt%称取纳米级nacl粉体0.245克;将纳米γ-nd2s3多晶粉体与纳米级nacl粉体充分研磨混合均匀后,装入模具中,置于热压炉中,通入流量为60ml/min的ar气作为保护气体,将压强加到4gpa,通气10min后将热压炉以60℃/min的速率升至800℃,再以30℃/min的速率降至700℃,保温3h,保温结束后撤去压力,热压炉自然冷却至室温,得到热压块体γ-nd2s3陶瓷,将其抛光后获得厚度为0.52mm,红外波段最高透过率为49%的γ-nd2s3红外透明陶瓷。

实施例8:一种低温烧结γ-y2s3红外透明陶瓷的方法

步骤1纳米级多硫化物ys2粉体的制备:称取5.0克分析纯级碳酸氢氧盐粉体y(oh)co3·nh2o(n=1~8),将粉体置于气氛管式炉中,通入气流量为40ml/min的ar气保护下,管式炉以加热速率4℃/min升温;当炉温升至500℃时,将通入气体改成气流量为40ml/min的ar气与h2s的混合气体,其中混合气体体积比为ar:h2s为1:1,保温4h,保温结束后,将通入气体再改成气流量为40ml/min的ar气,管式炉自然冷却至室温;从炉内取出粉体,用去离子水和无水乙醇各洗涤粉体2次,然后将粉体放入真空干燥箱中,在80℃、真空度5.0pa下,干燥4小时,取出干燥粉体得到纳米级多硫化物ys2粉体4.76克;

步骤2纳米γ-y2s3多晶粉体的制备:25℃下称取0.93克分析纯级nacl粉体溶于80ml蒸馏水和无水乙醇的混合液中,其中蒸馏水与无水乙醇的体积比为1:1,得到浓度为0.4mol/l的nacl稀溶液;将该溶液逐滴滴到表面温度为280℃的石英玻璃上,使其迅速蒸干结晶,得到纳米级nacl粉体0.89克;称取步骤1制得的纳米级多硫化物ys2粉体4.5克;按物质的量之比为na:y=0.5:1称取纳米级nacl粉体0.86克;将纳米级多硫化物ys2粉体与纳米级nacl粉体充分研磨混合均匀后置于气氛管式炉中,通入气流量为40ml/min的ar气,管式炉以加热速率4℃/min升温;当炉温升至700℃时,将通入气体改成气流量为40ml/min的ar气与h2s的混合气体,其中混合气体体积比为ar:h2s为1:1,继续使管式炉升温至800℃,保温4h,保温结束后,管式炉自然冷却;当炉温低于700℃时,将通入气体再改成气流量为40ml/min的ar气;管式炉自然冷却至室温后从炉内取出粉体,用去离子水和无水乙醇各洗涤粉体2次,然后将粉体放入真空干燥箱中,在80℃、真空度5pa下,保持5小时干燥,取出干燥粉体得到纳米γ-y2s3多晶粉体4.63克;

步骤3γ-y2s3红外透明陶瓷的热压烧结制备:称取步骤2制备的纳米γ-y2s3多晶粉体3.50克;按重量比3wt%称取纳米级nacl粉体0.105克;将纳米γ-y2s3多晶粉体与纳米级nacl粉体充分研磨混合均匀后,装入模具中,置于热压炉中,通入流量为40ml/min的ar气作为保护气体,将压强加到3gpa,通气15min后将热压炉以30℃/min的速率升至900℃,再以40℃/min的速率降至800℃,保温3h,保温结束后撤去压力,热压炉自然冷却至室温,得到热压块体γ-y2s3陶瓷,将其抛光后获得厚度为0.50mm,红外波段最高透过率为45%的γ-y2s3红外透明陶瓷。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1