本发明属于陶瓷制备技术领域,具体涉及一种氧化锌压敏电阻陶瓷及其制备方法。
背景技术
压敏陶瓷材料是指一定温度下和某一特定电压范围内具有非线性欧姆特性、其电阻值随电压的增加而急剧减小的一种半导体陶瓷材料。根据这种非线性欧姆特性,可以用这种半导体陶瓷材料制成非线性电阻器,即压敏电阻器。目前商品化的压敏电阻器来自氧化锌、二氧化钛、钛酸锶等不同体系的压敏陶瓷系列。其中,氧化锌压敏电阻器以其响应速度快、残压低、制造成本低廉等优势,已成为应用最广、性能最好的压敏电阻器之一,广泛应用于电力、通信、交通、集成电路、汽车电子、医用设备和家用电器等领域。
氧化锌压敏电阻陶瓷是一种多功能新型陶瓷材料,它是以氧化锌为主体,添加若干其他氧化物改性的烧结体材料,由于氧化锌压敏电阻具有非线性系数高、响应时间快、漏电流小、制造成本低廉等优点,广泛应用于电力线路、电子通信、集成电路以及其它领域。低压压敏电阻主要用于低压用半导体器件的过压保护,在电路中与用电器并联,当工作电压正常时,其电阻值很高,仅允许微安级的漏电流通过,对电路设备几乎没有影响;当工作电压过载时,其阻值急剧降低、分流作用急剧增强,对电子和电器设备的安全起到保护作用。
现在所使用的压敏陶瓷材料其电位梯度即单位厚度压敏电压,通常低于250v/mm,根本无法满足形势发展的急需,部分较高梯度的压敏陶瓷材料则采用纳米技术材料,这种纳米材料又存在制造麻烦和成本费用过高等问题,申请号为200610042720.x公开了一种电位梯度为500v/mm的压敏材料,但仍存在非线性系数较小和漏电流较大的问题,另一cn101279844a专利在压敏陶瓷中添加适量复合稀土氧化物,使电位梯度提高到300~1600v/mm,非线性系数为30~50,但稀土氧化物的掺杂在提高压敏陶瓷电位梯度的同时,导致了压敏陶瓷非线性系数受到制约,使压敏性能恶化,申请号为201110055176.3的专利申请,虽然公开了可获得电位梯度750~900v/mm,非线性系数为20~40的压敏电阻体,但工艺过程采用了液相沉积法对纳米zno进行表面包覆,使制造成本大大增加,且非线性系数也不理想。
技术实现要素:
本发明提出一种氧化锌压敏电阻陶瓷,该陶瓷具有烧结温度低、压敏电压小、非线性系数高、漏电流密度小等优点。
本发明的技术方案是这样实现的:
一种氧化锌压敏电阻陶瓷,按照重量份数计算,包括以下原料:
氧化锌85~95份、bi2o31~3份、co2o31~3份、nb2o52~4份、硫化铝0.5~1.5份、纳米氟化钙1~3份及氧化镨0.5~1.5份;所述纳米氟化钙与所述nb2o5需要经过预处理。
优选地,所述纳米氟化钙与所述nb2o5的预处理方法为:先将纳米氟化钙与nb2o5放入羟基纤维素的水溶液中进行搅拌分散,再将加入烷基苯酚聚醚氧化乙烯醚进行搅拌分散,过滤,滤饼洗涤后进行真空干燥,再进行研磨即可。
优选地,所述烷基苯酚聚醚氧化乙烯醚的加入量为所述纳米氟化钙重量的4~8%。
本发明的另一个目的是提供一种氧化锌压敏电阻陶瓷的制备方法,包括以下步骤:
1)按照配比称取上述原料,将上述原料进行粉碎得到粉体,然后混合再加入润滑剂,进行球磨;
2)将步骤1)得到的球磨粉体烘干,然后进行预烧,得到粉末;
3)将步骤3)的粉末进行压制成胚体;
4)将步骤3)的胚体升温至860℃~1200℃,保温,冷却至室温后得到氧化锌压敏电阻陶瓷。
优选地,所述步骤1)的球磨速率为300~350r/min,时间为20~24h。
优选地,所述步骤2)的预烧温度为600~800℃,时间为1~3h。
优选地,所述步骤4)的升温速率为1~5℃/min,保温时间为3~6h。
本发明的有益效果:
本发明的氧化锌压敏电阻陶瓷中添加界面优化剂硫化铝与氧化镨,优化了晶界组成和结构,提高了材料压敏系数和性能,提高非线性系数,降低漏电流密度。添加经过预处理的纳米氟化钙与nb2o5降低了陶瓷烧结温度,有效地促进烧结过程中的晶粒生长,从而降低压敏电压阈值。本发明的氧化锌压敏电阻陶瓷,其电位梯度可达到520~1200v/mm,非线性系数可达到40~100,泄漏电流为0.8~3.2μa。
具体实施方式
实施例1
一种氧化锌压敏电阻陶瓷,按照重量份数计算,包括以下原料:
氧化锌90份、bi2o32份、co2o32份、nb2o52份、硫化铝1份、纳米氟化钙1份及氧化镨1份;纳米氟化钙与nb2o5需要经过预处理。纳米氟化钙与nb2o5的预处理方法为:先将纳米氟化钙与nb2o5放入羟基纤维素的水溶液中进行搅拌分散,再将加入烷基苯酚聚醚氧化乙烯醚进行搅拌分散,过滤,滤饼洗涤后进行真空干燥,再进行研磨即可。烷基苯酚聚醚氧化乙烯醚的加入量为纳米氟化钙重量的6%。
氧化锌压敏电阻陶瓷的制备方法,包括以下步骤:
1)按照配比称取上述原料,将上述原料进行粉碎得到粉体,然后混合再加入润滑剂,进行球磨;球磨速率为300r/min,时间为24h。
2)将步骤1)得到的球磨粉体烘干,然后进行预烧,得到粉末;预烧温度为720℃,时间为2h。
3)将步骤3)的粉末进行压制成胚体;
4)将步骤3)的胚体升温至1010℃,升温速率为3℃/min,保温4h,冷却至室温后得到氧化锌压敏电阻陶瓷。
实施例2
一种氧化锌压敏电阻陶瓷,按照重量份数计算,包括以下原料:
氧化锌85份、bi2o33份、co2o33份、nb2o54份、硫化铝0.5份、纳米氟化钙1份及氧化镨0.5份;纳米氟化钙与nb2o5需要经过预处理。纳米氟化钙与nb2o5的预处理方法为:先将纳米氟化钙与nb2o5放入羟基纤维素的水溶液中进行搅拌分散,再将加入烷基苯酚聚醚氧化乙烯醚进行搅拌分散,过滤,滤饼洗涤后进行真空干燥,再进行研磨即可。烷基苯酚聚醚氧化乙烯醚的加入量为纳米氟化钙重量的4%。
氧化锌压敏电阻陶瓷的制备方法,包括以下步骤:
1)按照配比称取上述原料,将上述原料进行粉碎得到粉体,然后混合再加入润滑剂,进行球磨;球磨速率为350r/min,时间为20h。
2)将步骤1)得到的球磨粉体烘干,然后进行预烧,得到粉末;预烧温度为600℃,时间为3h。
3)将步骤3)的粉末进行压制成胚体;
4)将步骤3)的胚体升温至1200℃,升温速率为5℃/min,保温3h,冷却至室温后得到氧化锌压敏电阻陶瓷。
实施例3
一种氧化锌压敏电阻陶瓷,按照重量份数计算,包括以下原料:
氧化锌95份、bi2o31份、co2o31份、nb2o53份、硫化铝1.5份、纳米氟化钙3份及氧化镨1.5份;纳米氟化钙与nb2o5需要经过预处理。纳米氟化钙与nb2o5的预处理方法为:先将纳米氟化钙与nb2o5放入羟基纤维素的水溶液中进行搅拌分散,再将加入烷基苯酚聚醚氧化乙烯醚进行搅拌分散,过滤,滤饼洗涤后进行真空干燥,再进行研磨即可。烷基苯酚聚醚氧化乙烯醚的加入量为纳米氟化钙重量的8%。
氧化锌压敏电阻陶瓷的制备方法,包括以下步骤:
1)按照配比称取上述原料,将上述原料进行粉碎得到粉体,然后混合再加入润滑剂,进行球磨;球磨速率为330r/min,时间为21h。
2)将步骤1)得到的球磨粉体烘干,然后进行预烧,得到粉末;预烧温度为700℃,时间为1h。
3)将步骤3)的粉末进行压制成胚体;
4)将步骤3)的胚体升温至860℃,升温速率为1℃/min,保温6h,冷却至室温后得到氧化锌压敏电阻陶瓷。
试验例
分别在本发明实例1~3制得的氧化锌压敏电阻陶瓷两端面印刷银电极浆料,经600℃还原获得金属银电极层,随后在两面金属银电极层上各焊接1根镀锡铜线,待焊接完成后,将陶瓷材料浸涂高温环氧绝缘漆,经固化后再热涂粉体环氧封料,最后经固化即得氧化锌压敏电阻器,进行性能检测,结果见表1。
表1
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。