本发明涉及材料领域,尤其是涉及一种溶出矿物质的陶瓷材料、陶瓷器件及其制备方法。
背景技术
随着社会的不断进步,工农业发展引起的水污染日益严重,为了饮水安全,水处理领域开始采用ro(反渗透)手段进行水的治理,消灭来自生物(微生物、病毒等)、物理(泥沙、铁锈等)、化学(有机物、余氯等)等的威胁。虽然ro技术能够有效地解决污染问题,但同时也使得水中的矿物质微量元素损失殆尽,长期饮用会对人体造成一定的损害,在健康理念下人们往往对矿物质有更多的需求,此外现有技术中能够提供矿物质的材料溶出速度低,通常需要浸泡时间超过24h甚至更高才有溶出效果,因此需要寻找一种能够快速溶出多种矿物质的材料来满足人们的需求。
技术实现要素:
本发明所要解决的技术问题是提供一种溶出矿物质的陶瓷材料、陶瓷器件及其制备方法,使用所述陶瓷材料制备的陶瓷器件能够在较短时间内溶出多种矿物质。
本发明所采取的技术方案是:
本发明提供一种溶出矿物质的陶瓷材料,包括陶瓷主料和陶瓷添加剂,所述陶瓷主料包括60~70wt%麦饭石、10~20wt%六环石、5~11wt%硅藻土、4~14wt%长石和1~5wt%锂云母,所述陶瓷添加剂包括聚甲基丙烯酸甲酯(pmma)和羧甲基纤维素钠(cmc)。
优选地,聚甲基丙烯酸甲酯的添加量占所述陶瓷主料0.3~1.5wt%,羧甲基纤维素钠占所述陶瓷主料0.3~1.5wt%。
优选地,聚甲基丙烯酸甲酯的添加量占所述陶瓷主料0.3~0.9wt%。
优选地,所述聚甲基丙烯酸甲酯的粒径≤13μm。
本发明还提供一种陶瓷器件,由上述的溶出矿物质的陶瓷材料制得。
优选地,所述陶瓷器件包括茶具、酒具、滤芯中的至少一种。
本发明还提供一种上述的陶瓷器件的制备方法,包括以下步骤:取所述溶出矿物质的陶瓷材料,经成型和烧结制得。
优选地,烧结的温度为850~950℃。
优选地,烧结的过程采用梯度加热。
优选地,烧结的过程具体为:先等温梯度加热至500~600℃,保温,再等温梯度加热至850~950℃,保温。
本发明的有益效果是:
本发明提供一种溶出矿物质的陶瓷材料,用其制备的陶瓷器具能够溶出多种类型的矿物质如钙镁钾钠硅等,满足了人们对矿物质元素的需求,同时溶出速度快、在很短的时间内就可以使水达到弱碱性,重金属和有害物含量低、符合国家标准。
现有技术中能够提供矿物质的材料在制备过程中往往烧结温度较高,通常在1100℃以上,不利于环保,使用本发明的陶瓷材料能够大幅度降低烧结温度,提高孔隙率、增加溶出量,并提高了溶出速度。
附图说明
附图1为实施例1中陶瓷球的烧结工艺曲线;
附图2为实施例1中陶瓷球a-g的sem图;
附图3为实施例1中陶瓷球a-g的体积密度和孔隙率与添加剂含量的关系图;
附图4为实施例1中陶瓷球a-g的tds随浸泡时间的变化曲线;
附图5为实施例1中陶瓷球a-g浸泡水样ph随时间的变化曲线。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
实施例1
取65质量份的中华麦饭石、15质量份的六环石、8质量份的硅藻土、9质量份的长石和3质量份的锂云母混合得到陶瓷主料,按照表1所示的组分和添加量在所述陶瓷主料中添加陶瓷添加剂得到陶瓷材料,其中陶瓷添加剂的含量为占所述陶瓷主料重量的百分比,本实施例中聚甲基丙烯酸甲酯的粒径≤13μm。
表1陶瓷添加剂组分及添加量(外加wt%)
取上述得到的陶瓷材料,按照陶瓷材料:去离子水:zro2磨球质量比为1:2:3混合,在pmq2l型全方位行星式球磨机上球磨18小时,置于dhg-9053a型干燥箱中烘干,经练泥后手工制成球,利用sxl-1400型箱式电阻炉按图1烧结工艺曲线进行烧结得到陶瓷球。
取上述烧结制得的陶瓷球a-g,通过novananosem450型场发射扫描电子显微镜对试样进行显微组织结构分析,分析结果如图2所示,其中图中a-g表示陶瓷球a-g对应的扫描电子显微镜图片,从图中可以看出同时添加有pmma和cmc的陶瓷球气孔较多、气孔分布均匀,有利于矿物质的溶出,当pmma的添加量为0.9wt%时,陶瓷球的孔径及孔数量达到最大,优选pmma添加量为0.3~0.9wt%。用阿基米德法对上述陶瓷a-g进行测定试样的孔隙率,实验结果如图3所示,其中横坐标添加剂含量指的是pmma和cmc的重量。从图中可以看出,相较于未同时添加pmma和cmc的陶瓷球,本发明的同时添加有pmma和cmc的陶瓷球具有更高的孔隙率利于矿物质的溶出,其中当pmma的添加量为0.9wt%时孔隙率可达93.17%、体积密度达到1.36g/cm3,优选pmma的添加量范围为0.3~0.9wt%(所述添加量指的是占陶瓷主料的重量百分比)。
本实施例以陶瓷球为例进行说明,可以根据实际需求利用本发明的陶瓷材料制备多种陶瓷器件,如茶具、酒具、滤芯、……等。
实施例2
取实施例1中制备得到的陶瓷球a-g,以陶瓷球:纯水=1:20的比例浸泡,利用tds-3型tds笔测定试样的矿化度,结果如图4所示,溶出元素的多少决定了矿化水tds(溶解性总固体)的高低,其中k+、na+的作用最为明显,从图中可以看出利用本发明的陶瓷材料配方制得的陶瓷球能够在较短时间内迅速溶出矿物质。
分别进行上述陶瓷球a-g浸泡5h、30h的矿化水元素检测,结果如表2-3所示,表中只列出本次检测部分矿物质元素,且所测得的重金属离子远低于国家标准,其中n.d.表示含量低于检出限。从表中可以看出本发明提供的陶瓷球能够同时溶出多种矿物质元素,且随着浸泡时间的延长,其溶出量也随之增大。
表2陶瓷球a-g浸泡5h水样元素检测(mg/l)
表3陶瓷球a-g浸泡30h水样元素检测(mg/l)
取上述陶瓷球a-g,测定其浸泡水样ph随时间的变化曲线如图5所示,从图中可以看出,随着浸泡时间的延长,其ph随之升高,在5h时达到最高,继续延长浸泡时间,ph呈下降趋势,并使之维持在7到8之间,符合人们对饮用水ph的需求。本发明陶瓷材料中的麦饭石矿物层间富含碱金属元素和碱土金属元素,与水作用时,可使溶液呈现较高的ph。而当ph升高到一定程度时,中华麦饭石与水作用后产生的硅酸就会在水中电离,产生h+,从而降低矿化水的ph。而从化学角度来考虑,中华麦饭石中所含的两性氧化物al2o3在调节水的ph方面也起着至关重要的作用,并可使矿化水达到健康饮用水的弱碱性要求。