一种隔热耐磨石英陶瓷的制作方法

文档序号:15844361发布日期:2018-11-07 08:49阅读:345来源:国知局

本发明属于新材料技术领域,具体涉及一种隔热耐磨石英陶瓷。

背景技术

石英陶瓷又称熔融石英陶瓷、石英玻璃陶瓷、石英玻璃烧结制品、熔融石英烧结制品,他是采用熔融石英为原料,经过粉碎、成形、烧成等一系列陶瓷工艺制备的制品。

石英陶瓷具有成本低、高温荷重软化温度高、热膨胀系数小、热稳定系好、耐化学腐蚀性能好、介电性高等优良特性,可以应用于多个领域。

现有的石英陶瓷隔热性一般,耐磨性较差,同时易炸裂,导致使用成本升高。



技术实现要素:

本发明的目的是针对现有的问题,提供了一种隔热耐磨石英陶瓷。

本发明是通过以下技术方案实现的:

一种隔热耐磨石英陶瓷,所述隔热耐磨石英陶瓷中含有其质量6.3-7.0%的氮掺杂沸石粉和16.3-16.5%的外添加剂,余量为石英,所述氮掺杂沸石粉中氮元素质量百分数为4.5-4.6%。

进一步的,所述氮掺杂沸石粉制备方法为:

(1)预处理:将沸石粉均匀分散到去离子水中,配制成质量分数为8.5%的沸石粉分散液,在70℃下浸泡2小时,然后以2000r/min转速搅拌20min,再经过离心处理12min,离心的转速为1200r/min,然后进行抽滤,烘干至恒重;将烘干后的沸石粉均匀分散到酸性氯化铈溶液中,加热至46℃,以250r/min转速搅拌40min,然后静置2小时,再进行过滤,采用去离子水清洗,烘干至恒重,得到预处理沸石粉;

(2)将上述得到的预处理沸石粉加热至150℃,保温15min,然后添加尿素,然后添加沸石粉质量1%的助剂,搅拌均匀后,再在惰性气氛下,继续加热至1250℃,直至沸石粉中含氮量达到4.5-4.6%,出料,快速冷却至室温,粉碎,细磨2小时,过1200目筛,即得。

进一步的,步骤(1)所述沸石粉粒度为800目。

进一步的,步骤(1)所述酸性氯化铈溶液中氯化铈质量分数为0.028%,酸性氯化铈溶液中还含有盐酸,酸性氯化铈溶液ph为5.5。

进一步的,步骤(2)所述惰性气氛为氦气气氛。

进一步的,步骤(2)所述助剂为硝酸锌。

进一步的,所述外添加剂为白云母、镁铝尖晶石、方解石。

进一步的,所述白云母、镁铝尖晶石、方解石质量比为7:3:4。

本发明相比现有技术具有以下优点:本发明制备的隔热耐磨陶瓷性能优越,本发明制备的隔热耐磨石英陶瓷,通过对各组分用量进行限定,同时在氮掺杂沸石粉的促进作用下,使二氧化硅在坯料中形成骨架,氮掺杂沸石粉作为连接桥梁点,镁铝尖晶石增加陶瓷坯料的耐火度和烧结范围,不进能够降低坯料的烧结温度,同时能够提高制备的陶瓷的热稳定性和机械强度;本发明通过采用氮掺杂沸石粉,氮掺杂沸石粉在体系中均匀分散,尤其是在陶瓷坯料烧结的过程中,起到良好的支撑晶界作用,能够大幅度的减小高石英陶瓷的收缩,同时,能够有效的提高陶瓷的韧性,在烧结过程中,还能够对孔隙进行填充,提高陶瓷的致密度,降低陶瓷的吸水率,提高陶瓷的表面硬度;本发明制备的隔热耐磨石英陶瓷通过添加氮掺杂沸石粉具有较低的吸水率,采用未处理的沸石粉或不经过预处理的沸石粉制备的石英陶瓷吸水率会不同程度的提高;本发明通过添加氮掺杂沸石粉制备的隔热耐磨石英陶瓷具有良好的热稳定性,从而显著的提高了石英陶瓷的应用范围;本发明制备的石英陶瓷具有更低的导热系数,更低的摩擦系数和更高的剪切强度;氮掺杂沸石粉中氮含量从零开始增加时,石英陶瓷的导热系数逐渐降低,氮含量增到到4.5-4.6%时,石英陶瓷的导热系数达到最佳,氮含量继续增加后,石英陶瓷的导热系数又逐渐增加。

具体实施方式

实施例1

一种隔热耐磨石英陶瓷,所述隔热耐磨石英陶瓷中含有其质量6.3%的氮掺杂沸石粉和16.3%的外添加剂,余量为石英,所述氮掺杂沸石粉中氮元素质量百分数为4.5%。

进一步的,所述氮掺杂沸石粉制备方法为:

(1)预处理:将沸石粉均匀分散到去离子水中,配制成质量分数为8.5%的沸石粉分散液,在70℃下浸泡2小时,然后以2000r/min转速搅拌20min,再经过离心处理12min,离心的转速为1200r/min,然后进行抽滤,烘干至恒重;将烘干后的沸石粉均匀分散到酸性氯化铈溶液中,加热至46℃,以250r/min转速搅拌40min,然后静置2小时,再进行过滤,采用去离子水清洗,烘干至恒重,得到预处理沸石粉;

(2)将上述得到的预处理沸石粉加热至150℃,保温15min,然后添加尿素,然后添加沸石粉质量1%的助剂,搅拌均匀后,再在惰性气氛下,继续加热至1250℃,直至沸石粉中含氮量达到4.5%,出料,快速冷却至室温,粉碎,细磨2小时,过1200目筛,即得。

进一步的,步骤(1)所述沸石粉粒度为800目。

进一步的,步骤(1)所述酸性氯化铈溶液中氯化铈质量分数为0.028%,酸性氯化铈溶液中还含有盐酸,酸性氯化铈溶液ph为5.5。

进一步的,步骤(2)所述惰性气氛为氦气气氛。

进一步的,步骤(2)所述助剂为硝酸锌。

进一步的,所述外添加剂为白云母、镁铝尖晶石、方解石。

进一步的,所述白云母、镁铝尖晶石、方解石质量比为7:3:4。

实施例2

一种隔热耐磨石英陶瓷,所述隔热耐磨石英陶瓷中含有其质量7.0%的氮掺杂沸石粉和16.5%的外添加剂,余量为石英,所述氮掺杂沸石粉中氮元素质量百分数为4.6%。

进一步的,所述氮掺杂沸石粉制备方法为:

(1)预处理:将沸石粉均匀分散到去离子水中,配制成质量分数为8.5%的沸石粉分散液,在70℃下浸泡2小时,然后以2000r/min转速搅拌20min,再经过离心处理12min,离心的转速为1200r/min,然后进行抽滤,烘干至恒重;将烘干后的沸石粉均匀分散到酸性氯化铈溶液中,加热至46℃,以250r/min转速搅拌40min,然后静置2小时,再进行过滤,采用去离子水清洗,烘干至恒重,得到预处理沸石粉;

(2)将上述得到的预处理沸石粉加热至150℃,保温15min,然后添加尿素,然后添加沸石粉质量1%的助剂,搅拌均匀后,再在惰性气氛下,继续加热至1250℃,直至沸石粉中含氮量达到4.6%,出料,快速冷却至室温,粉碎,细磨2小时,过1200目筛,即得。

进一步的,步骤(1)所述沸石粉粒度为800目。

进一步的,步骤(1)所述酸性氯化铈溶液中氯化铈质量分数为0.028%,酸性氯化铈溶液中还含有盐酸,酸性氯化铈溶液ph为5.5。

进一步的,步骤(2)所述惰性气氛为氦气气氛。

进一步的,步骤(2)所述助剂为硝酸锌。

进一步的,所述外添加剂为白云母、镁铝尖晶石、方解石。

进一步的,所述白云母、镁铝尖晶石、方解石质量比为7:3:4。

实施例3

一种隔热耐磨石英陶瓷,所述隔热耐磨石英陶瓷中含有其质量6.6%的氮掺杂沸石粉和16.4%的外添加剂,余量为石英,所述氮掺杂沸石粉中氮元素质量百分数为4.55%。

进一步的,所述氮掺杂沸石粉制备方法为:

(1)预处理:将沸石粉均匀分散到去离子水中,配制成质量分数为8.5%的沸石粉分散液,在70℃下浸泡2小时,然后以2000r/min转速搅拌20min,再经过离心处理12min,离心的转速为1200r/min,然后进行抽滤,烘干至恒重;将烘干后的沸石粉均匀分散到酸性氯化铈溶液中,加热至46℃,以250r/min转速搅拌40min,然后静置2小时,再进行过滤,采用去离子水清洗,烘干至恒重,得到预处理沸石粉;

(2)将上述得到的预处理沸石粉加热至150℃,保温15min,然后添加尿素,然后添加沸石粉质量1%的助剂,搅拌均匀后,再在惰性气氛下,继续加热至1250℃,直至沸石粉中含氮量达到4.55%,出料,快速冷却至室温,粉碎,细磨2小时,过1200目筛,即得。

进一步的,步骤(1)所述沸石粉粒度为800目。

进一步的,步骤(1)所述酸性氯化铈溶液中氯化铈质量分数为0.028%,酸性氯化铈溶液中还含有盐酸,酸性氯化铈溶液ph为5.5。

进一步的,步骤(2)所述惰性气氛为氦气气氛。

进一步的,步骤(2)所述助剂为硝酸锌。

进一步的,所述外添加剂为白云母、镁铝尖晶石、方解石。

进一步的,所述白云母、镁铝尖晶石、方解石质量比为7:3:4。

对比例1:与实施例1区别仅在于将氮掺杂沸石粉替换为未处理的沸石粉。

对比例2:与实施例1区别仅在于氮掺杂沸石粉制备时不添加助剂。

对比例3:与实施例1区别仅在于氮掺杂沸石粉制备时不经过预处理。

对照组:申请号:201410819019.9制备的陶瓷。

吸水率的测定

采用gb/t3299-2011日用陶瓷器吸水率的测定方法测定吸水率;

表1

由表1可以看出,本发明制备的隔热耐磨石英陶瓷通过添加氮掺杂沸石粉具有较低的吸水率,采用未处理的沸石粉或不经过预处理的沸石粉制备的石英陶瓷吸水率会不同程度的提高。

实施例与对比例通过相同工艺制程相同规格的陶瓷进行热稳定性试验(加热后的陶瓷放入常温水中,观察是否炸裂):

表2

由表2可以看出,本发明通过添加氮掺杂沸石粉制备的隔热耐磨石英陶瓷具有良好的热稳定性,从而显著的提高了石英陶瓷的应用范围。

实施例与对比例通过相同工艺制程相同规格的陶瓷进行检测导热系数(用导热系数测试检测陶瓷摩擦体a-g在1000℃时的导热系数进行检测)、耐磨性(据国际标准《saej2522-2003测功圆盘制动器效能》对陶瓷摩擦体a-g的摩擦系数进行检测)、剪切强度(用剪切机对陶瓷-铝合金制动盘a-g的剪切强度进行检测):

表3

由表3可以看出,本发明制备的石英陶瓷具有更低的导热系数,更低的摩擦系数和更高的剪切强度;

继续试验检测,以实施例1为试样基准,对比氮掺杂沸石粉中氮含量对制备的石英陶瓷导热系数的影响:

表4

由表4可以看出,氮掺杂沸石粉中氮含量从零开始增加时,石英陶瓷的导热系数逐渐降低,氮含量增到到4.5-4.6%时,石英陶瓷的导热系数达到最佳,氮含量继续增加后,石英陶瓷的导热系数又逐渐增加。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1