本发明涉及光学技术领域,具体涉及一种红外截止膜及其生产方法。
背景技术:
近年来,随着科学技术的飞速发展,红外截止膜产品的应用领域也日渐广泛,如建筑的外幕墙或门窗,微波炉或冰箱上的玻璃门,汽车、高铁或飞机上的玻璃窗户等等。传统该类产品主要采用金属材料作为整个产品的功能层,尤以银材料最为常见,具体膜层结构见图1,且部分金属材料具有良好的红外反射能力,能阻挡外界的红外线透过产品,典型光谱见图2。当金属膜厚度足够薄且在介质层补偿的条件下,其可以实现对透过产品的光谱进行选择,即可以选择让可见光部分透过产品,满足采光的需求,而对红外线部分进行反射截止,满足节能的需求。
然而,上述该类产品也有局限性,如金属材料性能不稳定,该类产品如果单片裸露在应用场所,外界干扰物(例如水汽、汗液、唾液、其他的化学试剂等)可穿透膜层中的介质层和保护层使金属功能层受到破坏,从而造成其截止红外线的功能将减弱或消失。为了使产品能正常使用,目前的解决措施主要是将产品以中空结构在各种应用场合使用;即一般情况下需要将镀膜产品通过间隔条与另一片玻璃做成中空结构(见图3),并辅以干燥剂及多层密封胶对膜层进行保护,使其使用寿命得到增加。但是,此种膜层结构生产的产品,制作工艺复杂,在实际加工制作过程中不良率偏高,生产效率低下,成本费用高,且终端产品在使用一定年限后具有失效风险。
基于此,为了解决上述缺陷,提供一种新型的红外截止膜及其生产方法具有重要意义。
技术实现要素:
针对现有技术中的缺陷,本发明旨在提供一种红外截止膜及其生产方法。本发明技术方案能够有效解决现有产品使用结构复杂、产品结构单一以及长期使用稳定性差等缺陷,而且可以显著降低下游工厂的加工难度及生产成本,从而提高产能及成品率,使得产品应用场合更宽泛、更灵活、最终得到更好的普及推广。
为此,本发明提供如下技术方案:
第一方面,本发明提供一种红外截止膜的制备方法,包括以下步骤:s1:采用磁控溅射法在基材上镀红外截止膜,控制磁控溅射的本体真空度<8×10-6mbar;且镀膜材料的种类大于或等于两种时,相邻两个不同工艺气氛的隔离系数>20;s2:将镀膜后的基材进行钢化处理,最终得到红外截止膜。
优选地,s1中:红外截止膜包括功能层、介质层和保护层;其中,功能层选用透明导电氧化膜材料;基材选用玻璃基材。
优选地,导电氧化膜材料包括氧化锌铝和/或氧化铟锡。
优选地,制备以氧化锌铝为功能层的红外截止膜,包括以下步骤:s101:采用磁控溅射法在基材上依次镀制氮化硅层、镍铬层、氧化锌铝层、镍铬层、氮化硅层和氧化钛层,且玻璃基材、氮化硅层、镍铬层、氧化锌铝层、镍铬层、氮化硅层和氧化钛层的厚度之比依次为6mm:(60~70)nm:(4~5)nm:(370~400)nm:(4~5)nm:(150~180)nm:(28~35)nm;s102:将镀膜后的基材进行钢化处理,加热时间为290s,上温度为710℃,下温度为690℃,对流关闭,最终得到氧化锌铝为功能层的红外截止膜。
优选地,s101中:镀制氮化硅层时,溅射阴极工作气氛为4~5×10-3mbar,工艺配气比例为450sccm氩气/650sccm氮气;镀制氧化锌铝层时,溅射阴极工作气氛为2.5~3×10-3mbar,工艺配气比例为900sccm氩气;镀制镍铬层时,溅射阴极工作气氛为1.5~2×10-3mbar,工艺配气比例为500sccm氩气;镀制氧化钛层时,溅射阴极工作气氛为3~4×10-3mbar,工艺配气比例为600ccm氩气/50sccm氧气。
优选地,制备以氧化铟锡为功能层的红外截止膜,包括以下步骤:s201:采用磁控溅射法在基材上依次镀制氮化硅层、氧化硅层、氧化铟锡层、氧化硅层和氮化硅层,且玻璃基材、氮化硅层、氧化硅层、氧化铟锡层、氧化硅层和氮化硅层的厚度之比依次为6mm:(40~60)nm:(30~50)nm:(130~150)nm:(30~50)nm:(40~60)nm;s202:将镀膜后的基材进行钢化处理,将镀膜后的基材进行钢化处理,加热时间为290s,上温度为710℃,下温度为690℃,对流关闭,最终得到氧化铟锡为功能层的红外截止膜。
优选地,s201中:镀制氮化硅层时,溅射阴极工作气氛为4~5×10-3mbar,工艺配气比例为450sccm氩气/650sccm氮气;镀制氧化铟锡层时,溅射阴极工作气氛为2.5~3×10-3mbar,工艺配气比例为1000sccm氩气;镀制氧化硅层时,溅射阴极工作气氛为2.5~3.5×10-3mbar,工艺配气比例为500ccm氩气/360sccm氧气。
第二方面,采用本发明方法制备得到的红外截止膜。
第三方面,本发明提供的红外截止膜在镀有红外截止膜的产品中的应用,且应用方式包括单片式、夹胶式和中空式中的一种或多种。
本发明的上述技术方案相比现有技术具有以下优点:
(1)申请人经过大量实验发现:本发明提供的红外截止膜能够有效解决现有产品使用结构复杂、产品结构单一以及长期使用稳定性差等缺陷,而且可以显著降低下游工厂的加工难度及生产成本,从而提高产能及成品率,使得产品应用场合更宽泛、更灵活,极具推广使用价值。
(2)本发明提供的红外截止膜可单片、夹胶或中空使用,终端产品结构的选择性更加灵活,应用场合更广泛;且用在中空终端产品时,不需要进行边部除膜,从而能够显著减少设备投入及降低生产成本。此外,本发明提供的镀有红外截止膜的产品可有效解决膜层因外界污染物所导致产品出现功能失效,产品寿命更长,产品质量风险更低。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术中所需要使用的附图作简单地介绍,显而易见地,下面描述的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图。
图1为背景技术中传统红外截止膜产品的结构示意图;
图2为背景技术中镀膜产品的典型光谱图;
图3为背景技术中镀膜产品用在中空终端产品时的结构示意图;
图4为本发明实施例一中红外截止膜的结构示意图;
图5为本发明实施例一中红外截止膜的光谱曲线图;
图6为本发明实施例二中红外截止膜的结构示意图;
图7为本发明实施例二中红外截止膜的光谱曲线图。
具体实施方式
下面将结合附图对本发明的实施例进行详细的描述。以下实施例仅用于更加清楚的说明本发明的技术方案,因此只作为实例,而不能以此来限制本发明的保护范围。
下述实施例中的实验方法,如无特殊说明,均为常规方法。下述实施例中所用的试验材料,如无特殊说明,均为自常规试剂商店购买得到的。以下实施例中的定量试验,均设置三次重复实验,数据为三次重复实验的平均值或平均值±标准差。
本发明提供一种红外截止膜的制备方法,包括以下步骤:
s1:采用磁控溅射法在基材上镀红外截止膜,控制磁控溅射的本体真空度<8×10-6mbar;且镀膜材料的种类大于或等于两种时,相邻两个不同工艺气氛的隔离系数>20。其中,红外截止膜包括功能层、介质层和保护层;其中,功能层选用透明导电氧化膜材料,且优选氧化锌铝和/或氧化铟锡;基材选用玻璃基材。
s2:将镀膜后的基材进行钢化处理,最终得到红外截止膜。
下面结合具体实施方式进行说明。
实施例一
本实施例提供一种以氧化锌铝为功能层的红外截止膜的制备方法,包括以下步骤:
s101:采用磁控溅射法在基材上依次镀制氮化硅层、镍铬层、氧化锌铝层、镍铬层、氮化硅层和氧化钛层,控制磁控溅射的本体真空度<8×10-6mbar;且镀膜材料的种类大于或等于两种时,相邻两个不同工艺气氛的隔离系数>20;玻璃基材、氮化硅层、镍铬层、氧化锌铝层、镍铬层、氮化硅层和氧化钛层的厚度之比依次为6mm:(60~70)nm:(4~5)nm:(370~400)nm:(4~5)nm:(150~180)nm:(28~35)nm。
其中,镀制氮化硅层时,溅射阴极工作气氛为4~5×10-3mbar,工艺配气比例为450sccm氩气/650sccm氮气;镀制氧化锌铝层时,溅射阴极工作气氛为2.5~3×10-3mbar,工艺配气比例为900sccm氩气;镀制镍铬层时,溅射阴极工作气氛为1.5~2×10-3mbar,工艺配气比例为500sccm氩气;镀制氧化钛层时,溅射阴极工作气氛为3~4×10-3mbar,工艺配气比例为600ccm氩气/50sccm氧气。
s102:将镀膜后的基材进行钢化处理,加热时间为290s,上温度为710℃,下温度为690℃,对流关闭,最终得到氧化锌铝为功能层的红外截止膜,结构示意图见图4。
进一步地,对本实施例的红外截止膜进行性能表征,光热数据如表1所示,光谱曲线见图5。
表1实施例一中红外截止膜的光热数据
实施例二
本实施例提供一种以氧化铟锡为功能层的红外截止膜的制备方法,包括以下步骤:
s101:采用磁控溅射法在基材上依次镀制氮化硅层、镍铬层、氧化锌铝层、镍铬层、氮化硅层和氧化钛层,控制磁控溅射的本体真空度<8×10-6mbar;且镀膜材料的种类大于或等于两种时,相邻两个不同工艺气氛的隔离系数>20;玻璃基材、氮化硅层、氧化硅层、氧化铟锡层、氧化硅层和氮化硅层的厚度之比依次为6mm:(40~60)nm:(30~50)nm:(130~150)nm:(30~50)nm:(40~60)nm。
其中,镀制氮化硅层时,溅射阴极工作气氛为4~5×10-3mbar,工艺配气比例为450sccm氩气/650sccm氮气;镀制氧化铟锡层时,溅射阴极工作气氛为2.5~3×10-3mbar,工艺配气比例为1000sccm氩气;镀制氧化硅层时,溅射阴极工作气氛为2.5~3.5×10-3mbar,工艺配气比例为500ccm氩气/360sccm氧气。
s102:将镀膜后的基材进行钢化处理,加热时间为290s,上温度为710℃,下温度为690℃,对流关闭,最终得到氧化铟锡为功能层的红外截止膜,结构示意图见图6。
进一步地,对本实施例的红外截止膜进行性能表征,光热数据如表2所示,光谱曲线见图7。
表2实施例二中红外截止膜的光热数据
当然,除了上述实施例列举的情况,选用其他的镀膜材料、工艺配气比例、各传送辊道上镀膜基材的速度等其他参数和条件也是可以的。
本发明提供的红外截止膜能够有效解决现有产品使用结构复杂、产品结构单一以及长期使用稳定性差等缺陷,而且可以显著降低下游工厂的加工难度及生产成本,从而提高产能及成品率,使得产品应用场合更宽泛、更灵活,极具推广使用价值。
在本发明的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。