激光照明用浓度渐变荧光陶瓷及其制备方法与流程

文档序号:21107095发布日期:2020-06-16 21:23阅读:545来源:国知局
激光照明用浓度渐变荧光陶瓷及其制备方法与流程

本发明涉及激光照明用荧光材料领域,特别地是,激光照明用浓度渐变荧光陶瓷及其制备方法。



背景技术:

ce:yag荧光粉是非常重要的荧光材料,然而面向高功率激光照明,荧光粉已经无法满足需求,而最近市场上兴起的玻璃陶瓷材料由于基质材料为玻璃,荧光粉颗粒和玻璃折射率差距较大,导致材料散射太大,部分激发光源能量以热的形式耗散在基质玻璃当中,而玻璃基质热导率低,导致发光材料温度升高,发光效率降低;同时由于玻璃属于亚稳态结构,因此在持续高温的情况下容易析晶,导致材料性能的进一步下降;再者由于玻璃机械性能较差,所以在材料使用过程中,材料温度急剧升降也会导致样品开裂问题。

ce:yag荧光陶瓷样品热导率高(-8.0w/m·k)、为立方相材料,因此在光学上为各向同性材料,陶瓷中晶粒方向的随机性和晶界的出现不会影响yag材料的光学特性,是一种非常优秀的荧光陶瓷。但是面向高功率激光照明应用,均匀掺杂的ce:yag荧光陶瓷由于在激光激励端面吸收能量比例大,因此会产生更多的热量,从而导致材料激励端面附近温度较高,同时,由于荧光陶瓷对激发光源能量的吸收,导致发光材料后端可吸收的能量偏低,更加加剧了材料温差,严重时可导致发光材料炸裂,因此如何设计制备复合荧光陶瓷材料,匹配材料中激活离子浓度,使得整个材料可以均匀的吸收激发激光能量,从而实现材料在发光过程中发光及温度的均匀,解决材料温差问题,提升材料荧光转化效率。

同时,单一浓度的ce:yag荧光陶瓷发射光谱较窄,直接用蓝色激光ld激发荧光陶瓷所得白光缺少红光成分,显示指数低,ce3+离子半径大于y3+离子半径,根据半径经验值可知,提高ce3+离子浓度可以使得荧光陶瓷的发射光谱红移,即在同一材料中实现浓度梯度掺杂,可以获得比单浓度掺杂的样品更宽的光谱,实现白光显色指数的提升。



技术实现要素:

本发明的目的在于提供一种激光照明用浓度渐变荧光陶瓷,更具体地说是一种以ce3+离子为激活离子,在激光激励方向上激活离子浓度梯度渐变的一种复合荧光陶瓷及其制备方法。该复合荧光陶瓷通过标准粉体配制,根据具体激光照明系统要求以及激发光源特性进行浓度梯度设计,之后从所配置的标准粉体中进行取样压制、高温烧结控制ce3+离子的扩散,从而使得材料中激活离子浓度基本呈线性递增分布,实现材料内激发光源能量均匀吸收,解决材料激励端面温度过高导致样品荧光效率降低及样品开裂问题的同时实现白光显色指数的提升。

本发明的技术方案是这样实现的:所述荧光陶瓷以yag陶瓷作为基质材料,ce3+离子作为发光离子,其分子式为cex:y3-xal5o12,x的取值范围:0≤x≤0.06,所述荧光陶瓷沿激光光源激发入射方向上呈浓度渐变升高分布。

上述的复合荧光陶瓷的制备方法包括下列步骤:

①配制不同ce3+离子摩尔浓度ce:yag系列标准陶瓷粉体,ce3+离子摩尔浓度y的范围为:0≤y≤2at.%。标准陶瓷粉体为ce3+离子摩尔浓度梯度公差0.2at.%,最低浓度为0,最大浓度为2at.%的11种ce:yag粉体,从低浓度至高浓度分别命名为yag-0、yag-0.2、yag-0.4、yag-0.6、yag-0.8、yag-1.0、yag-1.2、yag-1.4、yag-1.6、yag-1.8、yag-2.0;

②根据待制备的荧光陶瓷的大小选择合适尺寸的模具,将配制好的yag陶瓷粉体倒入模具中,进行1mpa干压30秒,之后依次按ce离子浓度递增的次序将粉体倒入模具并进行干压30秒,直到选用最大浓度的粉体干压完毕,将素坯在5mpa保压1分钟之后冷等静压210mpa两分钟,构成坯体;

③将所述的坯体放入真空烧结炉中,抽真空至10-3pa进行加热,在1600-1850℃下保温5-30h,通过调节烧结温度以及烧结时间,来控制ce离子扩散速度与距离,在陶瓷中形成ce3+离子浓度梯度基本均匀的荧光陶瓷样品;

④对所得样品进行1450℃×25h空气气氛退火,消除氧空位及内部应力,之后对样品进行抛光加工处理以供高功率激光照明使用。

本发明的技术效果:

<1>先前的ce:yag荧光陶瓷浓度单一,激光激励材料端面吸收能量大,端面温度升高,导致样品荧光效率降低及样品开裂问题,而本发明激活离子浓度渐变ce:yag荧光陶瓷通过匹配材料中激活离子浓度,使得整个材料可以均匀的吸收激发激光能量,从而实现材料温度均匀,解决材料因温差导致的荧光转化效率降低及样品炸裂问题。

<2>先前的ce:yag荧光陶瓷,每个样品中浓度一致,直接用蓝色激光ld激发荧光陶瓷所得白光缺少红光成分,显示指数低,而本发明激活离子浓度渐变ce:yag荧光陶瓷,在同一材料中实现ce3+离子浓度梯度掺杂,可以获得比单浓度掺杂的样品更宽的光谱,实现白光显色指数的提升。

<3>先前复合陶瓷制备技术,热稳定性差。本发明与先前的复合陶瓷制备技术相比,本发明中材料各标准粉体一块儿压制成型,具有结合牢固,通过烧结温度及时间的控制,实现荧光陶瓷中浓度呈线性递增分布,可以更好的实现激光激励能源的均匀吸收。

<4>本发明材料制备通过标准粉体称量、一次压制成型,成品率高,适宜批量生产,能够满足激光照明技术迅猛发展的市场需求,具有良好的经济效益。

附图说明

图1为本发明的荧光陶瓷工作示意图。

具体实施方式

下面通过具体的实施方式结合附图对本发明作进一步详细说明。

先请参阅图1,图1是本发明复合荧光陶瓷的工作状态示意图,本发明复合荧光陶瓷,以钇铝石榴石(以下称为yag)陶瓷作为基质材料,ce3+离子作为发光离子,在激光光源激发入射方向上呈浓度渐变升高分布,所述的荧光陶瓷分子式为cex:y3-xal5o12,在同一块荧光陶瓷材料中x的范围可以为:0≤x≤0.06的浓度渐变荧光陶瓷,即ce3+离子摩尔浓度y的范围为:0≤y≤2at.%。

实施例1:

根据所需材料特性,设计合适浓度分布,选择最大激活离子掺杂浓度y=2at.%,制备的方法如下:

1.配制不同ce3+离子摩尔浓度ce:yag系列标准陶瓷粉体,ce3+离子摩尔浓度y的范围为:0≤y≤2at.%。标准陶瓷粉体为ce3+离子摩尔浓度梯度公差0.2at.%,最低浓度为0,最大浓度为2at.%的11种ce:yag粉体;

2.根据待制备的荧光陶瓷的大小选择合适尺寸的模具,根据具体照明系统对材料的要求选择最大浓度,将配制好的yag陶瓷粉体倒入模具中,进行1mpa干压30秒,之后依次按ce离子浓度递增的次序将粉体倒入模具并进行干压30秒,直到选用最大浓度y=2at.%的粉体干压完毕,将素坯在5mpa保压1分钟之后冷等静压210mpa两分钟,构成坯体;

3.将所述的坯体放入真空烧结炉中,抽真空至10-3pa进行加热,在1600℃下保温30h;

4.对所得样品进行1450℃×25h空气气氛退火。

实施例2:

根据所需材料特性,设计合适浓度分布,选择最大激活离子掺杂浓度y=1.8at.%,制备的方法如下:

1.根据待制备的荧光陶瓷的大小选择合适尺寸的模具,根据具体照明系统对材料的要求选择最大浓度,将配制好的yag陶瓷粉体倒入模具中,进行1mpa干压30秒,之后依次按ce离子浓度递增的次序将粉体倒入模具并进行干压30秒,直到选用最大浓度y=1.8at.%的粉体干压完毕,将素坯在5mpa保压1分钟之后冷等静压210mpa两分钟,构成坯体;

2.将所述的坯体放入真空烧结炉中,抽真空至10-3pa进行加热,在1600℃下保温30h;

3.对所得样品进行1450℃×25h空气气氛退火。

对样品进行抛光加工处理,进行高功率激光照明测试,利用445nm及455nm蓝色激光对样品进行激励,样品温度分布均匀、显色指数较单一浓度掺杂样品显著提升。

其余各实施例参数见下表:

实验表明,本发明的复合荧光陶瓷可实现材料内激发光源能量均匀吸收,解决材料激励端面温度过高导致样品荧光效率降低及样品开裂问题的同时实现白光显色指数的提升。

以上仅表达了本发明的实施方式,其描述较为具体和详细,但且不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1