本发明涉及诸如纤维增强材料的陶瓷基复合材料或(根据具体情况)由其制成的部件的增材制造。此外,描述了一种装置和相应部件。
优选地,该部件表示应用于涡轮机的部件,例如涡轮机的热气流路硬件中的部件。因此,该部件优选由超合金或镍基合金制成,尤其是由脱溶硬化合金制成。
背景技术:
增材制造技术包括,例如,诸如选择性激光熔化(slm)、选择性激光烧结(sls)或电子束熔化(ebm)的粉末床法以及诸如激光金属沉积(lmd)的喷吹粉末法。
例如,ep2601006b1中描述了一种选择性激光熔化方法。
已经证明增材制造方法在原型或复合体以及精细部件的制造方面是有前途的,诸如包括迷宫状内部结构的轻量化设计或冷却部件。此外,增材制造因其短链工艺步骤而突出,因为制造步骤可以直接基于对应的cad/cam和/或设计数据来实现。
在增材制造的背景下,需要解决的问题或者待完成的任务是,找到一种可重复的、可行的且适当的制造路线,同时与纤维增强陶瓷复合材料或陶瓷基复合材料(cmc)的维护、修复和大修应用相结合。
诸如sic-sic的cmc或尤其是al2o3基质或不同材料组合中的al2o3纤维的氧化物-氧化物材料体系是用于生产耐损伤短且长纤维增强部件的有前途的候选者,耐损伤短且长纤维增强部件例如用于燃气轮机中热气路径的恶劣环境。在这种情况下,需要克服的缺点尤其在于,两种同类材料(即,一侧上的基质粉末和另一侧上的固体纤维)的熔点大致相同。
当上述缺点可以被解决时,预期增材制造路线将为利用增材制造的设计自由度(例如利用增材制造诸如专为材料陶瓷材料设计的冷却通道的内部中空结构的设计自由度)提供机会,以便通过提高涡轮入口温度和/或降低冷却空气消耗来提高燃气轮机效率。
到目前为止,除了用于生产纤维/织物、并且通常包括随后的包括后渗透的层压或烧结步骤的“常规”方法之外,还没有可重复且可靠的制造路线。
技术实现要素:
通过本发明,为基于诸如slm、lmd或ebm或其组合等已知增材制造路线的cmc的(例如,基于粉末床的)增材制造提供了一种途径。
本发明的一个目的在于,提供有助于克服上述问题或缺点的手段。
上述目的通过独立权利要求的技术方案实现。优选实施例是从属权利要求的技术方案。
本发明的一个方面涉及一种增材制造陶瓷基复合材料或部件的方法,包括提供用于陶瓷基复合材料的陶瓷纤维和粉末状(并且优选陶瓷)基材。
该方法还包括根据部件的期望和预定几何结构,通过用能量束辐照由基材形成的粉末床,来逐层堆积或制造用于陶瓷基复合材料的陶瓷基材料(基材),其中基材被重熔、固化并由此以粘着方式结合至陶瓷纤维。这通过下述方式实现:优选局部地选择能量束的(辐照)参数,使得在陶瓷纤维和粉末床的接触区域中,陶瓷纤维仅被部分地重熔,并且优选不完全重熔。通过单独的部分重熔程序,有利地实现了陶瓷纤维不被破坏,且其材料仍然是完整的,但同时以粘着方式结合至固化的基质材料上。换言之,本发明是关于辐照过程的控制,使得陶瓷纤维确实可以被以粘着方式结合而不会丧失其用于最终cmc的优异性能。
对于燃气轮机技术,如上所述,当然非常希望增材制造能力可以转移至具有已知高温耐受性的陶瓷。
在一个实施例中,在辐照或堆积之前,纤维被预先定位或预先安置在用于增材制造的堆积空间中。该预定位放置例如可以通过技术人员已知的任意手段实现。
在一个实施例中,在通过可移动设备或装置进行增材制造期间,纤维被引入或放置在粉末床中,尤其是被引入或放置在粉末床的预先沉积层中。该实施例是优选的,因为这样可以允许在增材制造期间利用更大的设计自由度。优选地,该装置可以独立于诸如辐照或扫描设备的任意其它设备硬件移动。优选地,该装置还应以非常紧凑的方式实现,例如具有仅为几毫米或几厘米的外延伸,从而使任意放置均允许在粉末状基材层中的原位纤维放置连同辐照固化步骤方面具有较大设计自由度。
本发明的另一方面涉及如上所述的用于增材制造的装置,其中该装置被配置为用于将纤维放入粉末床中,并且其中装置还可以独立于诸如辐照装置的任意其它设备硬件移动。
在一个实施例中,纤维的厚度、或者纤维的直径(在单丝纤维的情况下),总计大于用于逐层堆积的基材的层厚度的一半。借助于该实施例,可以有利地选择纤维在辐照步骤期间未完全重熔的辐照参数。另一方面,如果纤维厚度或直径被选择为甚至比层厚度更小,则纤维也可能在辐照期间熔化。
在一个实施例中,纤维具有单丝或单丝状形状。这是优选实施例。
在一个实施例中,纤维具有层状或片状形状。
在一个实施例中,基材的颗粒的直径(例如平均直径)小于纤维的厚度或直径。
在一个实施例中,基材的颗粒的平均直径比纤维的厚度至少小两倍。
在一个实施例中,例如基材的颗粒的平均直径比纤维的厚度或直径小5至10倍。
借助于这些实施例,可以实现(即使纤维的材料和基材材料(基质材料)相似或相同)纤维的材料不会在辐照期间受到损害,而由于尺寸依赖性或熔点降低,仅颗粒可以被重熔。众所周知,材料的空间尺寸在限定阈值以下的减小可以降低其熔点。
在一个实施例中,在从粉末床区域(例如粉末床平面图中观察到的层区域)到接触区域中的过渡处,用能量束的辐照的模式被改变,使得纤维的材料仅被部分地重熔,而不是像通常那样在基材的固化中被完全重熔。
在一个实施例中,在粉末床区域中,用能量束的辐照以连续波模式实现。
在一个实施例中,在接触区域中,用能量束的辐照以脉冲模式实现,例如定制脉冲模式。
在一个实施例中,用能量束的辐照被实现,其中从功率、功率密度、频率、脉冲持续时间、重复率和脉冲形状中选择的至少一个辐照参数被调节,尤其是被调节为适用于根据本发明的期望或预定热输入。例如,功率密度可以根据选择用于接触区域的辐照的脉冲形状(例如从正弦波、三角形、正方形或其它形状中选择的脉冲形状)而被降低。
在一个实施例中,能量束的功率或功率密度在从粉末床区域到接触区域的过渡处被降低,优选使得(由于该降低)与用于陶瓷基质的基材相比,纤维被不完全重熔。
在一个实施例中,纤维具有单丝形状,并且纤维的直径在逐层堆积之前例如通过氧化涂层而被增大,并且其中相应的涂层材料在辐照期间被重熔、蒸发和/或牺牲。
在一个实施例中,纤维和基材由诸如c/c、sic/sic、al2o3/al2o3、zro2/zro2或莫来石/莫来石材料体系的相似的陶瓷材料制成或包括相似的陶瓷材料。
在一个实施例中,纤维和基材由诸如c/sic、al2o3/zro2材料体系的不同的陶瓷材料制成或包括不同的陶瓷材料。
在一个实施例中,粉末床例如借助于诸如co2或nd:yag激光器的激光器、电子束或感应加热装置而被预热至1500℃以上、尤其是2000℃以上的温度,以避免断裂和/或应力。
在一个实施例中,陶瓷基复合材料在逐层堆积之后在结构(热)方面不经过诸如通过热等静压和/或后渗透处理的后处理。
本发明的另一方面涉及一种由上述方法制造或者能够由上述方法制造的部件。
在一个实施例中,部件或用于该部件的材料还包括95%或更高的密度、例如98%或更高的密度。换言之,部件或其材料优选包括少于5%、优选少于2%的多个。上述百分比可以优选与体积百分比相关。
在一个实施例中,部件包括弯曲强度大于800mpa、优选大于1000mpa或甚至大于1100mpa的材料。
在一个实施例中,该材料包括平均表面粗糙度小于100μm、优选小于70μm的材料。替代地,该粗糙度可以涉及粗糙度的深度或粗糙度深度、或平均或平方粗糙度或平均表面光洁度。
本文描述的与所描述方法和/或所描述材料或部件相关的方面、实施例或优点也可以与所描述装置相关,反之亦然。
附图说明
通过以下结合附图对示例性实施例的描述,其它特征、便利性和有利改进将变得显而易见。
图1示出部件在其增材制造期间的示意性截面图。
图2示出通过所描述的方法制造的陶瓷基复合材料的示意性侧视截面图。
图3示出在制造硬件的替代实施例中,根据图2所示部件的示意性侧视截面图。
图4示出被布置在粉末状基材床中的陶瓷纤维示意图。
图5示出图4所示纤维的替代实施例中的分层纤维和对应的涂层。
图6示出被布置在粉末床的层中的纤维截面,其中纤维被辐照装置或系统20辐照。
相似元件、同类元件和相同作用的元件在附图中可以被提供有相同的附图标记。
具体实施方式
图1示意性地示出用于增材制造部件10的粉末床过程。该过程可以在增材制造设备100中实现。例如,该过程还可以涉及选择性激光熔化、选择性激光烧结和/或电子束熔化。
部件优选为涡轮机部件,尤其是应用在燃气轮机的流路硬件中。
在slm过程中,众所周知的是,部件10在基板或构建平台1的顶部上制造。特别地,金属部件的待被制造的第一层被以粘着方式结合至基板1或以冶金方式粘合至基板1。部件10可以以部分被制造的状态示出。部件10还由粉末状基材2形成的粉末床逐层构建。在通过刮刀或任意其它沉积设备(未明确指出)供给基材2的层之后,各个层优选由辐照设备20提供的能量束辐照。能量束6可以是激光束。替代地,能量束可以是电子束,并且相应地,辐照设备是电子束源。
由于辐照,此类沉积层(参见附图标记4)的基材2被熔化并随后固化。层厚度可以通过(例如自动)在粉末床上方移动并去除多余材料(未明确指出)的刮刀确定。典型层厚度总计为20μm或40μm。在制造期间,该激光束或能量束6扫描粉末床的表面,并且使尤其在对应于部件10的期望几何结构的选定区域上的粉末熔化。该几何结构可以由对应的cam(和/或cad)文件预先确定。
根据粉末床过程,部件10沿构建方向z(竖直方向)在构建空间bs中被(逐层)堆积。
选择性激光熔化的过程主要用于金属部件的制造。然而,已经证明基于粉末床的陶瓷材料的选择性熔化也是可能的,虽然最终材料的孔隙率相对较低。
如上文所述,本发明专注于诸如用于燃气轮机部件的纤维增强材料的陶瓷材料和/或陶瓷基复合材料(cmc)的增材制造。
如图1所示,在部件10的单个层(参见附图标记4)中,示出陶瓷纤维3。根据该实施例,基材2优选是用于最终cmc部件的陶瓷(基质)基材。
根据本发明,陶瓷纤维3优选被放置或被布置在最终部件中,使得纤维的纵向轴线至少部分地或成比例地沿预期最高机械负荷的方向布置,最高机械负荷的方向诸如例如在涡轮运行过程中(例如在转子部件的情况下)平行于施加在部件上的离心力的施力方向或沿施加在部件上的离心力的施力方向,。因此,纤维的该纵向轴线被优选地布置为平行于xy平面(参见图4至图6),即,平行于粉末床表面。
这里需要注意的是,图中忽略了基材熔化/烧结导致的材料收缩。
基质5(参见图2和图3)的材料可以代表固化基材,对于基质5的材料和纤维3,下述材料体系正将其考虑在内,其中x/y的命名表示x-纤维增强材料y的基质。
因此,对于相似的材料体系,例如下述材料可以被应用:c/c、sic/sic、al2o3/al2o3、zro2/zro2或莫来石/莫来石。
对于不同材料,例如可以应用c/sic、al2o3/zro2体系。
材料清单并且排他性的,并且根据本发明可以考虑本领域技术人员已知的任意组合。
与图1相比,图2和图3更详细地描述了所提出的方法。
与图1相反,图2更详细地说明了增材制造本文所述的cmc的方法。特别地,图中示出纤维如何被引入粉末床中并最终与基质5结合或结合至基质5。
上述方法包括提供如前所述的陶瓷纤维3和粉末状基材2,其中在增材过程中该纤维3和基材2应被结合至cmc,然而,其中纤维3并不一定通过增材手段制造。
该方法还包括根据部件10的预定和期望几何结构,通过用能量束6辐照由基材2形成的粉末床,来逐层堆积用于cmc的陶瓷基材料5,其中基材2被重熔、固化、并以粘着方式结合至陶瓷纤维3,其中能量束6的参数被局部地选择,使得在陶瓷纤维3和粉末床的接触区域cr中,陶瓷纤维3仅被部分地重熔。
到目前为止,似乎不可能用增材方式制造用于cmc的陶瓷纤维,至少所制造的陶瓷纤维无法满足燃气轮机应用所要求的机械性能。然而,在本发明的范围内,纤维3也可以通过增材手段制造,并且同时结合至基质5。
该方法利用适用于将纤维放入或引入粉末床中以用于制造cmc部件10的装置或设备30。特别地,用于增材制造的该装置30可以独立于其它设备配件(诸如辐照装置20)移动。优选地,如图1和图2所示的辐照装置20被定位为沿堆积方向z与制造表面或粉末床表面相距距离a1,如图2所示。例如,距离a1可以达到200mm至300mm。如图2所示,装置30被示出为相当细长且薄的工具,其中用于cmc的纤维3可以被引导和/或传送至粉末床中。与此同时,期望装置30不干扰辐照设备20或对应的能量束6。
优选地,装置30可以独立于构建平台1以及独立于上述辐照设备或装置20和能量束6而被控制和移动。能量束6例如可以被引导从而由装置30跟踪,或反之亦然。这允许有利地放置纤维30(优选在待制造的每个层中)并将纤维3在基质材料5中可靠地“一体形成”(到基质材料5中)以形成cmc。
借助于图2中指向左侧的箭头x来表示辐照设备20和/或仅相应的能量束6可以从右向左被引导以用于辐照,并且因此,根据对应的矢量或轨迹固化粉末床。在沿x方向上移动期间,装置30或其放置尖端(未明确示出)例如可以被移动或被跟踪,以将纤维3放置在粉末床2中。
装置30可以是丝供给装置或包括丝供给装置,利用丝供给装置将纤维3插入粉末床2中。
装置30还可以是喷嘴或包括喷嘴,相应地,纤维3利用喷嘴而被插入或放置。
与图2所示不同,装置30可以被布置为靠近辐照设备20或甚至关于辐照设备同轴。
更进一步地,装置30可以被一体形成在如上所述的刮刀或涂覆装置中。根据该实施例,装置30可以由多个供给器或织造器组成或者包括多个供给器或诸如织造系统的织造器,利用该供给器或织造器,纤维可以被构成在粉末床2中和/或被放置在粉末床2中。
此外,图2示出整个增材制造设备100可以配备有加热装置40,加热装置40在图中仅被示意性地示出。
利用这种加热“工具”,可以将陶瓷粉末床预热至例如1500℃以上的温度。优选地,该装置能够将粉末状基材2加热或预热至2000℃以上的温度。这在用于防止最终cmc中出现断裂和/或应力上是特别期望和/或有利的。
例如,加热装置40可以由能量束或1μm或10μm波长的co2激光器构成。该激光器可以具有较高功率,并且可能包括散焦或加宽的激光光斑,以便均匀地加热粉末床的基材。上述加热可以涉及预热,即,在由能量束6的实际辐照之前、或者在与cmc的增材堆积一致的加热过程之前被加热。替代地,加热装置40可以由诸如nd:yag激光器的任意其它类型的有利激光器或者甚至由感应加热装置构成。当应用感应加热装置以用于预热时,可能需要在整个粉末床周围提供线圈布置。
与图2相比,图3示出辐照设备20的替代实施例。不同的是,辐照设备可以由激光棒或激光二极管提供或构成,以用于辐照和固化基材2。该激光棒仅示意性地示出。激光棒20上方的双箭头可以指示相应的棒沿x方向和y方向(平行于粉末床表面的横向方向)在粉末床上方有利地移动。与图2所示的辐照装置相比,棒装置20优选在粉末床上方以非常近的距离a2被引导或者可以以该非常近的距离a2被引导,距离a2明显小于前述的距离a1。距离a2可以仅为1mm或3mm。如上所述,即使这样小的距离也可以通过被相应地配置的放置装置30而允许纤维3可靠且有利地放置。
如本文所述的纤维3可以是单丝纤维或任意其它纤维,例如层状纤维。
作为如图1和图2所示放置装置30的替代,本发明还可以通过将纤维3预先定位或预先安置在构建空间bs中来实现,部件10也在构建空间bs中被制造。例如,纤维3可以以下述方式而被夹持或被横跨在堆积空间bs中:纤维3可以在之后而被适当地布置在固化的基质层中。
图4示出单丝状纤维3(或者在这种情况下可以是纤维丝)的横截面,其被布置在如上所述的基材2的粉末床中。优选地,仅示出单个层4的厚度d2。纤维3的厚度或直径d1约为层厚度d2的一半。由于slm工艺中的典型层厚度为20μm至40μm,因此,纤维的直径或厚度d1例如可以为10μm至20μm、诸如13μm。纤维的直径d1也可以达到100μm或甚至100μm以上。
特别地,这种大小关系可以是有利的,因为如果部件10由上述实施例中的多个层制造而成,这样可以允许借助于纤维来有利地加强或增强cmc。同时,可以(借助于辐照参数的变化)实现纤维3在辐照期间暴露于能量束6时不会被完全重熔或损坏。
厚度d1也可以小于厚度d2的一半。然而,优选地,厚度或直径d1大于厚度d2的一半。
单基材颗粒也在图4中示意性地示出。这些颗粒在粉末床层中包围纤维3。与图4所示不同,纤维也可以被布置在层4中或在层4中居中。基材2的颗粒的直径优选地比纤维3的厚度d1小2至10倍、更优选小5至10倍。通过这种手段,可以实现在根据正常辐照模式用激光束6辐照期间,颗粒在温度比纤维3低的情况下无论如何都会熔化。这可能是因为与纤维3相比,即使是在纤维和基材的材料相同的情况下,“尺寸效应”导致粉末颗粒的熔点降低。
此外,如图4所示,纤维3用涂层材料7的涂层涂覆(参见纤维周围的虚线)。该涂层可以是任意陶瓷或粘合剂材料,借助于该材料可以最终实现纤维与基质之间的粘着方式结合。优选地,涂层可以是氧化涂层。此外,优选地,涂层在用激光束辐照期间被重熔。通过这种方式,可以促进上述结合。附加地或替代地,涂层7可以是在辐照期间被牺牲或蒸发的任意材料、或者可以被牺牲或蒸发的任意材料。
图5以横截面示出纤维3的替代实施例,纤维3尤其是具有椭圆形或逐层形状的纤维。当纤维被以任意方式预期预放置在构建空间中时,这种纤维实施例是特别优选的,因为这种纤维在辐照期间很难(作为整体)以粘着方式结合至基质材料。
图6还示出通过增材手段将所描述的纤维粘以粘着方式结合至上述基质5以原位形成cmc的过程,这一过程已经借助于图2和图3而被部分地描述。
与图4类似,图6示出被布置在基材2的粉末床中的纤维的横截面。优选地,仅代表性地示出单个层4。纤维3大致被布置在层的中间。
辐照模式可以如下所述:
能量束6例如可以横向地、以在粉末床区域(即基材2没有布置纤维的层中)上方与粉末床平行(例如沿x或y方向(参见图6上方的箭头))地朝向接触区域cr被引导。在接触区域cr中(例如,从粉末床之上的平面图中观察)被布置有相应的纤维3。图6中的平行的竖直虚线限定了所描述接触区域cr的示例性边界。因此,如图所示,该接触区域cr可以偏离纤维3的实际物理尺寸。
例如,在从粉末床区域pr(即在粉末床上的平面图中观察到的层区域)到接触区域cr中的过渡处或者从该过渡开始,辐照模式可以被改变,使得例如当纤维被能量束完全熔化时,纤维的机械性能不会被热冲击破坏。
有许多方法可以促进如上所述的辐照模式的切换。例如,如果纤维在激光束经过时容易熔化,最简单的方法可以是降低激光功率。例如,如果基材颗粒和纤维的熔点相同,则辐照功率的这种降低可能是有利的。
优选地,当辐照区域从粉末床区域pr前进到接触区域cr时,辐照模式可以从连续辐照切换为脉冲辐照。这在图6中表示为在粉末床区域pr中示出的激光功率p1大于激光功率p2。
因此,在粉末床区域pr中,辐照有利地以连续波模式实现,并且在接触区域cr中,辐照有利地以诸如定制脉冲模式的脉冲模式实现,其中例如,从功率、功率密度、频率、脉冲持续时间、重复率和脉冲形状中选择的辐照参数根据期望熔化结果(即,情况)而被调节,其中纤维3被有利地粘合至固化粉末或基材2,其中纤维3(仅)被部分地重熔。换言之,如上所述,在布置有纤维3的接触区域中,能量束的能量、功率或功率密度被非常精确地定量馈送或装载、有利地减少(与粉末床区域pr中的辐照相比),以便允许纤维3的有利粘合或粘结。
根据本发明,规定易于制造或者如此制造的陶瓷基复合材料例如在逐层堆积或制造期间或之后不进行诸如通过热等静压和/或后渗透步骤的结构或热方面的后处理。因此,可以显著且有利地减少总制造时间。
当然,连同所提出的方法一起,易于制造的部件可以具有革命性的或新颖的机械性能或热机械性能。
例如,部件10可以(通过使用上述方法制造)被赋予98%或甚至更高的相对密度。换言之,该部件的材料可以被容易地制造包括小于5%、优选小于2%的孔隙率。
而且,该材料可以被制造为具有大于1000兆帕(mpa)、优选大于1100mpa的弯曲强度。
更进一步地,该材料可以被制造为其内部以及外部表面的平均表面粗糙度小于100μm、优选小于80μm或甚至更小、例如70μm或更小。
表面粗糙度高当然构成了一大缺点,尤其是涉及复杂矿石的内表面至少部分中空的部件时。这是因为正如现有技术中的选择性激光熔化过程那样,内部通路的表面通常无法进行后处理。因此,一种固有地提供具有给定范围内的优选表面粗糙度的陶瓷基复合材料的方法同时还使该材料具有非常优越的振荡性流体特性。当部件遍布冷却通道等时(如涡轮叶片的情况下),上述方面尤其重要。
实际上,优选纤维3首先在堆积中被定向(或反之亦然),从而根据期望机械负荷或热机械负荷优化最终部件,即,部件例如可以吸收或抵抗额外高应力。换言之,纤维可以(在每个层中)相对于基质或基材布置,从而针对最终应用实现部件的最优机械阻率。例如,在涡轮动叶或静叶部件的情况下,纤维可以优选沿叶片的纵向布置。
本发明的保护范围不限于上文给出的示例。本发明体现在每个新颖特性和特性的每个组合中,尤其包括权利要求中陈述的任意特征的每种组合,即使该特征或特征的组合在权利要求或在示例中没有明确说明。