一种低电场介电可调铌掺杂钡铁氧体材料及制备方法与流程

文档序号:17446589发布日期:2019-04-17 05:44阅读:261来源:国知局
一种低电场介电可调铌掺杂钡铁氧体材料及制备方法与流程

本发明涉及一种低电场介电可调铌掺杂钡铁氧体材料及制备方法,属于介电可调及高介、高磁多功能复合单相陶瓷领域。



背景技术:

介电可调材料的介电常数随着外电场的变化发生非线性的变化,也即通过施加直流电场可调节这种材料的介电常数的大小。由于介电可调材料在介质移相器、可变电容器、参量器件等可调器件领域有着广泛的应用,得到研究者的广泛关注。

很多材料都有介电可调性能,包括铁电陶瓷钛酸钡和它的固溶体,铁电体锆钛酸铅pb(zr,ti)o3(pzt),酒石酸铊锂,铅基钙钛矿型弛豫型铁电体(pb,sr)tio3(pst),pb(mg,nb)o3-pbtio3(pmnt)等等。这些材料已经被应用于制备介电可调器件。众所周知,上述材料大多为铁电体,其铁电性与晶体结构密切相关,自发极化来源于晶格中正负离子的位移。显然,为了通过外电场改变这种极化方向以改变对外表现出的介电常数,就必须改变离子位移的方向,也即涉及离子位移以及晶格畸变,这通常需要较高的能量。因此,利用这种材料制备的介质移相器需要10~100kv/cm高的直流电场才能实现有效的相位移动,这明显限制了其在移相器等介电可调器件,特别限制了在无法提高介电调制驱动电压的体系中得到广泛应用。

六角m型钡铁氧体具有优异的磁性能,因其在电子信息材料领域具有潜在的应用价值,得到了研究者的广泛关注。杜丕一等研究者已经发现,通过高价离子来取代钡铁氧体晶格中的fe3+,为保持电中性,会有部分fe3+受这样的掺杂作用而转变为fe2+,也即形成由掺杂所引入的fe2+,而这种fe2+存在于晶格内,所以这种fe2+与周围的fe3+之间的电子跳跃会使得晶粒和晶界具有非常不同的电导率,因而体系内形成电导不均匀性,进而贡献了高介电常数;更进一步,在这种fe2+和fe3+之间的相互作用可控制形成一种束缚态的离子对,进而形成缺陷偶极子,因而表现出对介电常数的偶极子贡献特征。也即通过掺杂不仅可控制体系内产生非均匀电导,还可得到缺陷偶极子响应所贡献的高介电常数。相关研究发表在sc.rep.5(2015)9498和cn103274677a上。实际上,控制体系内形成大量的与掺杂相关的fe2+进而形成大量缺陷偶极子,则可在非均匀电导的基础上叠加缺陷偶极子的响应,有望得到宽频下的巨介电响应。也即控制体系内由掺杂引入的fe2+的产生量处于很高的水平,理论上形成的缺陷偶极子的数量也应很多,是获得宽频高介电常数的关键。当然,随着掺杂量的增大,体系内的fe2+的并非可以无限形成的。这是因为体系内fe2+的形成受到电荷平衡和晶格产生畸变的联合控制。实际上,根据缺陷反应及电荷平衡的关系,nb5+掺杂在体系内引入了正电荷,使得取代位置附近的fe3+转变为fe2+,这种fe2+浓度随着掺杂量的增加而增大。但是体系内的fe2+并非可以无限增大的。这是因为,nb5+的离子半径为fe3+的离子半径为而fe2+的离子半径为也即无论是nb5+取代铁氧体晶格中的fe3+或者由掺杂后电荷平衡的需要引起的fe2+的产生都会造成晶格膨胀,并且随着掺杂量的增加,晶格膨胀程度逐渐增大,显然这是不利于晶格稳定的。所以,掺杂效应受电荷平衡控制的同时受到晶格畸变的控制,随着晶格畸变程度的增大。当达到以形成fe2+为电价平衡机制的掺杂极限时,掺杂引入的正电荷由原来的通过形成fe2+来实现平衡,转变为通过消耗体系内的本征氧空位的方式来进行平衡,这时在满足电荷平衡的同时还可减弱掺杂引起的晶格膨胀,使掺杂得以稳定进行。显然,fe2+浓度在掺杂浓度达到某一极限时,由于其电荷平衡机制的改变而会开始下降。

实际上,根据热力学原理,本征氧空位的消耗需要克服一定的势垒,因此如果降低体系内本征氧空位的浓度,那么掺杂nb5+由产生fe2+到消耗本征氧空位转变的过程将会变得比较困难,或者说可以在更高的nb5+掺杂量下,其电荷平衡机制才由形成fe2+转变为消耗氧空位。这说明,通过这种方式可以维持在较高掺杂量下体系内仍然产生fe2+,也即体系内能形成更多的fe2+,形成的缺陷偶极子也就更多。可见,控制体系内具有高的fe2+浓度是得到高介电常数的关键。

进一步,在外加直流电场的作用下,这种缺陷偶极子受到力矩的作用会向着外电场的方向进行偏转。实际上,这种偏转是通过缺陷偶极子的fe2+中的电子跃迁来实现的。在外加电场的作用下,构成偶极子的fe2+中的电子受到电场力的作用会挣脱原来位置的束缚,向更加偏向于外电场的方向进行跃迁转移,并被更加偏向于外电场方向的fe3+所俘获,使该fe3+转变为fe2+,形成更加偏向于外电场方向的新缺陷偶极子,原来的fe2+转变为fe3+,原先缺陷偶极子随之消失,这样就完成了缺陷偶极子在外加电场下的转向。根据偶极子方位角决定介电常数的模型(j.mater.chem.,2011,21,10808),可以知道,这种偶极子的转向同时会使得介电常数减小,也就使得体系表现出了介电可调特性。进一步地,根据“软模理论”,当体系内的fe2+浓度增大时,会提高晶格振动模的频率,使得晶格振动的能量升高,造成软模硬化的现象。随着晶格振动能量的升高,电子可以和晶格振动之间发生动量和能量的交换,也即电子通过电子-晶格之间的相互作用使得自身的能量升高。高能量的电子更容易挣脱原来位置的束缚以跃迁至更加偏向于外电场方向的fe3+。而考虑到作为一个系统,电子的跃迁满足一定的分布,所谓更容易跃迁也即指的是在更小的电场力下将有更多的电子完成跃迁过程,完成转向的偶极子的数目增多,使得介电常数降得更低,降低调制电场,并增强体系的介电可调性。

更进一步地,这里的缺陷偶极子的转向是通过电子的跃迁转移来实现的。而常规的pzt,pst,pmnt等介电可调体系的介电可调性来源于固有偶极子的转向过程,而这一过程必然涉及晶格畸变,通常需要较高的能量,因此需要施加极高的外电场才有可能改变固有偶极子的状态。显然这种基于电子跃迁转移的缺陷偶极子的转向并不涉及晶格畸变,较低的能量就可完成电子跃迁过程,因此施加极小的直流电场就有可能使得介电常数减小,实现极低调制电场下的介电可调。

经过上述对影响介电性能及低电场介电可调性的因素的分析来看,控制体系内形成大量的由掺杂引入的fe2+进而形成大量跃迁偶极子是实现低电场介电可调性的关键。这不仅可以得到宽频介电响应,更为重要的是可以使得偶极子发生高效偏转以实现极低调制电场下的介电可调性。根据前述热力学原理,若控制体系内的本征氧空位的浓度很低时,以消耗体系内的本征氧空位为电价平衡的机制过程就越难进行,也即掺杂在体系内引入的正电荷更多的以产生fe2+的方式来实现,因此这种fe2+的浓度会更高,有利于产生更多的缺陷偶极子对。

本发明的铌掺杂钡铁氧体,采用特定的制备工艺,通过降低本征氧空位形成的基本思路,在高磁性能的基础上,控制体系内形成高浓度的fe2+进而形成大量缺陷偶极子,形成高介、高磁多功能复合铌掺杂钡铁氧体陶瓷,这种陶瓷还具有极低电场下的介电可调特性。



技术实现要素:

本发明的目的在于针对现有广泛应用的介电可调材料调制电场高的问题,提供一种在低调制电场下表现出介电可调性的铌掺杂钡铁氧体陶瓷材料及制备方法,这种材料同时还具有高介、高磁共存的特性。

本发明的铌掺杂钡铁氧体陶瓷材料,其化学式为bafe12-xnbxo19,其中x=0.1~0.2。所述的铌掺杂钡铁氧体陶瓷为单相多晶材料,nb5+取代bafe12o19晶胞中的部分fe3+,形成对应的fe2+,使钡铁氧体中通过fe3+和这种fe2+共存形成偶极子对。

本发明的极低调制电场介电可调性的铌掺杂钡铁氧体陶瓷材料的制备方法,具体如下:

(1)将硝酸钡、硝酸铁、草酸铌和柠檬酸按照摩尔比1:11.8~11.9:0.1~0.2:19.1~19.2混合,加入去离子水进行搅拌直至溶质完全溶解,得到溶液a。

(2)调节溶液a的ph至7,得到溶液b。随后将溶液b在80~90℃的水浴中加热搅拌4~6h,使溶剂挥发得到溶胶前驱体;随后将得到的溶胶前驱体在120℃下干燥5~6天,得到蓬松的黑色凝胶。

(3)将黑色凝胶在研钵中进行研磨得到粉体,并将粉体进行预烧,首先以5~8℃/min的速度升温至450℃,并在此温度下保温2~3h,使得黑色凝胶完全燃烧分解;随后再以10℃/min的升温速率升温至800℃,并在此温度下保温3h;之后随炉冷却得到铌掺杂钡铁氧体先驱体粉体。

(4)将预烧得到的铌掺杂钡铁氧体先驱体粉体与质量分数为5~6%的pva水溶液进行混合,并在研钵中进行研磨造粒;随后,将其在9~10mpa的压力下成型得到坯体。

(5)将坯体置于高温炉中依次在空气气氛和高氧气氛下进行烧结,具体如下:烧结过程中首先在空气气氛下以4~5℃/min的速度缓慢升温至400℃,并在此温度下保温30min,进行充分的排胶;之后改为通入高氧气氛,再以5℃/min的速度升温至1200℃~1250℃,保温3~3.5h;之后随炉降温至700℃以下时将高氧气氛改为空气气氛,之后继续降温至室温,最终获得铌掺杂钡铁氧体单相陶瓷材料。

上述技术方案中,进一步的,权利要求(5)所述的高氧气氛指含有氧气摩尔百分比为30~36%的o2与n2混合气氛。

进一步的,烧结时流入高温炉中的高含氧气氛采用以下方式实现:同时通入氧气和空气,并控制氧气的流量3~5.5cc/min,空气的进入量为24cc/min,空气中含有的除氧气、氮气外的其他气体含量极少,可以忽略不计。

与现有技术相比,本发明具有的有益效果是:本发明通过控制nb5+掺杂含量以及氧空位浓度,可在体系内形成大量由掺杂引入的fe2+进而形成缺陷偶极子,这种缺陷偶极子和非均匀电导的叠加所用贡献了宽频高介电常数,在10khz范围内,介电常数达到10k以上;另一方面,在外加电场的作用下,这种缺陷偶极子可通过电子跃迁的方式向偏向于外电场的方向进行偏转,这种偏转可使得介电常数下降以贡献介电可调性,掺杂钡铁氧体介电调谐率在15~50%;进一步,由于这种偶极子的转向是通过电子的跃迁转移来完成的,并且这一过程不涉及晶格畸变,因此在极低的电场作用下就可使得偶极子发生转向,使掺杂钡铁氧体介电可调所需调制电场仅为<40v/cm。本发明工艺过程简单,可操作性强,可精确控制掺杂量,可在极低的电场下得到介电可调性,这种极低调制电场介电可调的铌掺杂铁氧体材料解决了广泛应用的pzt,pst介电可调体系的调制电场高的问题,有望实现在新型高性能低耗可调器件领域的广泛应用。

附图说明

图1为铌掺杂含量为x=0.1的钡铁氧体陶瓷的介电频谱;

图2为铌掺杂含量为x=0.1的钡铁氧体陶瓷的介电损耗频谱;

图3为铌掺杂含量为x=0.1的钡铁氧体陶瓷的介电常数偏压曲线;

图4为铌掺杂含量为x=0.2的钡铁氧体陶瓷的介电频谱;

图5为铌掺杂含量为x=0.2的钡铁氧体陶瓷的介电损耗频谱;

图6为铌掺杂含量为x=0.2的钡铁氧体陶瓷的介电常数偏压曲线;

具体实施方式

下面对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明的实施例,本领域普通技术人员在没有做出任何创造性劳动前提下通过简单改变烧结温度、时间和气氛等,以及基于相同机理简单改变组成等所获得的所有其他实施例,都属于本发明保护的范围。

下面根据具体的实施例详细的描述本发明。

本发明的铌掺杂钡铁氧体单相陶瓷,其化学式为bafe12-xnbxo19,其中x=0.1~0.2,所述的铌掺杂钡铁氧体陶瓷为单相多晶材料,钡铁氧体中同时存在由掺杂引入的fe2+和fe3+,以及相应的fe2+和fe3+缺陷偶极子对。

实例1

(1)将硝酸钡、硝酸铁、草酸铌和柠檬酸按照摩尔比1:11.9:0.1:19.1混合,加入去离子水进行搅拌直至溶质完全溶解,得到溶液a。

(2)调节溶液a的ph至7,得到溶液b。随后将溶液b在90℃的水浴中加热搅拌4h,使溶剂挥发得到溶胶前驱体;随后将得到溶胶前驱体在120℃下干燥6天,得到蓬松的黑色凝胶。

(3)将黑色凝胶在研钵中进行研磨得到粉体,并将粉体进行预烧,首先以8℃/min的速度升温至450℃,并在此温度下保温2h,使得黑色凝胶完全燃烧分解;随后再以10℃/min的升温速率升温至800℃,并在此温度下保温3h;之后随炉冷却得到铌掺杂钡铁氧体先驱体粉体。

(4)将预烧得到的铌掺杂钡铁氧体粉体与质量分数为6%的pva水溶液进行混合,并在研钵中进行研磨造粒;随后,将其在10mpa的压力下成型得到坯体。

(5)将坯体置于高温炉中在空气和高含氧气氛下烧结,高氧气氛是指控制气氛o2/n2摩尔比在34/66,具体烧结时通过控制进入高温炉中的氧气流量为4.6cc/min,空气的进入量为24cc/min;

烧结过程中首先在空气气氛下以5℃/min的速度缓慢升温至400℃,并在此温度下保温30min,进行充分的排胶;之后改为通入高氧气氛,再以5℃/min的速度升温至1200℃,保温3h;之后随炉降温至700℃以下时将高氧气氛改为通入空气气氛,之后继续降温至室温,最终获得铌掺杂钡铁氧体单相陶瓷材料。

本例制得的bafe11.9nb0.1o19陶瓷为单相多晶材料,体系内同时存在由掺杂引入的fe2+和fe3+,并形成了缺陷偶极子。本例制得的铌掺杂钡铁氧体陶瓷的介电性能采用精密阻抗分析仪(agilent4294a)进行测试。测试前将本发明实例的陶瓷试样进行抛光处理,再在试样上下表面溅射银电极。

图1是实施例1获得的铌掺杂钡铁氧体陶瓷的介电频谱。可以看到,介电常数较大,在10khz时,介电常数在10k以上。图2为实施例1获得的钛掺杂钡铁氧体陶瓷的介电损耗频谱,图1中典型的介电弛豫以及图2中对应出现的损耗峰表明介电响应为偶极子弛豫型,也即体系内存在缺陷偶极子,体系内同时存在可形成偶极子的fe2+和fe3+;图3是实施例1获得的铌掺杂钡铁氧体陶瓷在10khz下的介电常数-偏压曲线。可以看出,该实施例获得的陶瓷试样的可调性非常高,在直流偏置电场为<40v/cm,测试频率为10khz的条件下,可调性接近47%。

实例2

(1)将硝酸钡、硝酸铁、草酸铌和柠檬酸按照摩尔比1:11.8:0.2:19.2混合,加入去离子水进行搅拌直至溶质完全溶解,得到溶液a。

(2)调节溶液a的ph至7,得到溶液b。随后将溶液b在85℃的水浴中加热搅拌5h,使溶剂挥发得到溶胶前驱体;随后将得到溶胶前驱体在120℃下干燥5天,得到蓬松的黑色凝胶。

(3)将黑色凝胶在研钵中进行研磨得到粉体,并将粉体进行预烧,首先以7℃/min的速度升温至450℃,并在此温度下保温3h,使得黑色凝胶完全燃烧分解;随后再以10℃/min的升温速率升温至800℃,并在此温度下保温3h;之后随炉冷却得到铌掺杂钡铁氧体先驱体粉体。

(4)将预烧得到的铌掺杂钡铁氧体粉体与质量分数为5%的pva水溶液进行混合,并在研钵中进行研磨造粒;随后,将其在9mpa的压力下成型得到坯体。

(5)将坯体置于高温炉中在空气和高含氧气氛下烧结,高氧气氛是指烧结时控制气氛o2/n2摩尔比在30/70,具体通过烧结时控制流入高温炉中气体流速为3cc/min,空气的进入量为24cc/min;

烧结过程中首先在空气气氛下以4℃/min的速度缓慢升温至400℃,并在此温度下保温30min,进行充分的排胶;之后改为通入高氧气氛,再以5℃/min的速度升温至1250℃,保温3.5h;之后随炉降温至700℃以下时将高氧气氛改为通入空气气氛,之后继续降温至室温,最终获得铌掺杂钡铁氧体单相陶瓷材料。

本例制得的bafe11.8nb0.2o19陶瓷为单相多晶材料,体系内同时存在由掺杂引入的fe2+和fe3+,并形成了缺陷偶极子。其介电性能和介电可调性能采用agilent4294a精密阻抗分析仪测试。测试前将本发明实例的陶瓷试样进行抛光处理,再在试样上下表面溅射银电极。

图4是实施例2获得的铌掺杂钡铁氧体陶瓷的介电频谱。可以看到,介电常数较大,在10khz时,介电常数基本达到90k以上。图5为实施例2获得的钛掺杂钡铁氧体陶瓷的介电损耗频谱,图5中对应出现的损耗峰并不明显,表明介电响应主要来源于非均匀电导而偶极子响应比较弱,但体系内仍然存在少量缺陷偶极子,体系内同时存在相应的fe2+和fe3+;图6是实施例2获得的铌掺杂钡铁氧体陶瓷在10khz下的介电常数-偏压曲线。可以看出,该实施例在直流偏置电场仅仅为8v/cm,测试频率为10khz的条件下,可调性达到16%。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1