微波介质陶瓷材料和介质陶瓷块的制备方法与流程

文档序号:21401979发布日期:2020-07-07 14:34阅读:252来源:国知局
微波介质陶瓷材料和介质陶瓷块的制备方法与流程

本发明涉及通信技术领域,特别是涉及一种用于5g通信技术的微波介质陶瓷材料和介质陶瓷块的制造方法。



背景技术:

微波通信技术(例如5g通信技术)的快速发展对微波器件的性能提出了更高的要求。传统的金属谐振器体积大、重量大,对微波器件的性能造成了限制。微波介质陶瓷材料通常需要具有较高的介电常数,其可以制成各种微波器件,以满足滤波单元小型化和低损耗等指标的需求。

本申请提出了一种新型的微波介质陶瓷材料的制备方法,根据该方法制备得到的微波介质陶瓷材料具有改善的微波介电性能。



技术实现要素:

本发明提供一种微波介质陶瓷材料和介质陶瓷块的制备方法,用于改善微波介质陶瓷材料的微波介电性能。

为了解决上述技术问题,本发明提供的一种技术方案为提供一种制备微波介质陶瓷材料的方法。该方法包括:提供对应碳酸钙、三氧化二钐、三氧化二铝和二氧化钛的原材料;添加有机溶剂和磨球并进行一次球磨;将所述一次球磨得到的料浆烘干,并通过煅烧得到陶瓷体;粉碎所述陶瓷体,添加有机溶剂和磨球并进行二次球磨;将所述二次球磨得到的料浆烘干;将得到的粉体与粘结剂混合成浆料进行造粒;在模具中干压成型;以及去除粘结剂并再次烧结。

为了解决上述技术问题,本发明提供的一种技术方案为提供一种制备介质陶瓷块的方法。所述制备介质陶瓷块的方法为上述制备微波介质陶瓷材料的方法,其中所述模具为与所述介质陶瓷块的形状匹配的模具。

本发明的有益效果是:根据本申请的方法制备的微波介质陶瓷材料主要由碳酸钙、三氧化二钐、三氧化二铝和二氧化钛组成,其具有低介电常数、低损耗和近零的温度系数。因此,通过实施本申请提供的微波介质陶瓷材料具有改善的微波介电性能。

附图说明

图1是制备本申请的微波介质陶瓷材料的方法的流程示意图。

图2是本申请提供的微波通信设备一实施例的结构示意图。

图3示例性地示出了本申请提供的微波介质陶瓷材料的微波介电性能的测试结果。

具体实施方式

下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。

本申请一方面提供一种微波介质陶瓷材料。该微波介质陶瓷材料包括碳酸钙、三氧化二钐、三氧化二铝和二氧化钛。即该微波介质陶瓷材料主要由上述组分组成,可以理解,该微波介质陶瓷材料还可以含有少量或微量的其他物质。

在一些实施例中,碳酸钙在其中所占的摩尔百分比为48%~62%。

在一些实施例中,三氧化二钐在其中所占的摩尔百分比为10%~24%。

在一些实施例中,三氧化二铝在其中所占的摩尔百分比为10%~24%。

在一些实施例中,二氧化钛在其中所占的摩尔百分比为4%~18%。

其中,摩尔百分比指的是物质的量的百分比。例如将1mol的物质a与4mol的物质b混合后,物质a的摩尔百分比等于1/(1+4)=20%,而物质b的摩尔百分比等于4/(1+4)=80%。

该微波介质陶瓷的化学组成可以表示为acaco3-bsm2o3-cal2o3-dtio2,其中a、b、c和d的比例为0.48~0.62:0.1~0.24:0.1~0.24:0.04~0.18。例如,若将a、b、c和d的值分别取为0.5、0.2、0.2和0.1,则该微波介质陶瓷的化学组成可表示为0.5caco3-0.2sm2o3-0.2al2o3-0.1tio2。当然,a、b、c和d的取值还可以取该范围内的其他值。通过改变该微波介质陶瓷的各化学组分之间的比例,可以对该微波介质陶瓷的微波介电性能进一步进行调整。

在一些实施例中,该微波介质陶瓷还可包括改性添加剂,即能够改善该微波介质陶瓷性能的添加剂。应当理解,该改性添加剂不一定为液态,也可以为固态等形式。具体地,该改性添加剂可以ta2o5、bi2o3或sio2中的一个或多个的组合,也就是说,该改性添加剂可只包括ta2o5、bi2o3或sio2中的一种,也可以包括其中的两种或三种。可选地,该改性添加剂的占比可以为0.01mol%~1mol%。也就是说,该改性添加剂占整个材料的摩尔数的百分比为0.01%~1%。

根据测试结果,该微波介质陶瓷的介电常数为18~22,q*f值为42000~71000ghz,温度系数为-10~+13ppm/℃。例如,采用网络分析仪(agilent5071c)在6.5ghz的测试频率下测试该微波介质陶瓷的微波介电性能,得到该微波介质陶瓷的微波介电性能为:介电常数εr=18~22,介电损耗q*f=42000~71000ghz,温度系数τf=-10~+13ppm/℃。图3示例性地示出了本申请提供的微波介质陶瓷的微波介电性能的测试结果。

本申请提供的微波介质陶瓷主要由碳酸钙、三氧化二钐、三氧化二铝和二氧化钛组成,其具有低介电常数、低损耗和近零的温度系数。因此,通过实施本申请提供的微波介质陶瓷具有改善的微波介电性能。

参阅图1,在另一方面,本申请还提供一种制备微波介质陶瓷材料的方法。该方法包括:

s101:提供对应碳酸钙、三氧化二钐、三氧化二铝和二氧化钛的原材料。

在一些实施例中,对应碳酸钙、三氧化二钐、三氧化二铝和二氧化钛的原材料可以是对应金属元素的氧化物或碳酸盐。其中,金属元素的氧化物直接与待制备的微波介质陶瓷的组分对应,而一些金属元素的碳酸盐可在受热等情况下转变为该金属元素的氧化物,因此同样可以作为原料。在另一些实施例中,该原材料还可以是对应金属元素的醇化物,在这种情况下可使用适当的化学处理方法将该金属的醇化物转化为所需要的氧化物。其具体方法为本领域内的习知技术,在此不再赘述。

本实施例中,对应碳酸钙的原材料的摩尔百分比为48%~62%,对应三氧化二钐的原材料的摩尔百分比为10%~24%,对应三氧化二铝的原材料的摩尔百分比为10%~24%,对应二氧化钛的原材料的摩尔百分比为4%~18%。应当理解,上述摩尔百分比是指除去原材料中的杂质后的摩尔百分比。

本实施例中,可按照该微波介质陶瓷材料的各组分的占比准备原材料。在已知各组分的摩尔百分比的情况下,可根据各组分的分子量、原材料的纯度等参数计算得到所需要的原材料的质量。根据各组分所需的摩尔数和分子量计算各组分所需的质量,再根据各组分所需的质量和上述原材料的纯度计算得到所需的原材料的质量。这样就可以根据计算得到的结果准备相应重量的原材料。

在一些实施例中,还可向原材料中添加改性添加剂。该改性添加剂可以为ta2o5、bi2o3或sio2中的一个或多个。改性添加剂占所有原材料的总摩尔数的比例可为0.01%~0.1%。

s102:添加有机溶剂和磨球并进行一次球磨。

在步骤s102中,可选用去离子水、酒精、丙酮等作为有机溶剂,选用锆球、玛瑙球等作为磨球,选用陶瓷、聚氨酯或尼龙等材质的磨罐,并采用行星磨、搅拌磨、滚磨、振动磨等方式进行一次球磨。其中,为了提高球磨的效果还可添加适当的分散剂或者调节料浆的ph值。

在一些实施例中,可以使用去离子水作为有机溶剂,并使用氧化锆磨球或玛瑙磨球,将称量好的原材料装入聚氨酯球磨罐内并加入有机溶剂和磨球进行混合。在步骤s102中,将准确称量的各原料倒入球磨罐内,加入去离子水和zro2磨球,使原材料、磨球和去离子水的重量比为1:2~4:1~2(例如,1:3:1.5或1:2:1.5),并球磨20~30小时(例如,24~26小时)。

s103:将一次球磨得到的料浆烘干,并通过煅烧得到陶瓷体。

将球磨后的材料混合均匀后出料并烘干,例如,可在100~120℃条件下将材料烘干。

球磨结束并烘干后得到的混合物需要在一定温度下煅烧以合成陶瓷体,其煅烧温度及保温时间取决于所对应的配方。例如,在本实施例中,可将球磨后烘干的料浆放入氧化铝坩埚内,在1100~1300℃下煅烧1~5小时(例如,2~4小时)以合成陶瓷体。

s104:粉碎陶瓷体,添加有机溶剂和磨球并进行二次球磨。

将合成好的上述陶瓷体用粉碎。本申请对粉碎的方法不作限制,例如,可以使用研体将其研碎。在一些实施例中,还可将粉碎后的陶瓷体过筛(例如,过40目筛)。

将粉碎后的陶瓷体再次倒入球磨罐中进行二次球磨,二次球磨的过程可与一次球磨的过程类似。例如,可保持料、磨球和去离子水的比例不变,并对粉碎后的陶瓷体二次球磨20~30小时(例如,24~26小时)。应当理解,二次球磨的过程也可与一次球磨不同,例如,二次球磨的时间可小于(或大于)一次球磨的时间,或者二次球磨时料、磨球和去离子水的比例可与一次球磨不同,例如可以为1:2:1.5。

s105:将二次球磨得到的料浆烘干。

类似得,可将球磨后的材料混合均匀后出料并烘干。在一些实施例中,还可将烘干后的料浆过筛(例如,过40目筛)。

s106:将得到的粉体与粘结剂混合成浆料进行造粒。

在一些实施例中,粘结剂可选用5wt%~11wt%(例如5wt%~8wt%)的聚乙烯醇溶液(即该粘结剂中聚乙烯醇的质量百分比为5%~11%)。粘结剂可占混合后的浆料的总质量的10%~15%。

在一些实施例中,还可将造粒好的粉料过筛(例如,过40目筛)。

s107:在模具中干压成型。

具体地,将造粒后的粉料放入特定的模具中,并在适当的压力下干压成型,例如,可在100~150mpa的压力下将粉料干压成型。

在此步骤中,模具的形状可根据需要选取,例如,如需要进行测试,则可选用测试专用的模具,将粉料干压成型为的圆片,以方便测试。如需要使用该微波介质陶瓷粉料来制备介质陶瓷块,则可以使用与该介质陶瓷块的形状匹配的模具来进行干压成型。应当理解,该模具的形状和尺寸可根据需要任意选取,在此不做限定。

s108:去除粘结剂并再次烧结。

可选用适当的温度进行保温处理,从而将步骤s106中引入的粘结剂去除,而后再次烧结从而最终得到所需的微波介质陶瓷。具体地,本实施例中,可将成型后的材料在550~650℃下保温1~3小时,然后在1400~1600℃(例如1450~1550℃)下烧结1~5小时(例如2~4小时)。这样,就可以去除步骤s106中添加到材料中的粘结剂,并得到所需要的形状的微波介质陶瓷材料。

在另一方面,本申请还提供一种介质陶瓷块。该介质陶瓷块可主要由前述任一实施例的微波介质陶瓷材料制成。并且,该介质陶瓷块可根据图1所示的方法制备而成,只需在步骤s107中使用与待制备的介质陶瓷块的形状匹配的模具来将粉体干压成型。应当理解,该介质陶瓷块的形状可根据具体需要而定。本实施例中的介质陶瓷块可以用来进一步加工制作微波通信设备,例如各类介质谐振器、介质滤波器、介质波导或介质天线等微波器件。此类器件可广泛应用于移动通信(例如5g通信技术)、天馈系统、雷达、卫星定位等众多领域。

以图2所示的结构为例,在图2的例子中,该微波通信设备200可以为介质谐振器,其包括陶瓷基底201和空腔202。应当理解,虽然图2中示出了两个空腔202,但是实际情况下空腔202的数量、形状和尺寸等均可根据实际需要确定,例如,可以仅包括一个空腔202。陶瓷基底201由前述任一实施例的微波介质陶瓷或介质陶瓷块制成,陶瓷基底201的外表面可根据需要涂覆由特定金属制成的涂层,在此不做限定。

以上所述仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1