石墨烯防腐防污纳米材料及其制备方法与应用与流程

文档序号:24155591发布日期:2021-03-05 11:24阅读:151来源:国知局
石墨烯防腐防污纳米材料及其制备方法与应用与流程

[0001]
本发明涉及纳米材料中防腐防污领域,涉及一种功能性石墨烯材料,具体涉及一种基于石墨烯纳米材料的防腐防污功能材料及其制备方法与应用。


背景技术:

[0002]
21世纪是海洋的世纪,海洋具有潜在的巨大经济利益和国防地位。发展海洋装备,建设海洋工程是推进和实施国家海洋规划的重要内容。其中,生物腐蚀和污损是长期处于海洋环境下服役的海洋装备和海洋工程无法回避的问题。生物腐蚀和污损的主要危害有以下两个方面:一、附着增重,海生物附着于船底会增加阻力、降低航速、增加燃油消耗,附着于工厂管道、养殖网箱会堵塞管道和网眼,附着于潜艇声呐罩会减弱信号;二、腐蚀破坏,海生物的附着可以破坏漆膜加速钢板的腐蚀,还可以分泌有机酸腐蚀钢结构和混凝土结构。因此,控制生物污损、开发海洋防污涂层对国民经济和国防安全都非常重要。传统的防污涂层主要是在舰船和海洋工程材料表面涂覆含有铅、三丁基有机锡、氧化亚铜、敌敌畏等有毒成分的防腐防污涂料,但随着《国际控制船舶有害防污体系公约》(afs公约)与《关于持久性有机污染物的斯德哥尔摩公约》(pops公约)的推行,这些防污涂料的应用受到限制即将退出防污涂料领域。因而,人们迫切需要一种环保高效防腐防污涂料来替代以上传统单一防污涂料,以满足海洋工程材料和舰船的防污需求。
[0003]
石墨烯具有优异的化学稳定性以及对水分子、氧气、空气的物理屏蔽性能,被认为是一种最理想的防污和防腐护材料。虽然近年来石墨烯材料的的防污和防腐研究取得了一定的进展,但相关理论研究和技术开发在整体上仍处于初步探索阶段,存在许多亟需改进或突破的地方。具体而言,石墨烯虽然是理想的防腐材料,在海洋设备防腐领域具有明显的优势及广泛的应用前景,然而,由于较高的比表面积和强烈的范德华作用力,石墨烯片层在聚合物基体中极易产生不可逆的团聚现象。这导致石墨烯在聚合物涂料中的性能大大降低。此外,如何使石墨烯同时起到防腐和防污的作用,仍是亟待解决的难题。


技术实现要素:

[0004]
本发明的主要目的在于提供一种石墨烯防腐防污纳米材料及其制备方法与应用,从而克服了现有技术中的不足。
[0005]
为实现上述发明目的,本发明采用了如下技术方案:
[0006]
本发明实施例提供了一种石墨烯防腐防污纳米材料,其具有式(ⅰ)所示的结构:
[0007][0008]
其中,r1,r2包括氢、取代或未取代的芳香基、取代或未取代的脂肪链基团、取代或未取代的脂肪环基团中的任意一种或两种以上的组合。
[0009]
本发明实施例还提供了一种石墨烯防腐防污纳米材料的制备方法,其包括:
[0010]
提供羧基化石墨烯;
[0011]
以胺类化合物对所述羧基化石墨烯进行酰胺化处理,获得石墨烯防腐防污纳米材料;
[0012]
其中,所述胺类化合物具有式(ⅱ)所示的结构:
[0013][0014]
其中,r1,r2包括氢、取代或未取代的芳香基、取代或未取代的脂肪链基团、取代或未取代的脂肪环基团中的任意一种或两种以上的组合。
[0015]
在一些实施例中,所述的制备方法具体包括:
[0016]
提供天然石墨;
[0017]
采用干冰或气态co2对所述天然石墨在室温下进行剥离和羧基化处理5~20h,得到羧基化石墨烯;
[0018]
将羧基化石墨烯、酰化试剂与溶剂均匀混合,形成混合反应体系,之后于0~5℃加入胺类化合物,并于室温进行酰胺化处理15~30h,再经后处理,获得所述石墨烯防腐防污纳米材料。
[0019]
本发明实施例还提供了由前述方法制备的石墨烯防腐防污纳米材料,其具有如式(ⅰ)所示的结构:
[0020][0021]
其中,r1,r2包括氢、取代或未取代的芳香基、取代或未取代的脂肪链基团、取代或未取代的脂肪环基团中的任意一种或两种以上的组合。
[0022]
本发明实施例还提供了前述的石墨烯防腐防污纳米材料于基体屏蔽阻隔、海洋生物抑制、海洋重防腐、防污或导热涂层领域中的用途。
[0023]
本发明实施例还提供了一种装置,其包括基体,所述基体上设置有前述的石墨烯防腐防污纳米材料。
[0024]
较之现有技术,本发明的有益效果在于:
[0025]
本发明提供的石墨烯防腐防污纳米材料的制备方法是将石墨烯进行边缘酰胺功能化,其中石墨烯纳米片是提供超强屏蔽性能的阻隔剂,而酰胺基团能够提供防污活性,这使得获得的石墨烯防腐防污纳米材料能够同时兼具优异的屏蔽性、耐蚀性、溶解性和显著的海洋防污效果,可大规模地进行生产和在海洋重防腐、防污及导热涂层等领域应用,具有显著的创新意义和工程实用价值,市场前景非常广阔。
附图说明
[0026]
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
[0027]
图1是本发明实施例1中所获石墨烯防腐防污纳米材料的核磁图谱。
[0028]
图2是本发明实施例1-4所获产品石墨烯防腐防污纳米材料的防腐性能测试结果图。
具体实施方式
[0029]
鉴于现有技术中的不足,本案发明人经长期研究和大量实践,得以提出本发明的技术方案,其主要是将石墨烯进行边缘酰胺功能化,其中石墨烯纳米片是提供超强屏蔽性能的阻隔剂,而酰胺基团能够提供防污活性,这使得获得的石墨烯防腐防污纳米材料能够同时兼具优异的屏蔽性、耐蚀性、溶解性和显著的海洋防污效果。如下将对该技术方案、其实施过程及原理等作进一步的解释说明。
[0030]
作为本发明技术方案的一个方面,其所涉及的系一种石墨烯防腐防污纳米材料,其具有式(ⅰ)所示的结构:
[0031][0032]
其中,r1,r2包括氢、取代或未取代的芳香基、取代或未取代的脂肪链基团、取代或未取代的脂肪环基团中的任意一种或两种以上的组合。
[0033]
在一些实施例中,所述石墨烯防腐防污纳米材料包含复数个石墨烯纳米片。
[0034]
进一步地,所述石墨烯纳米片的层数为1~10层,片径大小约为500nm~5000nm。
[0035]
在一些实施例中,所述r1,r2所含碳原子数为1~12。
[0036]
在一些实施例中,所述r1,r2所含氢原子数为1~2。
[0037]
在一些实施例中,所述芳香基、脂肪链基团或脂肪环基团所含的取代基包括c、h、n、o、s、p等杂原子中的任意一种或两种以上的组合。
[0038]
进一步地,所述取代基的个数为1~5个。
[0039]
进一步地,所述芳香基包括苯基、取代苯基、苯甲基、苯乙基等苯取代基中的任意一种或两种以上的组合,但不限于此。
[0040]
进一步地,所述脂肪链基团包括甲基、亚甲基、乙基、丙基等c1~c16的脂肪链基团中的一种或多种的组合,但不限于此。
[0041]
进一步地,所述脂肪环基团包括环丙烷、环丁烷、环戊烷等c3~c8的脂肪环基团中的一种或多种的组合,但不限于此。
[0042]
作为本发明技术方案的一个方面,其所涉及的系一种石墨烯防腐防污纳米材料的制备方法,其包括:
[0043]
提供羧基化石墨烯;
[0044]
以胺类化合物对所述羧基化石墨烯进行酰胺化处理,获得石墨烯防腐防污纳米材料;
[0045]
其中,所述胺类化合物具有式(ⅱ)所示的结构:
[0046]
[0047]
其中,r1,r2包括氢、取代或未取代的芳香基、取代或未取代的脂肪链基团、取代或未取代的脂肪环基团中的任意一种或两种以上的组合。
[0048]
在一些实施例中,所述r1,r2所含碳原子数为1~12。
[0049]
在一些实施例中,所述r1,r2所含氢原子数为1~2。
[0050]
在一些实施例中,所述芳香基、脂肪链基团或脂肪环基团所含的取代基包括c、h、n、o、s、p等杂原子中的任意一种或两种以上的组合。
[0051]
进一步地,所述取代基的个数为1~5个。
[0052]
进一步地,所述芳香基包括苯基、取代苯基、苯甲基、苯乙基等苯取代基中的任意一种或两种以上的组合,但不限于此。
[0053]
进一步地,所述脂肪链基团包括甲基、亚甲基、乙基、丙基等c1~c16的脂肪链基团中的一种或多种的组合,但不限于此。
[0054]
进一步地,所述脂肪环基团包括环丙烷、环丁烷、环戊烷等c3~c8的脂肪环基团中的一种或多种的组合,但不限于此。
[0055]
进一步地,所述胺类化合物可以选自哌啶、苯胺、己胺、哌嗪等中的任意一种或两种以上的组合,但不限于此。
[0056]
在一些优选实施方案中,所述制备方法具体包括:
[0057]
提供天然石墨;
[0058]
采用干冰或气态co2对所述天然石墨在室温下进行剥离和羧基化处理5~20h,得到羧基化石墨烯;
[0059]
将羧基化石墨烯、酰化试剂与溶剂均匀混合,形成混合反应体系,之后于0~5℃加入胺类化合物,并于室温进行酰胺化处理15~30h,再经后处理,获得所述石墨烯防腐防污纳米材料。
[0060]
进一步地,所述羧基化石墨烯与酰化试剂的质量比为1:1~10。
[0061]
进一步地,所述胺类化合物与羧基化石墨烯的质量比为1:1~10。
[0062]
进一步地,所述干冰或气态co2与天然石墨的质量比为1:0.1~20。
[0063]
进一步地,所述酰化试剂可以选自羰基二咪唑,但不限于此。
[0064]
进一步地,所述溶剂可以选自四氢呋喃,但不限于此。
[0065]
简单来讲,本发明的制备过程是:使用天然石墨为原料,采用干冰或气体co2对天然石墨进行剥离和羧基功能化,然后进行酰胺化处理,获得通式为式(ⅰ)所示的结构,其制备过程的反应式可以如式(ⅲ)所示:
[0066][0067]
作为本发明技术方案的一个方面,其所涉及的系由前述方法制备的石墨烯防腐防污纳米材料,其具有如式(ⅰ)所示的结构:
[0068][0069][0070]
其中,r1,r2包括氢、取代或未取代的芳香基、取代或未取代的脂肪链基团、取代或未取代的脂肪环基团中的任意一种或两种以上的组合。
[0071]
作为本发明技术方案的一个方面,其所涉及的系前述石墨烯防腐防污纳米材料于基体屏蔽阻隔、海洋生物抑制、海洋重防腐、防污或导热涂层等领域中的用途。
[0072]
进一步地,所述基体的材质包括金属,优选为铁、铜、镍、铝、金、银、镁及其合金中的任意一种或两种以上的组合,但不限于此。
[0073]
进一步地,所述石墨烯防腐防污纳米材料能够对金属包括铁、铜、镍、铝、金、银、镁及其合金中的一种或多种基体起到良好的屏蔽阻隔性能。
[0074]
进一步地,所述石墨烯防腐防污纳米材料能抑制海洋生物包括细菌、真菌、藻类及原生生物中的一种或多种生物膜的形成,起到防止亏损或污损方法。
[0075]
进一步地,所述石墨烯防腐防污纳米材料在海洋环境领域防止金属腐蚀及减少亏损中具有重要用途。
[0076]
综上所述,本发明的石墨烯防腐防污纳米材料的制备方法是将石墨烯进行边缘酰胺功能化,其中石墨烯纳米片是提供超强屏蔽性能的阻隔剂,而酰胺基团能够提供防污活性,这使得获得的石墨烯防腐防污纳米材料能够同时兼具优异的屏蔽性、耐蚀性、溶解性和显著的海洋防污效果,可大规模地进行生产和在海洋重防腐、防污及导热涂层等领域应用,具有显著的创新意义和工程实用价值,市场前景非常广阔。
[0077]
下面结合若干优选实施例及附图对本发明的技术方案做进一步详细说明,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。下列实施例中未注明具体条件的试验方法,通常按照常规条件。
[0078]
实施例1石墨烯基哌啶酰胺
[0079]
将1.0g天然石墨粉和5.0g的干冰置于250ml的不锈钢水热釜中。该体系在室温下保持5h,得到1.2g少层羧基化石墨烯纳米片。将0.05g羧基化石墨烯纳米片和0.5g的羰基二咪唑分散在干燥的20ml四氢呋喃溶液中,体系在室温下超声60min。冷却至0℃并逐渐滴加0.5ml的哌啶的干燥四氢呋喃(10ml)溶液,将该体系在室温下搅拌15h后,进行真空过滤。用50ml二氯甲烷溶液对滤饼洗涤3次,在40℃真空烘箱中干燥12h,即获得产物石墨烯防腐防污纳米材料,亦即石墨烯基哌啶酰胺。干燥后称取产物质量为0.054g。
[0080]
本实施例所获产物的核磁图谱请参阅图1所示,且核磁数据分析如下:h
1 nmr(cdcl3):δ8.5-5.1(石墨烯环);3.56(m,2h,ch);1.71(m,2h,ch);1.56(m,1h,ch)。
[0081]
实施例2石墨烯基苯甲酰胺
[0082]
将1.5g天然石墨粉和30g的干冰置于250ml的不锈钢水热釜中。该体系在室温下保持20h,得到1.78g少层羧基化石墨烯纳米片。将0.1g羧基化石墨烯纳米片和1.0g的羰基二咪唑分散在干燥的50ml四氢呋喃溶液中,体系在室温下超声60min。冷却至0℃并逐渐滴加1g的苯胺干燥四氢呋喃(10ml)溶液,将该体系在室温下搅拌24h后,进行真空过滤。用50ml二氯甲烷溶液对滤饼洗涤3次,在35℃真空烘箱中干燥12h,即获得产物石墨烯防腐防污纳米材料,亦即石墨烯基苯甲酰胺。干燥后称取产物质量为0.13g。
[0083]
实施例3石墨烯基己酰胺
[0084]
将2g天然石墨粉和0.2g的干冰置于250ml的不锈钢水热釜中。该体系在室温条件下保持15h,得到2.13g少层羧基化石墨烯纳米片。将0.5g羧基化石墨烯纳米片和2.0g的羰基二咪唑分散在干燥的100ml四氢呋喃溶液中,体系在室温下超声60min。冷却至5℃并逐渐滴加5ml的己胺的干燥四氢呋喃(25ml)溶液,将该体系在室温下搅拌24h后,进行真空过滤。用100ml二氯甲烷溶液对滤饼洗涤3次,在45℃真空烘箱中干燥12h,即获得产物石墨烯防腐防污纳米材料,亦即石墨烯基己酰胺。干燥后称取产物质量为0.523g。
[0085]
实施例4石墨烯基哌嗪酰胺
[0086]
将1g天然石墨粉和5.0g的干冰置于250ml的不锈钢球磨罐中。该体系在室温下以200rpm球磨2h,得到1.28g少层羧基化石墨烯纳米片。将0.3g羧基化石墨烯纳米片和0.3g的羰基二咪唑分散在干燥的60ml四氢呋喃溶液中,体系在室温下超声60min。冷却至0℃并逐渐滴加0.3g的哌嗪的干燥四氢呋喃(15ml)溶液,将该体系在室温下搅拌30h后,进行真空过滤。用60ml二氯甲烷溶液对滤饼洗涤3次,在45℃真空烘箱中干燥12h,即获得产物石墨烯防腐防污纳米材料,亦即石墨烯基哌嗪酰胺。干燥后称取产物质量为0.319g。
[0087]
测试应用例
[0088]
本案发明人还以实施例1-4所获产品为例,进行了防污性能测试:
[0089]
本案发明人具体检测了实施例1-4所获产品对虾幼虫的生存能力影响。将实施例1-4所获产品分别配置成2mg/ml的dmso原液。将原液配置成100、25、5、2、1、0.5μl培养液。分别取25个虾幼体置于上述培养液中,将其在恒温箱中培育24h。通过光学显微镜观察虾幼体
的存活几率。对所有样品,进行5次操作,并求取平均值。从表1可以看出,所有化合物对幼体的存活表现出抑制作用。
[0090]
表1.虾幼体在不同化合物浓度下的死亡率。
[0091]
化合物100μl25μl5μl2μl1μl0.5μl石墨烯基哌啶酰胺99%54%10%1%
--
石墨烯基苯甲酰胺100%63%22%8%
--
石墨烯基己酰胺100%69%26%9%
--
石墨烯基哌嗪酰胺91%57%7%1%
--
[0092]
本案发明人还以实施例1-4所获产品为例,进行了防腐性能测试:
[0093]
本案发明人具体检测了实施例1-4所获产品对的防腐性能。将实施例1-4所获产品分别配置成2mg/ml的水溶液。将其按照0.05wt%的环氧树脂的量添加到水性环氧涂料中。将获得的含0.05wt%石墨烯酰胺化合物的环氧涂层在中性盐雾性中暴露500h。为了对比试验,以同样的方法制备纯环氧涂层。从图2可以看出,含有1-4石墨烯酰胺化产品的防腐性能优于纯环氧涂层。
[0094]
对照例
[0095]
本案发明人具体检测了1-4种商业化石墨烯类产品对虾幼虫的生存能力影响。将1-4商业化石墨烯类产品分别配置成2mg/ml的dmso原液。将原液配置成100、25、5、2、1、0.5μl培养液。分别取25个虾幼体置于上述培养液中,将其在恒温箱中培育24h。通过光学显微镜观察虾幼体的存活几率。对所有样品,进行5次操作,并求取平均值。从表2可以看出,其性能不如实施例1-4。
[0096]
表2.虾幼体在不同化合物浓度下的死亡率。
[0097]
化合物100μl25μl5μl2μl1μl0.5μl石墨烯a30%15%1%
---
石墨烯b42%22%3%
---
氧化石墨烯a58%29%7%
---
氧化石墨烯b55%26%3%
---
[0098]
综上所述,藉由本发明的上述技术方案,本发明的石墨烯防腐防污纳米材料能够同时兼具优异的屏蔽性、耐蚀性、溶解性和显著的海洋防污效果,可大规模地进行生产和在海洋重防腐、防污及导热涂层等领域应用。
[0099]
本发明的各方面、实施例、特征及实例应视为在所有方面为说明性的且不打算限制本发明,本发明的范围仅由权利要求书界定。在不背离所主张的本发明的精神及范围的情况下,所属领域的技术人员将明了其它实施例、修改及使用。
[0100]
在本发明案中标题及章节的使用不意味着限制本发明;每一章节可应用于本发明的任何方面、实施例或特征。
[0101]
在本发明案通篇中,在将组合物描述为具有、包含或包括特定组份之处或者在将过程描述为具有、包含或包括特定过程步骤之处,预期本发明教示的组合物也基本上由所叙述组份组成或由所叙述组份组成,且本发明教示的过程也基本上由所叙述过程步骤组成
或由所叙述过程步骤组组成。
[0102]
除非另外具体陈述,否则术语“包含(include、includes、including)”、“具有(have、has或having)”的使用通常应理解为开放式的且不具限制性。
[0103]
应理解,各步骤的次序或执行特定动作的次序并非十分重要,只要本发明教示保持可操作即可。此外,可同时进行两个或两个以上步骤或动作。
[0104]
此外,本案发明人还参照前述实施例,以本说明书述及的其它原料、工艺操作、工艺条件进行了试验,例如,以苯基、取代苯基、苯甲基、苯乙基作为芳香基团,以甲基、亚甲基、乙基、丙基作为脂肪链基团,以环丙烷、环丁烷、环戊烷作为脂肪环等,并均获得了较为理想的结果。
[0105]
尽管已参考说明性实施例描述了本发明,但所属领域的技术人员将理解,在不背离本发明的精神及范围的情况下可做出各种其它改变、省略及/或添加且可用实质等效物替代所述实施例的元件。另外,可在不背离本发明的范围的情况下做出许多修改以使特定情形或材料适应本发明的教示。因此,本文并不打算将本发明限制于用于执行本发明的所揭示特定实施例,而是打算使本发明将包含归属于所附权利要求书的范围内的所有实施例。此外,除非具体陈述,否则术语第一、第二等的任何使用不表示任何次序或重要性,而是使用术语第一、第二等来区分一个元素与另一元素。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1