复合微晶玻璃及其制备方法与流程

文档序号:19495786发布日期:2019-12-24 14:56阅读:274来源:国知局
本发明涉及玻璃制造
技术领域
,尤其是涉及一种复合微晶玻璃及其制备方法。
背景技术
:微晶玻璃具有普通玻璃和陶瓷的双重特性。普通玻璃内部的原子排列没有规则,因此容易碎裂;陶瓷内部的原子是有规律的排列,其强度比普通玻璃高,但是陶瓷的亮度较低,导致陶瓷产品在使用过程中会受到很多限制。微晶玻璃兼顾普通玻璃亮度高和陶瓷强度好的优点,因此得到了广泛的应用。但是传统的烧结法得到的微晶玻璃往往存在致密度不高、容易变形等问题。技术实现要素:基于此,有必要提供一种致密度高、不易变形的复合微晶玻璃及其制备方法。一种复合微晶玻璃,包括如下质量百分数的原料:微晶玻璃基体84%~94%、辅助玻璃基体5%~15%以及粘结剂1%~5%;所述微晶玻璃基体的膨胀系数与所述辅助玻璃基体的膨胀系数的差值的绝对值≤1×10-6/℃。在其中一个实施例中,所述辅助玻璃基体为铝硅酸盐玻璃基体;所述辅助玻璃基体的玻璃化转变温度小于所述微晶玻璃基体的玻璃化转变温度。在其中一个实施例中,所述粘结剂为聚乙烯醇。在其中一个实施例中,所述微晶玻璃基体由包括如下质量百分数的原料制备而成:二氧化硅45%~65%、氧化铝10%~30%、晶相形成氧化物组分5%~15%、碱金属氧化物4%~10%、晶核剂2%~5%以及第一添加剂5%~8%。在其中一个实施例中,所述晶相形成氧化物组分为氧化锂、氧化钙以及氧化镁中的一种或几种;和/或,所述晶核剂为二氧化钛、氧化锆以及五氧化二磷中的一种或几种;和/或,所述第一添加剂为氧化锂、氧化镧、氧化钇、氧化钡、氧化锑、硫酸钠、氯化钠以及氟化钙中的一种或几种。在其中一个实施例中,所述辅助玻璃基体由包括如下质量百分数的原料制备而成:二氧化硅50%~65%、氧化铝15%~25%、碱金属氧化物15%~19%以及第二添加剂5%~10%。在其中一个实施例中,所述第二添加剂为氧化镧、氧化镁、氧化硼、氧化锑、硫酸钠、氯化钠、氟化钙以及氧化钡中的一种或几种。一种上述任一实施例中所述的复合微晶玻璃的制备方法,包括如下步骤:将所述微晶玻璃基体、所述辅助玻璃基体与所述粘结剂混合成型,得到复合微晶玻璃预成品;将所述复合微晶玻璃预成品烧结。在其中一个实施例中,将所述复合微晶玻璃预成品烧结的步骤为:将所述复合微晶玻璃预成品在550℃~650℃下烧结30min~60min,然后在740℃~850℃下烧结30min~120min。在其中一个实施例中,所述复合微晶玻璃的制备方法还包括在将所述复合微晶玻璃预成品烧结之前,将所述复合微晶玻璃预成品在360℃~450℃下保温0.8h~1.5h的步骤。上述复合微晶玻璃包括质量百分数分别为84%~94%的微晶玻璃基体、5%~15%的辅助玻璃基体以及1%~5%的粘结剂,微晶玻璃基体的膨胀系数与辅助玻璃基体的膨胀系数的差值的绝对值≤1×10-6/℃。通过采用适当配比的微晶玻璃基体、辅助玻璃基体和粘结剂,微晶玻璃基体与辅助玻璃基体相互填充,能够提高复合微晶玻璃的致密度。同时,微晶玻璃基体与辅助玻璃基体的膨胀系数的差值的绝对值≤1×10-6/℃,微晶玻璃基体与辅助玻璃基体不会由于收缩差而产生内应力,使得复合微晶玻璃不易变形,能够有效保持玻璃的形状和性能的稳定性。上述复合微晶玻璃的制备方法,将微晶玻璃基体、辅助玻璃基体以及粘结剂混合成型,然后进行烧结。在烧结过程中,微晶玻璃基体和辅助玻璃基体相互填充,微晶玻璃基体会发生晶化现象而增大辅助玻璃基体与微晶玻璃基体的玻璃化转变温度的差值,使得辅助基体与微晶玻璃基体之间的填充更加充分,使制备得到的复合微晶玻璃的致密度高。同时,微晶玻璃基体与辅助玻璃基体不会由于收缩差而产生颗粒间的应力,使得复合微晶玻璃不易变形并具有很好的稳定性。具体实施方式为了便于理解本发明,下面将参照相关实施例对本发明进行更全面的描述。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的
技术领域
的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。本发明一实施例提供了一种复合微晶玻璃,该复合微晶玻璃包括如下质量百分数的原料:微晶玻璃基体84%~94%、辅助玻璃基体5%~15%以及粘结剂1%~5%;所述微晶玻璃基体的膨胀系数与所述辅助玻璃基体的膨胀系数的差值的绝对值≤1×10-6/℃。优选地,复合微晶玻璃由如下质量百分数的原料组成:微晶玻璃基体84%~94%、辅助玻璃基体5%~15%以及粘结剂1%~5%;所述微晶玻璃基体的膨胀系数与所述辅助玻璃基体的膨胀系数的差值的绝对值≤1×10-6/℃。在一个具体的示例中,复合微晶玻璃包括如下质量百分数的原料:微晶玻璃基体86%~90%、辅助玻璃基体8%~12%以及粘结剂2%~5%;所述微晶玻璃基体的膨胀系数与所述辅助玻璃基体的膨胀系数的差值的绝对值≤5×10-7/℃。优选地,复合微晶玻璃由如下质量百分数的原料组成:微晶玻璃基体86%~90%、辅助玻璃基体8%~12%以及粘结剂2%~5%;所述微晶玻璃基体的膨胀系数与所述辅助玻璃基体的膨胀系数的差值的绝对值≤5×10-7/℃。进一步优选地,微晶玻璃基体的膨胀系数与辅助玻璃基体的膨胀系数相等。本实施例中复合微晶玻璃的原料包括微晶玻璃基体、辅助玻璃基体以及粘结剂,通过采用适当配比的微晶玻璃基体、辅助玻璃基体和粘结剂,由于微晶玻璃基体与辅助玻璃基体的玻璃化转变温度差异,处于烧结温度时,辅助玻璃基体的黏度小,辅助玻璃基体易填充于微晶玻璃基体的空隙,从而提高复合微晶玻璃的致密度。同时,微晶玻璃基体与辅助玻璃基体的膨胀系数的差值的绝对值≤1×10-6/℃,微晶玻璃基体与辅助玻璃基体不会由于收缩差而产生内应力而导致复合微晶玻璃整体强度下降。另外,烧结过程中由于微晶玻璃基体玻璃化转变温度高,黏度大,使得复合微晶玻璃不易变形,能够有效保持玻璃的形状和性能的稳定性。在一个具体的示例中,粘结剂为聚乙烯醇。优选地,粘结剂为平均分子量为0.8×105~1×105。在一个具体的示例中,辅助玻璃基体为铝硅酸盐玻璃基体;铝硅酸盐玻璃基体的玻璃化转变温度小于微晶玻璃基体的玻璃化转变温度。铝硅酸盐玻璃基体具有良好的化学稳定性,将其与微晶玻璃基体作为原料能够进一步提高复合微晶玻璃的化学稳定性。当制备复合微晶玻璃时,比如采用烧结法制备复合微晶玻璃,原料中同时存在铝硅酸盐玻璃基体和微晶玻璃基体,并且铝硅酸盐玻璃基体的玻璃化转变温度小于微晶玻璃基体的玻璃化转变温度,在烧结过程中,铝硅酸盐玻璃基体粘度较低,容易填充复合微晶玻璃的空隙中,减小复合微晶玻璃的孔隙率,提高复合微晶玻璃的致密度。同时,在烧结过程中,微晶玻璃基体会发生晶化现象而使微晶玻璃基体的玻璃化转变温度进一步升高,这样会增大铝硅酸盐玻璃基体与微晶玻璃基体的玻璃化转变温度的差值,使得铝硅酸盐玻璃基体与微晶玻璃基体之间的填充更加充分,进一步提高复合微晶玻璃的致密度。另一方面,由于铝硅酸盐玻璃基体的膨胀系数与微晶玻璃基体的膨胀系数的差值的绝对值≤1×10-6/℃,铝硅酸盐玻璃基体与微晶玻璃基体不会由于收缩差而内应力,使得复合玻璃不易变形,能够很好地保持复合微晶玻璃的外形,减少复合微晶玻璃的变形,保持复合微晶玻璃的形状和性能的稳定性,降低次品率。在一个具体的示例中,微晶玻璃基体由包括如下质量百分数的各原料制备而成:二氧化硅45%~65%、氧化铝10%~30%、晶相形成氧化物组分5%~15%、碱金属氧化物4%~10%、晶核剂2%~5%以及第一添加剂5%~8%。在一个具体的示例中,晶相形成氧化物组分为氧化锂、氧化钙以及氧化镁中的一种或几种。在一个具体的示例中,二氧化钛、氧化锆以及五氧化二磷中的一种或几种。在一个具体的示例中,氧化锂、氧化镧、氧化钇、氧化钡、氧化锑、硫酸钠、氯化钠以及氟化钙中的一种或几种。在一个具体的示例中,辅助玻璃基体由包括如下质量百分数的各原料制备而成:二氧化硅50%~65%、氧化铝15%~25%、碱金属氧化物15%~19%以及第二添加剂5%~10%。在一个具体的示例中,第二添加剂为氧化镧、氧化镁、氧化硼、氧化锑、硫酸钠、氯化钠、氟化钙以及氧化钡中的一种或几种。本发明一实施例还提供了一种上述复合微晶玻璃的制备方法,包括如下步骤:将所述微晶玻璃基体、所述辅助玻璃基体与所述粘结剂混合成型,得到复合微晶玻璃预成品;将所述复合微晶玻璃预成品烧结。在一个具体的示例中,将复合微晶玻璃预成品烧结的步骤为:将复合微晶玻璃预成品在550℃~650℃下烧结30min~60min,然后在740℃~850℃下烧结30min~120min。优选地,微晶玻璃基体为粉料,微晶玻璃基体的粒径为1μm~10μm。微晶玻璃基材为粉料且粒径为1μm~10μm,有利于与辅助玻璃基体之间更好的混合,使得复合微晶玻璃内部结构更加均匀,并易于烧结。优选地,辅助玻璃基体为粉料,辅助玻璃基体的粒径为1μm~10μm。辅助玻璃基体为粉料且粒径为1μm~10μm,有利于与微晶玻璃基体之间更好的混合,进一步提高复合微晶玻璃内部结构的均匀性,并易于烧结。在一个具体的示例中,上述复合微晶玻璃的制备方法还包括在将复合微晶玻璃预成品烧结之前,将复合微晶玻璃预成品在360℃~450℃下保温0.8h~1.5h的步骤。在将复合微晶玻璃预成品烧结之前将复合微晶玻璃预成品在360℃~450℃下保温0.8h~1.5h,使复合微晶玻璃预成品中的粘结剂充分分解,以排除粘结剂组分。本实施例中将微晶玻璃基体、辅助玻璃基体以及粘结剂混合成型,然后进行烧结。在烧结过程中,微晶玻璃基体和辅助玻璃基体相互填充,微晶玻璃基体会发生晶化现象而增大辅助基体与微晶玻璃基体的玻璃化转变温度的差值,使得辅助基体与微晶玻璃基体之间的填充更加充分,使得制备得到的复合微晶玻璃的致密度高。同时,在烧结过程中微晶玻璃与辅助玻璃不会由于收缩差而产生颗粒间的应力,使得复合微晶玻璃不易变形并具有很好的稳定性。优选地,在复合微晶玻璃的制备过程中,将微晶玻璃基体的原料混合融化成微晶玻璃液,然后将微晶玻璃液水淬得到微晶玻璃碎块,将微晶玻璃碎块辊压成粒径为1μm~10μm的颗粒,得到微晶玻璃颗粒,备用。将辅助玻璃基体的原料混合融化成辅助玻璃液,然后将辅助玻璃液水淬得到辅助玻璃碎块,将辅助玻璃碎块辊压成粒径为1μm~10μm的颗粒,得到辅助玻璃颗粒,备用。将微晶玻璃颗粒、辅助玻璃颗粒混合并加入粘结剂,然后干燥(比如离心干燥)成混合粉料。然后将混合粉料填入模具中,在压机中加压成型,优选地,加压成型的压力为21mpa~50mpa,得到复合微晶玻璃预成品。再将复合微晶玻璃预成品在360℃~450℃下保温0.8h~1.5h,将保温后的复合微晶玻璃预成品在550℃~650℃下烧结30min~60min,然后在740℃~850℃下烧结30min~120min,得到复合微晶玻璃粗产品。将复合微晶玻璃粗产品经过研磨、抛光得到复合微晶玻璃。可以理解的是,在复合微晶玻璃的制备过程中,微晶玻璃基体、辅助玻璃基体可以选自玻璃生产加工过程中产生的废弃余料,将废弃余料进行相应的辊压得到余料颗粒。然后将余料颗粒与粘结剂混合,再通过干燥、加压、保温、烧结、研磨、抛光得到复合微晶玻璃。选用玻璃生产加工过程中产生的废弃余料作为原料,绿色环保,能够降低生产成本。以下是具体实施例。实施例1(1)微晶玻璃基体的制备:将质量百分数分别为62%的二氧化硅、15%的氧化铝、7%的氧化锂、3%氧化镁、4%的氧化钠、3%的五氧化二磷、2%氧化锆、2%氧化钡、1%氧化锑、0.5%氧化镧、0.5%硫酸钠进行原料配比,混合融化成微晶玻璃液,然后将微晶玻璃液水淬得到微晶玻璃碎块,将微晶玻璃碎块辊压成粒径为1μm~10μm的颗粒,得到微晶玻璃基体。(2)辅助玻璃基体的制备:54.5%的二氧化硅、20%的氧化铝、20%的氧化钠以及2%氧化镧、1.5%氧化镁、2%氧化硼混合融化成辅助玻璃液,然后将辅助玻璃液水淬得到辅助玻璃碎块,将辅助玻璃碎块辊压成粒径为1μm~10μm的颗粒,得到辅助玻璃基体。(3)复合微晶玻璃的制备:将质量百分数分别为87%的微晶玻璃基体、10%的辅助玻璃基体混合并加入质量百分数为3%的平均分子量为0.8×105~1×105的聚乙烯醇,然后离心干燥成混合粉料。然后将混合粉料填入模具中,在压机中加压成型(加压成型的压力为21mpa~50mpa),得到复合微晶玻璃预成品。再将复合微晶玻璃预成品在400℃下保温1h,将保温后的复合微晶玻璃预成品在580℃下烧结40min,然后在800℃下烧结60min,得到复合微晶玻璃粗产品。将复合微晶玻璃粗产品经过研磨、抛光得到复合微晶玻璃。实施例1中微晶玻璃基体、辅助玻璃基体的膨胀系数和玻璃化转变温度分别为:膨胀系数(0~300℃)玻璃化转变温度微晶玻璃基体6.26×10-6743℃辅助玻璃基体6.72×10-6572℃对比例1(1)微晶玻璃基体的制备:以质量百分数组成分别为54.5%的二氧化硅、21%的氧化铝、3%的氧化锂、4%的氧化钠、3%的五氧化二磷、4%氧化锆、5%氧化镁、2%氧化钡、1%氧化锑、2%氧化镧、0.5%硫酸钠进行原料配料。混合融化成微晶玻璃液,然后将微晶玻璃液水淬得到微晶玻璃碎块,将微晶玻璃碎块辊压成粒径为1μm~10μm的颗粒,得到微晶玻璃基体。(2)辅助玻璃基体的制备:55%的二氧化硅、20%的氧化铝、20%的氧化钠、2%氧化镁、3%氧化钙混合融化成辅助玻璃液,然后将辅助玻璃液水淬得到辅助玻璃碎块,将辅助玻璃碎块辊压成粒径为1μm~10μm的颗粒,得到辅助玻璃基体。(3)复合微晶玻璃的制备:将质量百分数分别为87%的微晶玻璃基体、10%的辅助玻璃基体混合并加入质量百分数为3%的平均分子量为0.8×105~1×105的聚乙烯醇,然后离心干燥成混合粉料。然后将混合粉料填入模具中,在压机中加压成型(加压成型的压力为21mpa~50mpa),得到复合微晶玻璃预成品。再将复合微晶玻璃预成品在400℃下保温1h,将保温后的复合微晶玻璃预成品在600℃下烧结40min,然后在850℃下烧结60min,得到复合微晶玻璃粗产品。将复合微晶玻璃粗产品经过研磨、抛光得到复合微晶玻璃。对比例1中微晶玻璃基体、辅助玻璃基体的膨胀系数和玻璃化转变温度分别为:膨胀系数(0~300℃)玻璃化转变温度微晶玻璃基体4.05×10-6762℃辅助玻璃基体7.68×10-6565℃对比例2将实施例1中的辅助玻璃基体替换成实施例1中的微晶玻璃基体,采用同样的方法制得玻璃。对比例3将实施例1中的微晶玻璃基体替换成实施例1中的辅助玻璃基体,采用同样的方法制得玻璃。对实施例1、对比例1、对比例2、对比例3中制得的玻璃进行密度测试,测得的实际密度与理论密度如表1所示。理论密度(g/cm3)实际密度(g/cm3)实施例12.502.49对比例12.502.23对比例22.512.38对比例32.402.33由表1数据可知,对比例1、对比例2、对比例3中制得的玻璃的实际密度与理论密度相差较大,实际密度明显小于理论密度。实施例1中制得的复合微晶玻璃的实际密度接近理论密度,表明实施例1中制得的复合微晶玻璃具有更高的致密度。对比例1中由于微晶玻璃基体与辅助玻璃基体膨胀系数相差较大(膨胀系数的差值的绝对值大于1×10-6/℃),在烧结完成冷却收缩的过程中形成两相分离,使孔隙率增大,密度减小。以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1