一种纳米微孔绝热板及其制备方法与流程

文档序号:20357687发布日期:2020-04-10 23:27阅读:441来源:国知局

本发明属于隔热材料技术领域,尤其涉及一种纳米微孔绝热板及其制备方法。



背景技术:

国家对于各行各业的节能减排要求越来越严,石化、冶金、陶瓷窑炉、玻璃窑炉等行业正在寻求节能效果更好、更加环保的轻质隔热材料。传统的轻质隔热材料包括陶瓷纤维制品、硅酸钙制品和玻璃纤维制品等,这些产品的隔热性能一般,单纯使用此类产品难以到达国家要求。

优质纳米微孔绝热板平均500℃的导热系数不超过0.04w/(m·k),隔热性能是传统轻质隔热材料的3~5倍。但是这种材料常规生产工艺为干法压制成型,质脆易碎,目前采用的施工方法通常是现场直接安装。此方法存在的主要问题是:1、现场打孔,容易造成粉尘污染,对人体健康有害;2、打孔时尺寸偏差大,导致安装效率低;3、现场施工环境较为复杂,孔的位置出现偏差时,板材安装容易出现损坏。



技术实现要素:

本发明提供了一种纳米微孔绝热板及其制备方法,本发明中的纳米微孔绝热板打孔时不易损坏、安装效率高。

本发明提供一种纳米微孔绝热板的制备方法,包括以下步骤:

a)以重量份数计,将50~80份的气相二氧化硅、0~30份超细硅灰、5~10份红外遮光剂、6~8份无机耐火纤维和2~4份有机纤维混合,得到混合物料;

b)将所述混合物料压制成型,然后进行煅烧,得到半成品;

c)将所述半成品按照锚固钉的排布位置使用自动雕刻机钻孔,钻孔部位吹扫干净后喷淋硬化剂,得到纳米微孔绝热板;

所述钻孔直径为锚固钉直径的1~1.5倍;所述硬化剂为浓度为15~40%的硅溶胶。

优选的,所述气相二氧化硅的粒径为10~20nm。

优选的,所述超细硅灰的粒径为200~400nm。

优选的,所述红外遮光剂为六钛酸钾晶须、炭黑、碳化硅、锆英粉和钛白粉中的一种或几种;

所述红外遮光剂的粒径为3~5μm。

优选的,所述无机耐火纤维为陶瓷纤维和/或无碱玻璃纤维;

所述无碱玻璃纤维的纤维直径为7~9μm;

所述陶瓷纤维的纤维直径为3~5μm。

优选的,所述有机纤维为涤纶纤维和/或聚乙烯纤维;

所述有机纤维的纤维长度为3~5mm。

优选的,所述步骤b)中煅烧的温度为200~400℃;

所述步骤b)中煅烧的温度为10~60min。

优选的,是用压缩空气喷淋硬化剂,所述喷淋的压力为0.7~0.8mpa。

优选的,所述步骤a)和b)之间,还包括以下步骤:

将混合物料装入纤维袋内,封口完成装袋。

本发明提供一种纳米微孔绝热板,按照上文所述的制备方法制得;

所述锚固钉的直径为4~24mm;所述钻孔直径为锚固钉直径的1~1.5倍;

所述纳米微孔绝热板的宽度为300~600mm,长度为300~1200mm。

本发明提供了一种纳米微孔绝热板的制备方法,包括以下步骤:a)以重量份数计,将50~80份的气相二氧化硅、0~30份超细硅灰、5~10份红外遮光剂、6~8份无机耐火纤维和2~4份有机纤维混合,得到混合物料;b)将所述混合物料压制成型,然后进行煅烧,得到半成品;c)将所述半成品按照锚固钉的排布位置使用自动雕刻机钻孔,钻孔部位吹扫干净后喷淋硬化剂,得到纳米微孔绝热板;所述钻孔直径为锚固钉直径的1~1.5倍;所述硬化剂为浓度为15~40%的硅溶胶。本发明引入有机纤维,且有机纤维均匀的分布于板材内。通过煅烧的方式使有机纤维在纳米绝热板中融化,冷却后有机纤维由融化态变为凝固态,并黏连周围的纳米粉末,使纳米绝热板材的整体性增强,打孔时不易损坏;本发明通过自动雕刻机对纳米绝热板材预先打孔,并在打孔部位使用硬化剂硬化,保证打孔部位的强度,硬化剂中的胶体粒子可牢固地附着在物料表面,粒子间形成硅氧结合,可以很好的将物料粘结硬化。解决了施工过程中现场打孔容易出现的粉尘大、易破损和效率低等问题。

具体实施方式

本发明提供了一种纳米微孔绝热板的制备方法,包括以下步骤:

a)以重量份数计,将50~80份的气相二氧化硅、0~30份超细硅灰、5~10份红外遮光剂、6~8份无机耐火纤维和2~4份有机纤维混合,得到混合物料;

b)将所述混合物料压制成型,然后进行煅烧,得到半成品;

c)将所述半成品按照锚固钉的排布位置使用自动雕刻机钻孔,钻孔部位吹扫干净后喷淋硬化剂,得到纳米微孔绝热板;

所述钻孔直径为锚固钉直径的1~1.5倍;所述硬化剂为浓度为15~40%的硅溶胶。

在本发明中,所述气相二氧化硅的粒径优选为10~20nm,更优选为10~15nm,所述气相二氧化硅的重量份数优选为50~80份,更优选为60~70份,具体的,在本发明的实施例中,可以是50份、65份或80份。

所述超细硅灰的粒径优选为200~400nm,更优选为250~350nm,最优选为300nm;所述超细硅灰的重量份数优选为0~30份,更优选为10~20份,具体的,在本发明的实施例中,可以是0份、30份或20份。

所述红外遮光剂优选为六钛酸钾晶须、炭黑、碳化硅、锆英粉和钛白粉中的一种或几种,具体的,可以是碳化硅和炭黑以重量比1:1的组合,或者是六钛酸钾晶须和钛白粉以重量比1:1的组合。所述红外遮光剂的粒径优选为3~5μm,更优选为4μm。

所述无机耐火纤维优选为陶瓷纤维和/或无碱玻璃纤维;所述陶瓷纤维优选为al2o3含量≥45%,al2o3和sio2总量≥96%的陶瓷纤维;所述陶瓷纤维的纤维直径优选为3~5μm;所述无碱玻璃纤维的纤维直径优选为7~9μm。所述无机耐火纤维的重量份数优选为6~8份,更优选为7份,具体的,在本发明的实施例中,可以是6份、7份或8份。

所述有机纤维优选为涤纶纤维和/或聚乙烯纤维;所述有机纤维的纤维长度优选为3~5mm,更优选为4mm;所述有机纤维的重量份数优选为2~4份,更优选为3份,具体的,在本发明的实施例中,可以是2份、3份或4份。

本发明优选将上述原料加入混料机中,开启搅拌机,将上述原料搅拌均匀,得到混合物料。

在本发明中,所述搅拌的速度优选为500~700rpm,更优选为600~650rpm;所述搅拌的时间优选为10~15min,更优选为12~13min。

得到混合物料后,本发明优选将所述混合物料输送至预制好的纤维袋内,进行装袋封口,所述纤维袋为无碱玻璃纤维布袋和高硅氧纤维布袋中的任意一种,纤维布的厚度优选为0.3~1mm。

本发明将完成装袋的物料输送至成型模具内,使用液压机压制成型,然后将压制成型的产品进行煅烧,得到半成品。

在本发明中,所述压制成型的压力优选为300~400mpa,更优选为350mpa,具体的,在本发明的实施例中,可以是300mpa、350mpa或400mpa;所述压制成型的保压时间优选为30~60s,更优选为40~50s,具体的,在本发明的实施例中,可以是30s、45s或60s。

在本发明中,所述煅烧的温度优选为200~400℃,更优选为300~350℃,具体的,在本发明的实施例中,可以是200℃、300℃或400℃;所述煅烧的时间优选为10~60min,更优选为20~50min,最优选为30~40min,具体的,在本发明的实施例中,可以是10min、30min或60min。

煅烧完的板材的宽度优选为300~600mm,更优选为400~500mm;长度优选为300~1200mm,更优选为400~1000mm,最优选为500~800mm。

对完成煅烧的板材,本发明优选按照锚固钉的排布位置在煅烧完的板材上进行钻孔,本发明优选使用自动雕刻机进行钻孔,所述自动雕刻机的功率优选为1500~2000w。

在本发明中,锚固钉的直径优选为4~24mm,所述钻孔的直径优选为锚固钉直径的1~1.5倍,更优选为1.2倍,在本发明的实施例中,可以是1倍、1.2倍或1.5倍。

钻孔完成之后,本发明优选将钻孔部位吹扫干净,然后使用硬化剂喷淋,得到便于施工的纳米绝热板材。钻孔部位通过硬化剂的硬化,保证了打孔部位的强度。

在本发明中,所述硬化剂为硅溶胶,所述硅溶胶的质量浓度优选为15~40%,更优选为20~35%,最优选为25~30%。本发明优选使用压缩空气喷淋,所述喷淋的压力优选为0.7~0.8mpa,更优选为0.75mpa。喷淋压力过小,雾化效果不好,喷淋不均匀;喷淋压力过大,会产生较大的气流冲刷,容易导致钻孔部位粉末的脱落。

本发明还提供了一种纳米微孔绝热板,按照上文所述的制备方法制成。

本发明中的纳米微孔绝热板的宽度优选为300~600mm,更优选为400~500mm;长度优选为300~1200mm,更优选为500~1000mm,最优选为600~800mm。所述纳米微孔绝热板上设置有若干个钻孔,所述钻孔根据实际需要进行排列,所述钻孔的直径优选为锚固钉直径的1~1.5倍,所述锚固钉的直径优选为4~24mm。

本发明提供了一种纳米微孔绝热板的制备方法,包括以下步骤:a)以重量份数计,将50~80份的气相二氧化硅、0~30份超细硅灰、5~10份红外遮光剂、6~8份无机耐火纤维和2~4份有机纤维混合,得到混合物料;b)将所述混合物料压制成型,然后进行煅烧,得到半成品;c)将所述半成品按照锚固钉的排布位置使用自动雕刻机钻孔,钻孔部位吹扫干净后喷淋硬化剂,得到纳米微孔绝热板;所述钻孔直径为锚固钉直径的1~1.5倍;所述硬化剂为浓度为15~40%的硅溶胶。本发明引入有机纤维,且有机纤维均匀的分布于板材内。通过煅烧的方式使有机纤维在纳米绝热板中融化,冷却后有机纤维由融化态变为凝固态,并黏连周围的纳米粉末,使纳米绝热板材的整体性增强,打孔时不易损坏;本发明通过自动雕刻机对纳米绝热板材预先打孔,并在打孔部位使用硬化剂硬化,保证打孔部位的强度,硬化剂中的胶体粒子可牢固地附着在物料表面,粒子间形成硅氧结合,可以很好的将物料粘结硬化。解决了施工过程中现场打孔容易出现的粉尘大、易破损和效率低等问题。

为了进一步说明本发明,以下结合实施例对本发明提供的一种纳米微孔绝热板及其制备方法进行详细描述,但不能将其理解为对本发明保护范围的限定。

下面给出本发明的实施例,为便于对比说明,以下实施例制备的样品尺寸均为300×300×20mm,并不用于限制本发明。

实施例1

称取50重量份原生粒径10~20nm的气相二氧化硅、30重量份原生粒径200~400nm的超细硅灰、10重量份红外遮光剂、8重量份无机耐火纤维和2重量份有机纤维依次加入混料机中。其中,红外遮光剂为粒径3μm的锆英粉;无机耐火纤维为直径3μm的陶瓷纤维,陶瓷纤维al2o3含量45%,al2o3和sio2总量为96%;有机纤维为长度5mm的涤纶纤维。开启搅拌机,搅拌速度为500rpm,搅拌时间15min;待物料搅拌均匀后,停止搅拌,将物料输送至预制好的纤维袋内,并进行封口;将完成装袋后的物料输送至成型模具内,使用液压机压制成型,液压机压力为300mpa,保压时间为60s;完成压制的纳米绝热板输送至煅烧炉内煅烧,煅烧温度为400℃,煅烧时间10min;对完成煅烧的板材按照锚固钉的排布位置使用自动雕刻机钻孔,钻孔直径等于锚固钉直径;钻孔部位吹扫干净后使用硬化剂喷淋,制得便于施工的纳米绝热板材。其中,纤维袋为无碱玻璃纤维布袋,纤维布的厚度为0.3mm;硬化剂为浓度15%的硅溶胶;硬化剂喷淋使用压缩空气喷淋,喷淋压力为0.7mpa;自动雕刻机的功率为1500w。

实施例2

称取65重量份原生粒径10~20nm的气相二氧化硅、20重量份原生粒径200~400nm的超细硅灰、5重量份红外遮光剂、7重量份无机耐火纤维和3重量份有机纤维依次加入混料机中。其中,红外遮光剂为粒径4μm的碳化硅和炭黑,两者重量比为1:1;无机耐火纤维为直径5μm的陶瓷纤维,陶瓷纤维al2o3含量48%,al2o3和sio2总量为98%;有机纤维为长度3mm的聚丙烯纤维。开启搅拌机,搅拌速度为600rpm,搅拌时间13min;待物料搅拌均匀后,停止搅拌,将物料输送至预制好的纤维袋内,并进行封口;将完成装袋后的物料输送至成型模具内,使用液压机压制成型,液压机压力为350mpa,保压时间为45s;完成压制的纳米绝热板输送至煅烧炉内煅烧,煅烧温度为300℃,煅烧时间30min;对完成煅烧的板材按照锚固钉的排布位置使用自动雕刻机钻孔,钻孔直径等于锚固钉直径的1.2倍;钻孔部位吹扫干净后使用硬化剂喷淋,制得便于施工的纳米绝热板材。其中,纤维袋为无碱玻璃纤维布袋,纤维布的厚度为0.6mm;硬化剂为浓度30%的硅溶胶;硬化剂喷淋使用压缩空气喷淋,喷淋压力为0.75mpa;自动雕刻机的功率为2000w。

实施例3

称取80重量份原生粒径10~20nm的气相二氧化硅、10重量份红外遮光剂、6重量份无机耐火纤维和4重量份有机纤维依次加入混料机中。其中,红外遮光剂为粒径5μm的六钛酸钾晶须和钛白粉,两者重量比为1:2;无机耐火纤维为直径9μm的无碱玻璃纤维;有机纤维为长度4mm的涤纶纤维和聚丙烯纤维,两者重量比为1:1。开启搅拌机,搅拌速度为700rpm,搅拌时间10min;待物料搅拌均匀后,停止搅拌,将物料输送至预制好的纤维袋内,并进行封口;将完成装袋后的物料输送至成型模具内,使用液压机压制成型,液压机压力为400mpa,保压时间为30s;完成压制的纳米绝热板输送至煅烧炉内煅烧,煅烧温度为200℃,煅烧时间60min;对完成煅烧的板材按照锚固钉的排布位置使用自动雕刻机钻孔,钻孔直径等于锚固钉直径的1.5倍;钻孔部位吹扫干净后使用硬化剂喷淋,制得便于施工的纳米绝热板材。其中,纤维袋为高硅氧纤维布袋,纤维布的厚度为1mm;硬化剂为浓度30%的硅溶胶;硬化剂喷淋使用压缩空气喷淋,喷淋压力为0.8mpa;自动雕刻机的功率为1500w。

对比例1

称取50重量份原生粒径10~20nm的气相二氧化硅、30重量份原生粒径200~400nm的超细硅灰、10重量份红外遮光剂、8重量份无机耐火纤维和2重量份有机纤维依次加入混料机中。其中,红外遮光剂为粒径3μm的锆英粉;无机耐火纤维为直径3μm的陶瓷纤维,陶瓷纤维al2o3含量45%,al2o3和sio2总量为96%;有机纤维为长度5mm的涤纶纤维。开启搅拌机,搅拌速度为500rpm,搅拌时间15min;待物料搅拌均匀后,停止搅拌,将物料输送至预制好的纤维袋内,并进行封口;将完成装袋后的物料输送至成型模具内,使用液压机压制成型,制得板材,液压机压力为300mpa,保压时间为60s。其中,纤维袋为无碱玻璃纤维布袋,纤维布的厚度为0.3mm。

对比例2

称取65重量份原生粒径10~20nm的气相二氧化硅、20重量份原生粒径200~400nm的超细硅灰、5重量份红外遮光剂、7重量份无机耐火纤维和3重量份有机纤维依次加入混料机中。其中,红外遮光剂为粒径4μm的碳化硅和炭黑,两者重量比为1:1;无机耐火纤维为直径5μm的陶瓷纤维,陶瓷纤维al2o3含量48%,al2o3和sio2总量为98%;有机纤维为长度3mm的聚丙烯纤维。开启搅拌机,搅拌速度为600rpm,搅拌时间13min;待物料搅拌均匀后,停止搅拌,将物料输送至预制好的纤维袋内,并进行封口;将完成装袋后的物料输送至成型模具内,使用液压机压制成型,制得板材,液压机压力为350mpa,保压时间为45s。其中,纤维袋为无碱玻璃纤维布袋,纤维布的厚度为0.6mm。

对比例3

称取80重量份原生粒径10~20nm的气相二氧化硅、10重量份红外遮光剂、6重量份无机耐火纤维和4重量份有机纤维依次加入混料机中。其中,红外遮光剂为粒径5μm的六钛酸钾晶须和钛白粉,两者重量比为1:2;无机耐火纤维为直径9μm的无碱玻璃纤维;有机纤维为长度4mm的涤纶纤维和聚丙烯纤维,两者重量比为1:1。开启搅拌机,搅拌速度为700rpm,搅拌时间10min;待物料搅拌均匀后,停止搅拌,将物料输送至预制好的纤维袋内,并进行封口;将完成装袋后的物料输送至成型模具内,使用液压机压制成型,制得板材,液压机压力为400mpa,保压时间为30s。其中,纤维袋为高硅氧纤维布袋,纤维布的厚度为1mm。

对比例4

称取84重量份原生粒径10~20nm的气相二氧化硅、10重量份红外遮光剂和6重量份无机耐火纤维依次加入混料机中。其中,红外遮光剂为粒径5μm的六钛酸钾晶须和钛白粉,两者重量比为1:2;无机耐火纤维为直径9μm的无碱玻璃纤维。开启搅拌机,搅拌速度为700rpm,搅拌时间10min;待物料搅拌均匀后,停止搅拌,将物料输送至预制好的纤维袋内,并进行封口;将完成装袋后的物料输送至成型模具内,使用液压机压制成型,制得板材,液压机压力为400mpa,保压时间为30s。完成压制的纳米绝热板输送至煅烧炉内煅烧,煅烧温度为200℃,煅烧时间60min;对完成煅烧的板材按照锚固钉的排布位置使用自动雕刻机钻孔,钻孔直径等于锚固钉直径的1.5倍;钻孔部位吹扫干净后使用硬化剂喷淋,制得便于施工的纳米绝热板材。其中,纤维袋为高硅氧纤维布袋,纤维布的厚度为1mm;硬化剂为浓度30%的硅溶胶;硬化剂喷淋使用压缩空气喷淋,喷淋压力为0.8mpa;自动雕刻机的功率为1500w。

实验例

将本发明实施例1-3制备得到的纳米复合隔热板依次编号为a、b、c,将对比例1、2、3、4制备的样品编号为d、e、f、g。分别测试样品的体积密度、耐压强度、平均500℃导热系数和施工效率,得到如表1所示数据:

表1本发明实施例1~3和对比例1~3中产品的性能数据

表中数据显示,本发明所述的纳米绝热板(a、b、c)相比于对比例制备的样品(d、e、f、g)强度高,导热系数未增加,施工效率提升2.5倍。

以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1