本发明涉及一种氧化致型形状记忆纤维及其制备方法和应用;属于记忆复合材料设计制备技术领域。
背景技术:
连续c纤维增韧碳化硅陶瓷基复合材料(cf/sic)是航空航天等高科技领域发展不可缺少的材料,也是目前研究最多,最广泛,最成功的陶瓷基材料之一。cf/sic与c/c复合材料面临同样的问题是c纤维与基体热膨胀不匹配导致基体出现许多微裂纹,形成氧化通道,如果再受到外荷载的作用时,基体的微裂纹进一步增加和加宽,外荷载越大,裂纹宽度越宽,氧化反应越剧烈,复合材料的服役寿命越短。
目前比较有效的防氧化方法是采用多元多层自愈合法(cmc-ms)封填裂纹,但在370℃~650℃温度段基体裂纹无法由液态的b2o3来封填,而该温度段是c纤维能被氧化且基体微裂纹最多的温区,目前自愈合温度范围为700℃~1200℃。因此现有的自愈合技术还不能完全实现全温区、长时间的自愈合防氧化,而现在较为有效防氧化技术多元多层自愈合法也多是疲于减少和封填热应力引起的裂纹。当材料受到外部施加的拉应力时,裂纹进一步加宽增多,实现全温区防氧化变得更加困难。
在解决脆性材料的裂纹和增韧方面,预应力技术具有良好的效果,在混凝土材料结构中应用非常广泛,其原理是利用预应力筋的弹性恢复力对混凝土施加压力,阻止混凝土裂纹出现,以完整的保护层隔离腐蚀性介质,使其内的钢筋免受腐蚀。如果对复合材料施加预应力抑制或者阻止裂纹出现,那么对复合材料的防氧化和自愈合是一种有效途径。但如果直接将应用于混凝土上的预应力技术套用至cf/sic、c/c等耐高温复合材料上,通过张拉无数根纤维或者纤维束对基体施加压力,这种方法对于高温材料来说根本无法实现。如果复合材料中的纤维能像形状记忆材料一样,受到激励后主动收缩对基体施加预压力,抵消开裂应力,那么这将是复合材料实现全温区自愈合或者无裂纹化的新途径。
形状记忆材料是一种能够感受外部刺激而主动变形的智能材料,在外部环境的刺激下(如温度、作用力、光照等),可以将赋型后的形状恢复到初始状态,从而实现驱动或者对外部施加作用力,其应用前景非常广阔,近几十年一直是各领域研究的热点。现有的形状记忆材料包括形状记忆合金、形状记忆聚合物以及形状记忆陶瓷。形状记忆合金由于强度高、恢复力大等优点,其已经在工业、航空航天、医学等许多领域得到广泛的应用;但由于其相变起始温度较低(常用的钛镍合金的马氏体相变开始温度很难突破100℃),以及高温低强度、高蠕变性等问题限制了其在1000℃以上的高温环境下使用。形状记忆聚合物及其复合材料(shapememorypolymercomposites,smpc),具有可恢复形变量大、感应温度低、加工成型容易、使用面广等优点,但缺点是恢复力小,工作温度较低,无法在高温环境下使用。形状记忆陶瓷主要以zro2陶瓷为代表的相变增韧,但由于化学相容性及高温稳定性,难以用于碳化物、硼化物、氮化物等超高温陶瓷,导致其应用范围较窄,而且该材料的相变作用力是随温度的升高而变小。因此,现有的形状记忆材料无法对高温复合材料施加预应力愈合裂纹。
在现有技术中,复合材料裂纹自愈合主要是采用材料氧化后形成的玻璃粘流体封填裂缝,主动施加闭合力愈合裂纹在相关文献中鲜有报道,而利用材料的氧化驱动形状记忆材料形状主动愈合和/或修复复合材料裂缝的技术还未见报道。
技术实现要素:
鉴于现有的技术很难解决复合材料在全温区范围内愈合因外力和温度应力引起的裂纹,以及现有的形状记忆材料在高温环境下难以应用于复合材料的裂纹自愈合上。对此本文提出了一种具有氧化致型形状记忆纤维,通过环境中进入复合材料的氧化性介质驱动记忆纤维形状恢复,主动对基体施加闭合力,愈合基体裂纹,提高复合材料的完整性,延长复合材料的服役寿命,为复合材料的智能自愈合提供全新的方法,为在复合材料中任意位置、任意方向施加闭合力提供了一种全新思路。
本发明一种氧化致型形状记忆纤维;所述氧化致型形状记忆纤维包括承拉芯材和易氧化的包覆层,所述易氧化承压包覆层包覆在承拉芯材外且承拉芯材的端部不包覆易氧化承压包覆层;定义不包覆易氧化承压包覆层的承拉芯材端部为锚固端;在同等氧化条件和试验工况下,易氧化承压包覆层的氧化速度大于承拉芯材的氧化速度;所述易氧化承压包覆层沿承拉芯材长度方向处于压应力状态;且承拉芯材与易氧化承压包覆层沿承拉芯材长度方向处于拉压平衡状态;
或
所述氧化致型形状记忆纤维包括包覆有耐氧化涂层的承拉芯材以及包覆于带耐氧化涂层上的易氧化承压包覆层且包覆有耐氧化涂层承拉芯材的端部不包覆易氧化承压包覆层;定义不包覆易氧化承压包覆层的承拉芯材端部为锚固端;在同等氧化条件和试验工况下,易氧化承压包覆层的氧化速度大于耐氧化涂层的氧化速度;所述易氧化承压包覆层沿承拉芯材长度方向处于压应力状态;且易氧化承压包覆层与包覆有耐氧化涂层的承拉芯材在承拉芯材长度方向处于拉压平衡状态;
或
所述氧化致型形状记忆纤维包括承拉芯材、易氧化承压包覆层、耐氧化涂层;所述承拉芯材上包覆有易氧化承压包覆层且承拉芯材的端部不包覆易氧化承压包覆层;定义不包覆易氧化承压包覆层的承拉芯材端部为锚固端;所述易氧化承压包覆层的部分位置上包覆有耐氧化涂层;在同等氧化条件和试验工况下,易氧化承压包覆层的氧化速度大于承拉芯材的氧化速度;所述易氧化承压包覆层沿承拉芯材长度方向处于压应力状态;且承拉芯材与易氧化承压包覆层沿承拉芯材长度方向处于拉压平衡状态;
或
所述氧化致型形状记忆纤维包括包覆有耐氧化涂层的承拉芯材以及包覆于带耐氧化涂层上的易氧化承压包覆层且包覆有耐氧化涂层承拉芯材的端部不包覆易氧化承压包覆层;定义不包覆易氧化承压包覆层的承拉芯材端部为锚固端;所述易氧化承压包覆层的部分位置上包覆有第二耐氧化涂层;在同等氧化条件和试验工况下,易氧化承压包覆层的氧化速度大于耐氧化涂层的氧化速度;所述易氧化承压包覆层沿承拉芯材长度方向处于压应力状态;且包覆有耐腐涂层的承拉芯材与易氧化承压包覆层在承拉芯材长度方向处于拉压平衡状态;
或
所述氧化致型形状记忆纤维包括承拉芯材、极易氧化涂层、易氧化承压包覆层;所述氧化致型形状记忆纤维的截面层理从里至外依次为承拉芯材、极易氧化涂层、易氧化承压包覆层,且承拉芯材的端部不包覆极易氧化涂层和易氧化承压包覆层;定义不包覆极易氧化涂层和易氧化承压包覆层的承拉芯材端部为锚固端;在同等氧化条件和试验工况下,承拉芯材、易氧化承压包覆层和极易氧化涂层的三种材料的抗氧化性依次下降,截面氧化损失速率依次增加;所述易氧化承压包覆层沿承拉芯材长度方向处于压应力状态;且承拉芯材与易氧化承压包覆层沿承拉芯材长度方向处于拉压平衡状态。
本发明一种氧化致型形状记忆纤维;所述氧化环境包括气体氧化、液体氧化中的至少一种。
本发明一种氧化致型形状记忆纤维;所述芯材选自c、sic、b4c、金属纤维中的至少一种;
所述耐氧化涂层选自sic、b4c、zrc、tic、hfc、tac、nbc、si3n4、bn、aln、tan、crsi2、mosi2、tasi2、wsi2、hfsi2、nb5si3、v5si3、crb2、tib2、zrb2或者多相复合涂层(hf-ta-c、hf-si-c)中的至少一种,或者多层涂覆。
所述易氧化承压包覆层选自c包覆层、富碳包覆层中的至少一种。
作为优选方案;所述氧化致型形状记忆纤维的承拉纤维为带sic涂层的c纤维、sic纤维中的至少一种,则易氧化承压包覆层为c、富炭bx-c、富炭siy-c中的至少一种,其中x小于等于2,y小于等于0.5。
在承拉纤维和承压涂层构造方面,承拉纤维可以由单根丝或者多根丝捻合而成束的纤维构成,承压涂层可以是单层涂层或者多层复合涂层,也可以是复相涂层、功能梯度涂层等。
本发明一种氧化致型形状记忆纤维;其截面形状可以是圆形、多边形、异形截面;所述的异形截面包括槽形、十字形、井字形、三叶形、梅花形或星形。
本发明一种氧化致型形状记忆纤维;所述氧化致型形状记忆纤维由单根纤维构成或者由多根纤维经过加捻和并股而成的绞线构成。
本发明一种氧化致型形状记忆纤维;所述锚固端在基体内起到锚固作用;所述锚固端的锚型选自裸露端锚型。所述裸露端锚型一端裸露长度为l′;所述l′满足式:
本发明一种氧化致型形状记忆纤维的制备方法;预留锚固端,对芯材或带耐氧化涂层的芯材施加拉力;然后在其表面制备一层易氧化承压包覆层;卸除拉力,得到样品;或
预留锚固端,对芯材或带耐氧化涂层的芯材施加拉力;然后在其表面制备一层易氧化承压包覆层;卸除拉力,然后在易氧化承压包覆层的设定部位包覆第二耐氧化层;或
预留锚固端,对芯材或带耐氧化涂层的芯材施加拉力;然后在其表面制备一层极易氧化涂层,随后进一步在外涂覆易氧化承压包覆层;卸除拉力,得到样品。
所施加的拉力为承拉纤维或带耐腐涂层的承拉纤维承载力的30%至90%,优选在50%至70%之间。
本发明一种氧化致型形状记忆纤维的之二比方法;在整个氧化致型形状记忆纤维中,为了使记忆纤维对外界施加的预应力达到最大,其优化获取方法为:
氧化致型形状记忆纤维的横截面面积一定的情况下,
记忆纤维的预应力存储的大小与承拉纤维的体积分数vf密切相关,承拉纤维存储的轴向力f为:
当f达到最大时,记忆纤维对外界的预应力作用将达到最大;
求承拉纤维的轴向力的最值,首先对f求导,得:
即:
令f′=0,则:
(ec-ef)vf2-2ecvf+ec=0(14)
当ec=ef时,得
当ec≠ef时,对于方程
又由于0<vf<1,而当ec<ef时,则
vf满足16式的条件,使f可以取最大值,即得到fmax。
本发明一种氧化致型形状记忆纤维的应用;用所述氧化致型形状记忆纤维增强基体;所述基体包括陶瓷基体、金属基体、混凝土基体中的至少一种,所述氧化致型形状记忆纤维用于陶瓷基体或者金属基体中时,其体积用量为20-80v%。
本发明一种氧化致型形状记忆纤维的应用;当所述基体的材质为sic时;所述氧化致型形状记忆纤维的芯材为sic纤维,则易氧化承压包覆层为c;
当所述基体的材质为sic时,所述氧化致型形状记忆纤维的芯材为带sic涂层的c纤维时,则易氧化承压包覆层为c;
将所述氧化致型形状记忆纤维用于zr-ti-c-b四元含硼碳化物超高温陶瓷相中且所述氧化致型形状记忆纤维的芯材为带sic涂层的c纤维时,则易氧化承压包覆层为c或者富炭bx-c或者富炭siy-c,其中x小于等于2,y小于等于0.5。
本发明一种氧化致型形状记忆纤维的应用;将所述氧化致型形状记忆纤维用于增强基体中,得到具有自愈合功能的复合材料;所述自愈合复合材料除了布设记忆纤维,还需要将记忆纤维锚固于基体中,而且基体的抗氧化性要高于记忆纤维的承压涂层;所述承压涂层包括富碳承压涂层。
本发明一种氧化致型形状记忆纤维的应用;所述氧化致型形状记忆纤维增强的自愈合复合材料,其各组成部分的抗氧化性满足下述条件:在同等氧化条件下;承拉芯材、基体>易氧化承压包覆层>极易氧化涂层。
本发明一种氧化致型形状记忆纤维的应用;所述的富炭承压涂层即c的元素原子占有比比正常化合物的元素化学计量学配比大,如正常碳化硼陶瓷(b4c)的元素化学计量学配比为4:1,富炭b-c承压涂层的b与c的元素化学计量学配比小于2:1;如正常碳化硅陶瓷(sic)的元素化学计量学配比为1:1,富炭si-c承压涂层的si与c的元素化学计量学配比小于0.5:1;
所述的富炭承压涂层即c的元素原子占有比比正常化合物的元素化学计量学配比大,富炭mx-ky-c承压涂层的m、k与c的元素化学计量学配比x+y≤2,其中m表示为至少一种iva族金属元素或者缺失,k表示为b、si、n中的至少一种元素或者缺失。在本发明中,富炭承压涂层通过下是方案得到:预留锚固端,对芯材或带耐氧化涂层的芯材施加拉力;然后在其表面制备一层易氧化承压包覆层;卸除拉力,得到样品;或
预留锚固端,对芯材或带耐氧化涂层的芯材施加拉力;然后在其表面制备一层易氧化承压包覆层;卸除拉力,然后在易氧化承压包覆层的设定部位包覆第二耐氧化层;或
预留锚固端,对芯材或带耐氧化涂层的芯材施加拉力;然后在其表面制备一层极易氧化涂层,随后进一步在外涂覆易氧化承压包覆层;卸除拉力,得到样品。
原理和优势
氧化致型形状记忆纤维及其自愈合复合材料的基本原理:
氧化致型形状记忆纤维制备方法及原理:
氧化致型形状记忆纤维(本发明简称记忆纤维)由承拉纤维和承压涂层构成,其中,承拉纤维由抗氧化耐高温的纤维材料或者由涂覆抗氧化保护涂层的耐高温纤维材料构成,为耐氧化耐高温纤维;承压涂层由容易被环境中氧化性介质氧化的涂层材料构成,即易氧化涂层,承压涂层包覆在承拉纤维之外;承拉纤维与承压涂层构成拉压自平衡体。记忆纤维的制备方法如图1所示,制备步骤从图1(a~e)依次进行。
图1(a)表示承拉纤维处在无应力状态;图1(b)表示在弹性范围对承拉纤维进行预张拉,张拉应力为σo;图1(c)表示承拉纤维的拉应力σo不变的情况下,在其表面沉积、喷涂或者电镀等方法均匀涂覆承压涂层,此时承压涂层处在无应力状态;图1(d)表示,待涂层涂覆完毕后,卸除张拉力,假设承拉纤维与承压涂层结合良好,在卸除张拉力过程中两者无滑移,承拉纤维的弹性恢复力沿纤维轴线方向作用在承压涂层上,当作用在承拉纤维的外界张拉力完全卸除后,此时承拉纤维与承压涂层组成拉压自平衡体,承拉纤维存储弹性拉应变,承压涂层存储弹性压应变,承压涂层压应力设为
记忆纤维能在氧化性介质环境下实现形状恢复,承拉纤维和承压涂层材质的选择至关重要。在烧蚀的环境中,h2o/o2是主要的氧化性介质,承拉纤维的材质应选择如采用抗氧化能力强的材料,如sic纤维,或者选择涂覆抗氧化涂层的c纤维,如涂覆sic、hfc、tac或者多相复合涂层、多元多层涂层保护c纤维。而承压涂层的材质应选择易氧化的c、富炭b-c陶瓷、富炭sic-c陶瓷或者掺杂易氧化材料的多相陶瓷材质。
形状恢复机理
记忆纤维形状恢复机理如图2所示,在氧化性介质环境下,当记忆纤维的承压涂层受氧化出现截面损失时,记忆纤维则开始恢复,恢复流程从图2(a~c)依次进行。图2(a)表示记忆纤维未被氧化的状态,承拉纤维和承压涂层处于原始平衡状态。图2(b)表示,在氧化性介质环境下,承压涂层首先与氧化性介质接触反应,生成难以承受荷载的氧化产物,而承拉纤维具有较高的抗氧化性能,其截面和强度变化较小。由于承压涂层受氧化后,有效受力截面厚度变小,在承拉纤维弹性恢复力作用下,剩余承压涂层的压应力和压缩变形不断增大,承拉纤维随之不断收缩,逐渐接近初始长度。如图2(c)所示,当承压涂层被氧化殆尽后,承拉纤维恢复至初始长度,完成一次单程记忆效应,此时的承拉纤维处于无应力状态。
因此,氧化致型形状记忆纤维具备形状记忆功能需要满足二个基本条件:
(1)承拉纤维沿轴向储存有预拉弹性变形,承压涂层储存有预压弹性变形,两者处于拉压平衡状态或者自平衡状态。
(2)承压涂层材料需要由容易被环境中氧化性介质氧化的材料构成,而承拉纤维则由抗氧化耐高温材料构成,或者涂覆有抗氧化性涂层的耐高温材料构成;也就是说,在同一氧化介质环境下,承拉纤维材料的抗氧化性高于承压涂层材料的抗氧化性,承拉纤维损失率远小于承压涂层的损失率。
自愈合复合材料的基本原理
记忆纤维施加闭合力的基本条件和原理:
复合材料基体受到温度、外力等因素出现裂纹,氧化性介质沿着裂纹通道进入基体内部与记忆纤维接触,接触到内部的记忆纤维,环境温度一旦达到一定可以氧化水平,裂纹缺陷附近的记忆纤维的承压涂层首先出现氧化反应和截面损失,承拉纤维的形状恢复受到激发对基体施加压力,驱动裂纹闭合。在高温氧化环境下,基体材料的承载力同样可能受到氧化和高温的影响,除了承压涂层为易氧化材料以及承拉纤维为抗氧化、耐高温性能材料外,基体材料也需要选取具有良好的抗氧化性和耐高温性能材料,保证基体的承载力,即在同等氧化条件和工况下,承拉纤维和基体的抗氧化性都要高于承压涂层,而且承拉纤维和基体氧化损失速率需要远小于承压涂层的损失速率,才能保证受激发的记忆纤维的恢复作用力作用到基体上,促使裂纹闭合,达到更好的自愈合效果,否则很难实现自愈合功能。
详细的自愈合原理如图3所示,自愈合过程从a~c依次进行。图a表示基体出现裂纹,氧化介质尚未接触到承压涂层或者环境温度还未达到可氧化时的温度,则记忆纤维处于稳定状态。图b表示氧化介质(h2o/o2)通过裂纹扩散至材料内部,而且温度已经达到可氧化程度,承压涂层接触到氧化介质并被氧化,记忆纤维受激回缩,由于粘结区的锚固作用(暂未被氧化的承压涂层与基体的粘结锚固作用)传递记忆纤维的恢复力,对基体施加预压力,而且离裂纹越近的承压涂层,其氧化程度越高,截面损失越大,裂纹闭合作用力的作用范围和大小也越大,基体的裂纹宽度越小。如图c所示,当裂纹附近的承压涂层被完全氧化后,基体裂纹仍然没有闭合,氧化介质开始接触到承拉纤维,由于承拉纤维和基体都具有良好的抗氧化性,承压涂层的氧化反应沿纤维的轴向方向继续开展,其氧化长度不断增加,恢复力的作用范围也不断增加,当作用在裂缝面上的闭合力足够大时,裂纹受压闭合,氧化介质入内的通道被切断,氧化停止,实现自愈合保护功能,此时,承拉纤维的回缩对基体施加的压力停止增加。
然而基体材料可能存在孔洞之类的缺陷,氧化介质仍然可能通过空洞进入材料内部继续氧化记忆纤维中的承压涂层,导致承压涂层与基体的粘结锚固界面不断减少,基体的受压区段不断增加,当锚固界面不足以承担记忆纤维回缩引起的拉拔力时,导致记忆纤维拔出,记忆纤维无法对裂纹施加有效的闭合力。或者当裂纹靠近记忆纤维端部时,端部区域的承压涂层表面受到氧化,端部锚固失效,造成记忆纤维无法有效对基体施加压力,已经趋于闭合的裂纹重新张开。因此,为了使记忆纤维更有效的对基体施加压应力,最好在记忆纤维的端部留置可靠的锚固端。如图4所示,在承拉纤维的两端部留置无涂层的裸露端,或者在两端留置端钩,保证锚固端的可靠性。不管是裂纹分布在纤维的端部,还是承压涂层全部被氧化殆尽,但有了可靠的锚固端就可以避免纤维被拔出,使承拉纤维的恢复力能够有效的传递,保障复合材料的自愈合性能。
为了保障抗氧化性能较差的纤维(如c纤维)可以作为承拉纤维,或者进一步增加承拉纤维的抗氧化性和化学稳定性,则在其表面涂覆单层或者多层抗氧化保护涂层,使承拉纤维具有更好的化学稳定性和抗氧化性。芯纤维涂覆抗氧化保护涂层的记忆纤维增强复合材料自愈合原理如图5所示,从记忆纤维的轴心剖面图的层理发现,芯纤维的表面涂覆有多层涂层,除了抗氧化保护涂层外,在抗氧化保护涂层与芯纤维之间还有一层过渡层,可以缓解芯纤维与抗氧化保护涂层的热应力。当承压涂层为富炭b-c易氧化陶瓷,氧化驱动介质为h2o和o2,环境温度高于650℃时,b元素被氧化成粘流态的b2o3和co2等氧化产物,当承拉纤维的恢复力足够大的时候,基体的裂纹主动闭合,加上氧化物体积膨胀的作用,粘流态的b2o3从裂缝中挤出,裂纹完全被愈合。同样的原理,当承压涂层为富炭si-c等其它易氧化陶瓷时,环境温度达到陶瓷氧化物的粘流态温度时,氧化物同样被挤出。因此在氧化介质的驱动下,记忆纤维的恢复力使裂缝主动闭合,可以与液态氧化物封填裂缝联合作用,使自愈合效果达到更好。
记忆纤维恢复力的作用范围和大小与承压涂层的轴向氧化长度相关,而且承压涂层的氧化速度越快,裂纹的闭合力增加地越快,闭合速度也就越快。为了进一步增加裂纹的闭合速度,如图6所示,在承压涂层与承拉纤维之间设置一层较薄的极易氧化涂层,比如碳涂层。如图6(b)和图6(c)所示,当裂纹附近的承压涂层被完全氧化后形成漏斗形氧化区,如果基体裂纹仍然没有闭合,氧化介质将会继续进入接触到极易氧化涂层并迅速氧化。如图6(d)所示,由于承拉纤维良好的抗氧化性,承压涂层的抗氧化性也比极易氧化涂层强,承压涂层氧化虽然有所开展,但是相对较慢,因此极易氧化涂层的氧化反应则继续沿轴向方向快速开展,在承压涂层与承拉纤维之间传递荷载的极易氧化涂层被氧化的长度快速增加,承压涂层与承拉纤维快速分离,作用在承压涂层的压力转移至基体上。因此记忆纤维在承压涂层不需要完全氧化,就可以给基体施加闭合力,加快裂纹闭合速度。因此,对于由承拉纤维、极易氧化涂层、承压涂层构成的记忆纤维,在同等氧化条件和试验工况下,承拉纤维、承压涂层和极易氧化涂层的三种材料的抗氧化性依次下降,截面氧化损失速率依次增加。
如图7所示,记忆纤维的形式有多种,从里至外的层理结构有:承拉纤维/承压涂层、芯纤维/抗氧化保护涂层/承压涂层(芯纤维和抗氧化保护涂层构成承拉纤维)、芯纤维/过渡层/抗氧化保护涂层/承压涂层(芯纤维/过渡层/抗氧化保护涂层构成承拉纤维)、承拉纤维/极易氧化涂层/承压涂层等。记忆纤维可以在端部不设置锚固端,也可以设置裸露锚固端,如图8所示,也可以在纤维的其它区域增设裸露承拉纤维的锚固区域,进一步保证记忆纤维的锚固可靠度。
记忆纤维及基体的内力计算模型
记忆纤维的内力计算模型
基本假定:
由于记忆纤维为长细比足够大的单向复合材料,为了简化计算记忆纤维的内力,可做如下假设:
1)承压涂层在承拉纤维上涂覆均匀(承压涂层为易氧化涂层);
2)承拉纤维与承压涂层的界面结合良好且两者具有良好的化学相容性;
3)忽略承拉纤维和承压涂层的横向应变的影响,公式推导中不计入泊松比;
4)承拉纤维与承压涂层的受力处于线弹性状态;
5)结构单元受拉为正,受压为负。
记忆纤维内力公式推导
如图9,设承拉纤维将要涂覆承压涂层的原始长度为l,锚固端长度为l′,对承拉纤维进行张拉,张拉应力为σo,原始长度l的伸长量为δx1。沉积后的涂层长度为l+δx1,卸除承拉纤维的张拉力,由于承拉纤维的恢复力,涂层的压缩变形量为δx2,两者达到力的平衡和协调变形,根据虎克定律:
承拉纤维的张拉力:
承压涂层的压力:
由力的平衡,ff+fc=0,则
即
又由于:
将式(4)代入式(5)得:
令a=ac+af,而
将式(6)的右边的分子分母同除以al,则
又
由于σo远小于ef,所以:
此时,承拉纤维储存的预应力表达式为:
承压涂层热应力的表达式:
当记忆纤维从从制备温度降温冷却,由于承拉纤维与承压涂层的热膨胀系数不匹配出现热应力,涂层的热应力计算公式:
其中,复合材料的膨胀系数为:
承压涂层与承拉纤维在热应力和预应力两者合力作用下的表达式:
由
由承压涂层与承拉纤维的力的平衡,即,σcvc+σfvf=0,则:
承拉纤维的应力为:
其中:
σo为承拉纤维的初始张拉应力值;
σc为承压涂层的热应力和预应力的合力值;
σf为承拉纤维的热应力和预应力的合力值;
ec,ef分别为室温下承压涂层和承拉纤维的弹性模量;
vc,vf分别为承压涂层和承拉纤维的体积分数,vc+vf=1;
ac,af分别为承压涂层和承拉纤维的截面面积,ac+af=a;
αc,αf分别承压涂层和承拉纤维的热膨胀系数;
εc为承压涂层平衡后的应变;εf为承拉纤维的初始拉应变;
δt=t-tc,t和tc分别为计算温度和无残余热应力温度点(即涂层的制备温度);
e1=efvf+ecvc为记忆纤维的弹性模量。
记忆纤维预应力储存最优化
对于相同截面面积的记忆纤维,记忆纤维预应力存储的大小与承拉纤维的体积分数vf密切相关,承拉纤维存储的轴向力为:
当f达到最大时,记忆纤维对外界的预应力作用将达到最大。
求承拉纤维的轴向力的最值,首先对f求导,得:
即:
令f′=0,则:
(ec-ef)vf2-2ecvf+ec=0(17)
当ec=ef时,得
当ec≠ef时,对于方程
又由于0<vf<1,而当ec<ef时,则
满足0<vf<1的条件,使f可以取最大值。
单向记忆纤维增强的内力计算
将上述留有锚固端的记忆纤维增强复合材料,下面对单向纤维增强复合材料力学性能进行预测。为了简化计算,不计泊松比对轴向应力大小的影响。
基本假定
为了简化计算记忆纤维与基体中的相互作用力,做如下假设:
1)记忆纤维单向均匀布置在基体中;
2)不计泊松比对轴向应力大小的影响;
3)锚固端与基体结合紧密,无滑移;
4)不计承压涂层氧化产物的承载力;
5)承拉纤维和基体处于线弹性状态。
基体应力σm1由两部分叠加组成,一部分是由承拉纤维回缩对基体施加的预压应力
基体的应力变化
当记忆纤维的制备温度tc与复合材料制备温度tcom不一致时,如果承拉纤维和基体的膨胀系数不匹配,复合材料制备时,承拉纤维的应力由于热应力存在发生变化,根据式(13)可得tcom温度时承拉纤维的应力:
当承压涂层截面全部氧化损失后,氧化产物不参与受力,记忆纤维的形状恢复则全部完成,由于氧化后的承压涂层不参与工作,受力平衡体最终由承拉纤维与基体构成。设复合材料制备温度tcom作为承拉纤维和基体的热应力起始温度,那么σfo相当于初始拉应力。根据式(9),承拉纤维回缩对基体施加的预应力
复合材料从制备温度tcom降温或者升温至计算温度t时,根据式(10),引起的基体热应力
因此,由热应力和预应力叠加得到基体的应力为:
此时承拉纤维的应力为:
其中,记忆纤维的弹性模量:e1=efvf+ecvc;
承拉纤维与基体的复合弹性模量:
基体热膨胀系数:αm;
基体的弹性模量:em;
承拉纤维、承压涂层和基体的体积分数分别为:vf1、vc1、vm,vf1+vc1=vs,vf1+vc1+vm=1;
δt1=tcom-tc;
δt2=t-tcom。
承拉纤维端部裸露长度的限值:
如图4和图9所示,在承拉纤维两端部留置长度为l′的无承压涂层的裸露端,为了保证锚固端的可靠性,裸露端长度存在最小值使得记忆纤维的承压涂层即使完全被氧化殆尽也不会拔出。
裸露端与基体的锚固力为:
记忆纤维的拉拔力为:
如果要使承拉纤维裸露端不被拔出,承拉纤维的恢复力能够有效的传递,保障复合材料的自愈合性能,则fa≥fd,即
其中,d为承拉纤维的直径,
本发明和现有技术相比较,具有以下优势
1、在预张拉的承拉纤维表面涂覆承压涂层得到一种记忆纤维(承拉纤维由抗氧化的材料或者涂有抗氧化涂层的材料构成,承压涂层则由容易被环境中氧化性介质氧化的材料构成),其在氧化性介质激励下发生形状记忆恢复。
2、由裂纹等缺陷进入的氧化介质氧化承压涂层,复合材料中的记忆纤维受激发生形状记忆恢复,给基体施加预压力,为基体的裂纹愈合提供动力。
3、施加在基体上的预应力大小与记忆纤维的体积分数和初始张拉应力两者的大小成正比,而且承压涂层氧化越严重,施加的预应力就越大,当预应力足够大时,裂纹最终被愈合。
4、基体在预压力的作用下裂纹被愈合,使复合材料的力学性能、抗氧化性和安全性得到提高。
本发明为形状记忆材料提供一种全新的设计思路,为碳/碳、金属基、陶瓷基等高温复合材料的全温区自修复、自愈合提供一种全新的理念。
附图说明
图1为形状记忆纤维的制备原理;
图2为氧化致型形状记忆纤维的形状恢复机理;
图3为氧化驱动型记忆纤维自愈合原理图;
图4为永久锚固端记忆纤维自愈合原理图;
图5为涂覆抗氧化保护涂层的承拉纤维自愈合原理图;
图6为涂覆极易氧化涂层的承拉纤维自愈合原理图;
图7为记忆纤维的种类示意图;
图8为锚固端立体示意图;
图9为记忆纤维的力学模型;
图10为记忆纤维的掺量和初始张应力的变化影响基体的预应力;
图11为连续制备记忆纤维的简易装置示意图;
图12为有限元模型示意图;
图13为单元网格划分示意图;
图14为模拟氧化对比结果示意图。
具体实施方式
记忆纤维增强复合材料的样例计算
材料基本参数
记忆纤维的承压涂层采用c涂层,承拉纤维采用sic纤维,承压涂层的制备方法采用cvd法。当承拉纤维的体积分数(v%)为14.2v%,承压涂层的体积分数为85.8v%时,承拉纤维存储的预应力达到最大。记忆纤维在复合材料的掺量为50v%,承压涂层、承拉纤维和基体的基本参数如表1,由于承拉纤维与基体的材料相同,膨胀系数也相同,因此当承压涂层被氧化后,承拉纤维与基体之间无热应力。记忆纤维在基体中锚固方式采用端部裸露锚固型,即对记忆纤维中的sic承拉纤维端部的c涂层烧蚀处理,或者对sic承拉纤维端部不涂覆c涂层,裸露的sic承拉纤维的端部与基体直接结合锚固,锚固端的长度l′≥50d(d为纤维直径)。
表1承压涂层、承拉纤维和基体的基本参数
基体的最大轴向应力:
假设记忆纤维在基体中单向均匀布置,承压涂层截面损失殆尽,记忆纤维形状恢复对基体施加的压应力达到最大值。
承拉纤维存储的应力:
承拉纤维回缩对基体施加的预应力为:
从上述的计算结果可知,记忆纤维对基体施加的预压应力达到35.4mpa,如果继续增大记忆纤维记的体积分数和承拉纤维的初始张拉力,那么给基体施加的压应力将继续增大。
如图10所示,当记忆纤维的体积分数vs和承拉纤维的初始张拉力σo的不断增大时,基体的预压应力也不断增大。因此,压应力的大小可以通过记忆纤维初始拉应力的大小和体积分数进行控制,压应力的施加对基体的裂纹闭合、应力集中的减小、刚性增大、抗氧化性能的提高、韧性提高都是有利的。
实施例1
本实施例的记忆纤维的承拉纤维采用sic纤维,承拉纤维的承压涂层采用易氧化的c涂层,基体材料为sic陶瓷材料。记忆纤维采用无易氧化涂层的端部裸露锚固型,即裸露sic承拉纤维的端部与sic基体结合锚固,锚固端的长度不小于50d。
承拉纤维采用直径大约为11μm的sic纤维。沉积易氧化涂层的连续制备装置如图11所示,sic纤维从发丝盘进入沉积炉内沉积涂层,然后由收丝盘卷收,在沉积的过程中,通过调节加载滑轮施加恒定的张拉力,使sic纤维的初始张拉应力σo保持在1800mpa。sic芯记忆纤维的层理结构为sic芯/c涂层,即在sic承拉纤维表面沉积热解炭承压涂层(易氧化承压层)。sic承压纤维沉积c涂层的方法如下:
采用化学气相沉积法(cvd)沉积c涂层,sic承拉纤维的初始张拉应力为1800mpa,气源选用丙烯和四氯化碳的混合气体气流量分别为500ml/min和400ml/min,沉积温度为1000℃,沉积炉内压力为0.5-1.5kpa,纤维在炉内走丝速度为1mm/min,全程氩气保护。当涂层达到指定厚度后沉积结束,卸除纤维的张拉力,沉积炉降温至室温,制得的热解炭易氧化承压涂层厚度约5μm。
通过上述方法制备得到直径约为21μm的氧化致型形状记忆纤维,记忆纤维的承压层为5μm厚度的c涂层。将记忆纤维中的sic承拉纤维的端部长约5mm的c涂层轻微烧蚀去除,以预留裸露sic承拉纤维锚固端,即裸露sic承拉纤维的端部与基体结合锚固。然后将该氧化致型形状记忆纤维编制成预制体,预制体的密度为0.9g/cm3,采用化学气相渗透法(cvi)制备记忆纤维增强sic陶瓷基自愈合复合材料,制备方法如下:
将预制体放入常规等温cvi沉积炉中进行sic沉积,沉积温度为1100℃,原料气体为以氩气或者氮气为稀释气体,流量为900ml/min,以三氯甲基硅烷为反应气体,三氯甲基硅烷流量为1.0g/min,氢气为载体,氢气的流量为500ml/min,反应时间为200小时,最终制得的记忆纤维增强sic陶瓷基自愈合复合材料为2.3g/cm3。
实施例2
本实施例的记忆纤维的承拉纤维采用sic纤维,承压层采用易氧化的富炭b-c涂层,基体材料为sic陶瓷材料。记忆纤维采用无易氧化涂层的端部裸露锚固型,即裸露sic承拉纤维的端部与sic基体结合锚固,锚固端的长度不小于50d。
承拉纤维采用直径大约为11μm的sic纤维。沉积易氧化涂层的连续制备装置如图11所示,sic纤维从发丝盘进入沉积炉内沉积涂层,然后由收丝盘卷收,在整个沉积过程中,通过调节加载滑轮施加恒定的张拉力,使sic承拉纤维的初始张拉应力σo保持在1800mpa。sic芯记忆纤维的层理结构为sic芯/热解炭层/富炭b-c涂层,即sic承拉纤维的第一层涂层为热解炭层(过渡层),第二层涂层为富炭b-c涂层(易氧化承压涂层)。sic承拉纤维各涂层沉积步骤如下:
步骤1:采用化学气相沉积法(cvd)沉积第一层涂层,首先采用加载滑轮施加恒定的张拉力,使sic承拉纤维的初始张拉应力σo为1800mpa,然后连续在sic承拉纤维表面沉积涂层。沉积的气源选用丙烯和四氯化碳的混合气体,气流量分别为400ml/min和400ml/min,沉积温度为1000℃,沉积炉内压力为0.5-1.3kpa,纤维在炉内走丝速度为200mm/min,全程氩气保护,沉积得到0.1μm厚度的热解炭涂层,热解炭层优先被进入的氧化介质氧化,加快记忆纤维的恢复速度。
步骤2:采用同样的方法在第一层涂层的表面沉积第二层涂层,张拉力与步骤1相同。沉积用的反应气体为ch4、bcl3和氢气,稀释气体为氩气,纤维在炉内走丝速度为3mm/min,沉积温度1100℃。ch4、bcl3和氢气的气流量分别为500ml/min、400ml/min和1200ml/min,氩气流量为600ml/min,压强为9-10kpa,当涂层达到指定厚度后沉积结束,卸除纤维的张拉力,降至室温,得到约4.2μm厚度的富炭b-c陶瓷涂层,其中富炭b-c陶瓷涂层中的b元素与c元素的化学计量学配比约为1.2:1。
通过上述方法制备得到直径约为19.6μm的sic芯氧化致型形状记忆纤维,记忆纤维的承压层为第二层涂层,即4.2μm厚度的富炭b-c陶瓷涂层。将sic芯端部长约5mm的表面热解炭涂层和富炭b-c涂层通过微烧蚀和碱洗去除,以预留裸露sic芯的锚固端,即裸露sic承拉纤维的端部与sic基体结合锚固。然后将该记忆纤维编制成预制体,预制体的密度为1g/cm3,采用化学气相渗透法(cvi)制备记忆纤维增强sic陶瓷基自愈合复合材料,制备方法如下:
将预制体放入常规等温cvi沉积炉中沉积sic基体,沉积温度为1100℃,原料气体以氩气或者氮气为稀释气体,流量为900ml/min,以三氯甲基硅烷为反应气体,其流量为1.0g/min,氢气为载体,氢气的流量为500ml/min,反应时间为220小时,最终制得的记忆纤维增强sic陶瓷基自愈合复合材料为2.2g/cm3。
实施例3
本实施例采用涂覆sic保护涂层的c纤维作为承拉纤维,承压涂层采用易氧化的c涂层,基体材料为sic陶瓷材料。记忆纤维锚固端的长度不小于50d,锚固端采用无易氧化涂层的裸露端部锚固型,以保证涂覆sic保护涂层的c芯纤维端部与sic基体结合锚固。
c纤维采用日本东丽公司生产的pan基t1000碳纤维,c纤维的直径大约为5μm。在沉积涂层之前,采用丙酮回流法去除c纤维表面胶体,将c纤维浸泡在70℃丙酮溶液中,在回流装置中48小时除去c纤维表面胶体,后取出碳纤维并烘干。对c纤维沉积涂层,连续制备装置如图11所示,c纤维从发丝盘进入沉积炉内沉积涂层,然后由收丝盘卷收,在沉积的过程中,调节滑轮加载装置,使c纤维的初始张拉应力σo恒定在2000mpa。记忆纤维的层理结构为c纤维/热解炭层/sic涂层/c涂层,其中,c纤维的第一层涂层为热解炭层(过渡层),第二层涂层为sic涂层(保护涂层)构成,第三层涂层为c涂层(易氧化承压涂层)。c纤维各涂层沉积步骤如下:
步骤1:采用化学气相沉积法(cvd)沉积第一层涂层,c纤维的初始张拉应力σo为2000mpa,气源选用丙烯和四氯化碳的混合气体,气流量分别为400ml/min和400ml/min,沉积温度为1000℃,沉积炉内压力为0.5-1.3kpa,纤维在炉内走丝速度为200mm/min,全程氩气保护,沉积得到0.1μm厚度的热解炭涂层,以改善c纤维与sic保护涂层的界面结合。
步骤2:采用cvd法在第一层涂层的表面沉积第二层涂层,纤维的张拉力与步骤1相同。采用三氯甲基硅烷作为反应气体,氢气为载气,载气流量为400ml/min,氩气为稀释气体,气体流量为500ml/min,压强为18kpa,纤维在炉内走丝速度为120mm/min,沉积温度为1000℃,沉积得到约0.4μm厚度的sic涂层作为c纤维的保护涂层,即得到以c纤维为核心,具有抗氧化保护涂层的承拉纤维。
步骤3:继续采用cvd法在第二层涂层的表面沉积第三层涂层,纤维的张拉力与步骤1相同。气源选用丙烯和四氯化碳的混合气体,气流量分别为500ml/min和400ml/min,沉积温度为1000℃,纤维在炉内走丝速度为5mm/min,全程氩气保护。当涂层达到指定厚度后沉积结束,卸除纤维的张拉力,沉积炉降温至室温,得到约3.8μm厚度的热解炭易氧化承压涂层。
通过上述的三个步骤制备出直径约为13.6μm的氧化致型形状记忆纤维,记忆纤维的承压层为第三层涂层,即3.8μm厚度的热解炭。对涂覆sic保护涂层的c纤维的端部进行轻微烧蚀,去除sic保护涂层表面约5mm长度的c涂层,以裸露sic保护涂层与基体结合锚固。然后将该氧化致型形状记忆纤维编制成预制体,预制体的密度为0.4~0.6g/cm3,采用化学气相渗透法(cvi)和包埋法制备记忆纤维增强sic陶瓷基自愈合复合材料,步骤如下:
步骤4:采用等温cvi工艺对预制体沉积热解炭增密,沉积釆用均热式真空感应气相沉积炉,沉积温度为1100℃,碳源先躯体采用丙烯ch4,氢气h2稀释气体,ch4与h2的体积比为1:2,沉积200小时左右,制得密度约为1.4g/cm3的多孔记忆纤维/炭复合材料。
步骤5:将上述增密后的复合材料置于高温反应炉内进行熔融浸硅,包埋所用的硅粉用量以理论需求值的1.2倍投放,硅粉纯度为99%,粒度为0.01~0.1mm。将反应炉抽真空至-0.1mpa,保真空30分钟,通氩气至常压,以5℃/min速率将炉内温度升至1500℃~1600℃后保温1~2小时,随后以10℃/min的速度降温至室温,得到密度约为2.0g/cm3的记忆纤维增强sic陶瓷基自愈合复合材料。
实施例4
本实施例采用涂覆sic保护涂层的c纤维作为承拉纤维,承压涂层采用易氧化的富炭b-c涂层,基体材料为sic陶瓷材料。记忆纤维锚固端的长度不小于50d,锚固端采用无易氧化涂层的裸露端部锚固型,以保证承拉纤维的端部与sic基体结合锚固。
c纤维采用日本东丽公司生产的pan基t1000碳纤维,c纤维的直径大约为5μm。在沉积涂层之前,采用丙酮回流法去除c纤维表面胶体,将c纤维浸泡在70℃丙酮溶液中,在回流装置中48小时除去c纤维表面胶体,后取出碳纤维并烘干。对c纤维沉积涂层,连续制备装置如图11所示,c纤维从发丝盘进入沉积炉内沉积涂层,然后由收丝盘卷收,在沉积的过程中,调节滑轮加载装置,使c纤维的初始张拉应力σo恒定在2000mpa。记忆纤维的层理结构为c纤维/热解炭层/sic涂层/富炭b-c涂层,即c纤维的第一层涂层为热解炭层(过渡层),第二层涂层为sic涂层(保护涂层),第三层涂层为富炭b-c涂层(易氧化承压层)。c纤维各涂层沉积步骤如下:
步骤1:采用化学气相沉积法(cvd)沉积第一层涂层,c纤维的初始张拉应力σo为2000mpa,气源选用丙烯和四氯化碳的混合气体,气流量分别为400ml/min和400ml/min,沉积温度为1000℃,沉积炉内压力为0.5-1.3kpa,纤维在炉内走丝速度为200mm/min,全程氩气保护,沉积得到0.1μm厚度的热解炭涂层,以改善c纤维与sic保护涂层的界面结合。
步骤2:采用cvd法在第一层涂层的表面沉积第二层涂层,纤维的张拉力与步骤1相同。采用三氯甲基硅烷作为反应气体,氢气为载气,载气流量为400ml/min,氩气为稀释气体,气体流量为500ml/min,压强为18kpa,纤维在炉内走丝速度为120mm/min,沉积温度为1000℃,沉积得到约0.4μm厚度的sic涂层作为c纤维的保护涂层,即得到以c纤维为核心,具有抗氧化保护涂层的承拉纤维。
步骤3:继续采用cvd法在第二层涂层的表面沉积第三层涂层,纤维的张拉力与步骤1相同。沉积用的反应气体为ch4、bcl3和氢气,稀释气体为氩气,纤维在炉内走丝速度为4mm/min,沉积温度1100℃。ch4、bcl3和氢气的气流量分别为500ml/min、500ml/min和1000ml/min,氩气流量为600ml/min,压强为9-10kpa,当涂层达到指定厚度后沉积结束,卸除纤维的张拉力,降至室温,得到约3.3μm厚度的富炭b-c陶瓷涂层,其中富炭b-c陶瓷涂层中的b元素与c元素的化学计量学配比约为1.6:1。
通过上述的三个步骤制备出直径约为12.6μm的氧化致型形状记忆纤维,记忆纤维的承压层为第三层涂层,即3.3μm厚度的富炭b-c陶瓷涂层。对涂覆sic保护涂层的c纤维的端部进行轻微烧蚀和强碱清洗,去除sic保护涂层表面约5mm长度的富炭b-c陶瓷涂层,以裸露sic保护涂层与基体结合锚固。然后将该氧化致型形状记忆纤维编制成预制体,预制体的密度为1.3g/cm3,采用化学气相渗透法(cvi)制备记忆纤维增强sic陶瓷基自愈合复合材料,制备方法如下:
将预制体放入常规等温cvi沉积炉中沉积sic基体,沉积温度为1100℃,原料气体以氩气为稀释气体,流量为900ml/min,以三氯甲基硅烷为反应气体,其流量为1.0g/min,氢气为载体,氢气的流量为500ml/min,反应时间为200小时,最终制得的记忆纤维增强sic陶瓷基自愈合复合材料为2.15g/cm3。
裂缝闭合数值模拟验证:
1、采用实施例1的参数建立有限元模型,有限元模型如图12所示,记忆纤维增强sic陶瓷基自愈合复合材料由a部件、b部件和记忆纤维构成,模型总体尺寸为60.1mm×12mm×4mm(长×宽×厚),记忆纤维沿模型的长度方向排列布置。模型a部件(30mm×12mm×4mm)和b部件(30mm×12mm×4mm)sic基体之间预留0.1mm宽的贯穿裂缝,作为氧化介质通道。模型的a和b两部件由12根长度为58.9mm、直径为1mm的记忆纤维连接,每根纤维的承拉纤维采用直径为0.6mm、强度为3000mpa的sic纤维,两端的裸露锚固端长度均为1.2mm。通过预先施加应力对sic承拉纤维的初始张拉应力为2000mpa,承压涂层为c涂层,厚度为0.2mm。模型网格划分如图13所示,基体的网格尺寸大小为0.2mm,承压涂层、承拉纤维和基体单元之间以共节点处理。模型a部件端面所有单元节点在x轴方向约束,外侧端面的右下角节点在yz平面内约束,外侧端面的其它节点在yz平面自由,除外侧端面之外的其它节点都自由,整个b部件自由。环境温度设为800℃,气压为1个大气压,纯氧环境。sic材料的氧化速率设为0.01mm/min,c涂层材料的氧化速率设为5mm/min。本模拟所用的硬件设备为计算机;采用hypermesh软件建立模型,采用ansys有限元分析软件等效模拟分析;当然能实现本次模拟功能软件都可以用于本发明,如abaqus等有限元软件。
对照组模型与记忆纤维增强sic陶瓷基自愈合复合材料模型基本相同,区别在于对照组的sic纤维与c涂层之间无机械相互作用力,即增强纤维的c涂层被氧化烧蚀后,sic芯纤维不发生回缩。
2、模拟氧化对比现象与过程如图14所示,左图为记忆纤维增强复合材料,氧化10s后,裂缝处的c涂层出现截面损失,裂缝出现非常小的闭合,120s后,裂缝宽度变为0.06mm,240s后,裂缝完全闭合;右图为对照组,氧化10s后,裂缝处的c涂层出现截面损失,裂缝宽度未见变化,120s后,裂缝宽度仍然没有变化,240s后,裂缝宽度几乎没有变化。
3、结论:从模拟结果发现,由于记忆纤维增强sic陶瓷基自愈合复合材料存在自愈合功能,氧化实验过程中,当氧化介质进入材料内部氧化c承压涂层,使得记忆纤维受激收缩,给sic基体施加压力,闭合裂纹,切断氧化通道,可以提高复合材料的抗氧化性;而对照组试件的增强纤维不具有记忆功能,c涂层模拟被氧化损失后,sic纤维不会回缩对基体施加压力闭合基体,c承压涂层继续被外来的氧化介质氧化,材料内部的纤维将会继续被氧化,非常容易使复合材料结构出现失效;因此采用记忆纤维在自愈合和抗氧化性能方面具有明显优势。
上述仅为本发明的四个具体实施方式,但本发明的设计构思并不局限于此,凡利用此构思对本发明进行非实质性的改动,均应属于侵犯本发明保护的范围的行为。但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何形式的简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。