本发明属于材料领域,涉及一种制备大面积单晶铜箔的方法,特别是涉及一种制备大面积cu(100)单晶铜箔的方法。
背景技术:
单晶铜箔在各行各业具有重要的用途,尤其是在二维材料的制备领域。例如,通过cvd法可以在单晶铜箔上制备出大面积的单晶石墨烯、氮化硼、过渡金属硫化物等二维材料。另外,因其具有较高的导电性,单晶铜箔广泛应用于电器、机械、建筑、国防等重要领域。但是,目前工艺制备的铜箔主要是以多晶的形式存在。由于多晶铜存在较多的晶界,其性能会大大降低,例如导电性、延展性等都要低于单晶铜箔。因此,制备单晶铜箔对铜箔的应用具有重要的意义。
目前制备单晶铜箔的方法主要有:
1.申请号为201810218065.1的专利报道了通过电化学抛光,然后在氢气与惰性气体的混合气氛中对铜箔进行高温退火。经过多次循环后可以制备出cu(111)单晶铜箔。但是,此工艺较为复杂。
2.申请号为201910710749.8的专利报道了多温区同时对铜箔进行退火处理可以制备cu(111)单晶铜箔。但是,此工艺对制备单晶铜箔的炉子要求较高,工业化生产具有一定难度。
3.申请号为201610098625.5的专利报道了通过向铜箔中掺杂其他金属元素然后在氢气与惰性气体混合气体中进行高温退火可以制备cu(100)单晶铜箔。该方法引入了其他杂质元素,不利于制备高纯度的单晶铜箔。
总体来说,目前制备单晶铜箔的方法主要存在工艺复杂、对退火炉子要求高、在氢气与惰性气体混合气氛中退火、需要抽真空退火等问题。这都不利于工业化生产单晶铜箔。
技术实现要素:
基于目前生产单晶铜箔存在的问题,本发明提供了一种制备大面积cu(100)单晶铜箔的方法。该方法工艺简单、对退火炉子要求低、生产周期短,可在单一气氛中常压退火。
本发明提供的制备大面积cu(100)单晶铜箔的方法,包括:
将多晶铜箔于酸溶液中浸泡后,超声清洗,干燥,于氢气气氛中进行常压退火,得到所述cu(100)单晶铜箔。
上述方法中,所述酸溶液选自盐酸、硫酸和硝酸中至少一种。酸溶液能够将商业铜箔表面的氧化物洗涤干净;
所述酸溶液的体积百分浓度为1%-30%;具体为5%、10%或20%。所述酸溶液中,溶剂均为水。
所述浸泡步骤中,时间为10-100min;具体为15-90min、20min或40min。
所述多晶铜箔的厚度为10μm-100μm。
所述超声清洗在去离子水中进行;该步骤可除去铜箔表面吸附的酸及杂质;
所述超声清洗步骤中,时间为10min-50min;具体为15-45min或20min;
频率为50hz-100hz;具体为60hz、80hz或90hz。
所述干燥为吹干;具体为用惰性气体吹干;
所述惰性气体具体选自氮气和氩气中至少一种。
所述退火步骤中,温度为900℃-1200℃;具体为950℃、1000℃、1030℃或1050℃;
由室温升至退火温度的时间为30-90min;具体为40min或30-80min;
退火时间为30min-200min;具体为50-150min、60min或120min;
所述氢气的流量为20sccm-500sccm;具体为20-400sccm、50-300sccm、100sccm、200sccm或300sccm;
由退火温度降至室温的方式为自然降温。
另外,按照上述方法制备得到的大面积cu(100)单晶铜箔,也属于本发明的保护范围。
本发明提供的制备的大面积cu(100)单晶铜箔的方法,具有单晶度高、工艺简单、制备时间短、在单一气氛常压下退火、对炉子要求低的优点,具有重要的应用价值。
附图说明
图1中(a)是原始多晶铜箔的光学显微镜照片,(b)是实施例1制备的单晶铜箔光学显微镜照片。
图2中(a)是原始多晶铜箔的xrd图,(b)是实施例1制备的单晶铜箔xrd图。
图3是实施例2制备单晶铜箔的xrd图。
图4是实施例3制备单晶铜箔的xrd图。
图5是实施例4制备单晶铜箔的xrd图。
图6是实施例1中氢气换成1:1的氢气氩气混合气制备的退火铜xrd图。
图7是实施例1中压强为-0.1mpa条件下制备的退火铜xrd图。
具体实施方式
下面结合具体实施例对本发明作进一步阐述,但本发明并不限于以下实施例。所述方法如无特别说明均为常规方法。所述原材料如无特别说明均能从公开商业途径获得。下述实施例中,步骤1)所述酸水溶液的浓度均为体积百分浓度。
实施例1
1)将尺寸为5×5cm厚度为10μm的商业铜箔(纯度99.9%)浸泡在20%盐酸水溶液中,浸泡时间为20min。
2)取出步骤1)中铜箔浸泡在去离子水中,在60hz频率下超声清洗20min以除去表面吸附的酸和杂质,然后用高纯氮气吹干。
3)将步骤2)中的铜箔放入cvd炉子中,用氢气置换炉子中空气。然后保持氢气流量为100sccm,升温到1000℃常压退火,由室温升温至退火温度的时间为40min,退火时间为60min。最后,自然降温后得到本发明提供的cu(100)单晶铜箔。
图1中(a)是原始多晶铜箔的光学显微镜照片,图1中(b)是实施例1制备的单晶铜箔光学显微镜照片。从图中可知该方法可以制备出表面平整的大面积单晶铜箔。
图2中(a)是原始多晶铜箔的xrd图,图2中(b)是实施例1制备的单晶铜箔xrd图。由图可知,经过该方法处理,多晶铜箔完全转变成了cu(100)单晶铜箔,且该方法制备的单晶铜箔具有较高的单晶度。
实施例2
1)将尺寸为5×5cm厚度为100μm的商业铜箔(纯度99.9%)浸泡在10%硫酸水溶液中,浸泡时间为10min。
2)取出步骤1)中铜箔浸泡在去离子水中,在80hz频率下超声清洗10min以除去表面吸附的酸及杂质,然后用高纯氩气吹干。
3)将步骤2)中的铜箔放入cvd炉子中,用氢气置换炉子中空气。然后保持氢气流量为200sccm,由室温经40min升温到950℃常压退火120min,自然降温后得到本发明提供的cu(100)单晶铜箔。
图3是实施例2制备的单晶铜箔xrd图。由图可知,该方法可以制备出单晶度较高的铜箔。
实施例3
1)将尺寸为5×5cm厚度为10μm的商业铜箔(纯度99.9%)浸泡在5%硝酸水溶液中,浸泡时间为20min。
2)取出步骤1)中铜箔浸泡在去离子水中,在50hz频率下超声清洗40min以除去表面吸附的酸及杂质,然后用高纯氮气吹干。
3)将步骤2)中的铜箔放入cvd炉子中,用氢气置换炉子中空气。然后保持氢气流量为300sccm,由室温经40min升温到1050℃常压退火30min,自然降温后得到本发明提供的cu(100)单晶铜箔。
图4是实施例3制备的单晶铜箔xrd图。由图可知,该方法可以制备出单晶度较高的铜箔。
实施例4
1)将尺寸为5×5cm厚度为100μm的商业铜箔(纯度99.9%)浸泡在在30%盐酸水溶液中,浸泡时间为30min。
2)取出步骤1)中铜箔浸泡在去离子水中,在90hz频率下超声清洗20min以除去表面吸附的酸及杂质,然后用高纯氮气吹干。
3)将步骤2)中的铜箔放入cvd炉子中,用氢气置换炉子中空气。然后保持氢气流量为500sccm,由室温经40min升温到1030℃常压退火60min,自然降温后得到本发明提供的cu(100)单晶铜箔。
图5是实施例4制备的单晶铜箔xrd图。由图可知,该方法可以制备出单晶度较高的铜箔。
对照例1
按照实施例1的步骤,仅将退火气氛替换为氢气和氩气1:1的混合气氛,所得到的单晶铜箔的xrd如图6所示。由图可知,该铜箔的单晶度低且存在(111)杂峰。
对照例2
按照实施例1的步骤,仅将退火压强由常压替换为-0.1mpa的压强。所得到的单晶铜箔的xrd如图7所示。由图可知,该铜箔的单晶度低且存在(111)和(220)杂峰。