本发明涉及硅基光电子技术领域,具体涉及一种长发光寿命硅酸铒及其制备方法。
背景技术:
随着超大规模集成电路的迅速发展,采用硅基光电集成代替现有的硅基集成电路成为一个重要发展方向,硅基光电集成中的高效硅基光源和光放大器亟待解决。
稀土离子铒(er3+)的1.5μm发光恰好对应于石英通信光纤的最低损耗波长,因此硅基铒发光受到了广泛了关注,有望在硅基光电子、纳米光子学、上转换发光、荧光粉等领域取得重大应用。
近30年来,掺铒光纤放大器和激光器在远距离光通信中获得了巨大的成功。然而在硅基光电集成领域,已经成熟应用的掺铒材料无法达到需要的发光强度和光增益。这主要是掺铒材料中发光中心er3+的浓度不够高,但继续增加er3+浓度超过1020cm-3后,受到固溶度的限制er3+会发生严重的偏析和团聚,引入很多缺陷并且富er团簇中的er-er相互作用十分强烈,这样会产生明显的浓度猝灭。
以硅酸铒为代表的铒化合物中er并不是掺杂离子而是作为组成元素,er3+浓度可以达到1022cm-3,而且在晶格中周期排列避免了er3+之间的团聚和偏析。
宁存政小组采用化学气相沉积法(cvd)生长出了单晶的高质量硅氯酸铒纳米线,发现硅氯酸铒纳米线的寿命最高可以达到540μs,并且在硅氯酸铒纳米线中测试得到了超过100dbcm-1的净增益(sunh,yinl,liuz,etal.giantopticalgaininasingle-crystalerbiumchloridesilicatenanowire[j].naturephotonics,2017,11(9):589–593.)。他们发现硅基铒材料的er3+发光寿命和浓度的乘积(ldp)是一个衡量在1.5μm处光放大能力的重要指标,ldp值越大,则在相同的泵浦条件下光增益越大且发光效率越高。而在硅酸铒这样的铒化合物中浓度是固定不变的,所以提高ldp主要通过提高er3+发光寿命实现。
目前已经采用磁控溅射、电子束蒸发、溶胶凝胶法等方法制备出了硅酸铒薄膜,但是这些方法制备的硅酸铒寿命大多在数十个微秒,这主要是制备的硅酸铒本身晶体质量不够高,缺陷密度较高;此外不可忽视的是er3+浓度很高,er-er能量传递变严重,致使激发能可以在晶体中长距离迁移,更加容易遇到缺陷猝灭,这也是硅酸铒等铒化合物发光寿命远小于掺铒材料的原因。
技术实现要素:
针对本领域存在的不足之处,以及现有技术制备的硅酸铒发光寿命较短不能满足实际硅基光电集成应用的问题,本发明提供了一种长发光寿命硅酸铒的制备方法,寿命可以达到844μs,且制备方法简单、不用复杂真空设备、成本低廉,可应用于硅基光电集成和纳米光子学等领域。
一种长发光寿命硅酸铒的制备方法,包括步骤:将有机铒化合物溶解于流动性硅烷树脂中,所得溶胶旋涂于单晶硅片表面,待溶剂挥发完毕,经900~1300℃热处理得到所述的长发光寿命硅酸铒。
本发明采用非传统的溶胶凝胶旋涂法,之后再通过高温热处理过程得到长发光寿命的硅酸铒。其中,原材料不包含任何羟基(oh),而羟基是er3+发光严重的猝灭中心,且高温下生成的硅酸铒包裹在非晶氧化硅基质中,表面得到很好钝化,整体缺陷密度很低;更为重要的是生成的硅酸铒尺寸较小,为宽度约为20nm、长度数百纳米的纳米线状结构,相比大块硅酸铒晶体er-er相互作用得到明显抑制,从而降低了er-er之间能量传递导致的能量迁移,降低了遇到缺陷猝灭的几率。
所述的有机铒化合物可选常见的铒的金属有机化合物,优选自三(2,2,6,6-四甲基-3,5-庚二酮酸)铒(iii)(er(tmhd)3)、醋酸铒(er(ac)3)、三(甲基环戊二烯)铒(er(cpme)3)、三(8-羟基喹啉)-铒中的至少一种,进一步优选为三(2,2,6,6-四甲基-3,5-庚二酮酸)铒(iii)(er(tmhd)3)和/或醋酸铒(er(ac)3)。
所述的流动性硅烷树脂为含有氢倍半硅氧烷(hsq)的硅酮树脂溶液,例如道康宁生产的商品名为fox-##系列硅酮树脂溶液,主要成分为氢倍半硅氧烷(hsq)和溶剂甲基异丁基酮(mibk),其中##为不同型号的数字,代表hsq的浓度,##可以为12,15,16,17等,如可以选用fox-16。
作为优选,所述溶胶中er/si原子比例为0.1~0.6:1。经试验发现,所述溶胶中的er/si比例需保持在一定范围内,er/si比例过低,热处理后所得薄膜中er3+浓度不够,硅酸铒无法结晶;er/si比例过高,有机er难以完全溶解在流动性硅烷树脂(如fox)中,且生成的硅酸铒尺寸很大,失去了声子限制作用,不利于得到长发光寿命的硅酸铒。进一步优选,所述溶胶中er/si原子比例为0.15~0.3:1。
所述单晶硅片可以根据需要选用轻掺或重掺的p或n型单晶硅片,使用前采用标准rca溶液清洗干净。
本发明采用旋涂方法在硅片上旋涂一层薄膜,取适量溶液滴加到硅片中心后进行旋涂。作为优选,所述旋涂的条件为:2~20s加速至1000~10000rpm后维持10~90s。进一步优选,所述旋涂的条件为:8~12s加速至2000~8000rpm后维持20~40s。
旋涂完毕之后,所得样品可放在空气或者干燥柜中等待溶剂完全挥发完毕。
旋涂后的薄膜还需要进行一个高温热处理过程,使掺入氧化硅中的er3+和氧化硅基质反应生成硅酸铒,并使硅酸铒有较好的结晶质量,降低缺陷密度,从而得到发光寿命较长和发光强度较强的硅酸铒。
作为优选,所述热处理的气氛为n2、o2或ar,时间为5min~8h。降温方式可选择自然降温。
作为优选,所述热处理的温度为975~1200℃。
本发明所得薄膜为硅酸铒纳米线包裹在非晶氧化硅基质中的结构。
本发明还公开了所述的制备方法制备得到的长发光寿命硅酸铒,包裹于非晶氧化硅基质中,形貌为纳米线状,晶相为α-er2si2o7,发光寿命为400~850μs。
本发明与现有技术相比,主要优点包括:
1、本发明首次采用hsq作为制备稀土硅酸盐的硅源,完全不含水且交联过程不需要水或醇等的参与,这样避免了传统的溶胶凝胶法中的羟基残留对er3+发光的严重影响;此外hsq交联过程在室温下十分迅速,大大减少了传统溶胶凝胶过程中需要的等待水解交联时间;
2、生成的硅酸铒纳米线完全包裹在氧化硅中,表面得到很好的钝化,避免了一般的纳米材料表面缺陷会急剧降低发光寿命和效率的问题;
3、硅酸铒纳米线中er-er相互作用受到明显抑制,限制了长距离的能量传递直到遇到缺陷的过程,显著提高了发光寿命和效率;
4、整个生产工艺简单,成本低,技术成熟,抑制离子相互作用的思路大大提高了稀土离子的发光寿命和效率,具有相当的工业应用前景。
附图说明
图1为实施例1不同热处理条件制备的薄膜的x射线衍射图(xrd);
图2为实施例1中o2气氛中1200℃热处理的薄膜的透射电子显微镜照片(tem)、高分辨透射电子显微镜照片(hrtem)以及相应的快速傅里叶变换(fft)照片;
图3为实施例1不同热处理条件制备出的硅酸铒的光致发光图(pl);
图4为实施例1不同热处理条件制备出的硅酸铒的光致发光衰减曲线图;
图5为实施例2不同er/si原子比的样品的x射线衍射图(xrd);
图6为实施例2不同er/si原子比的样品的光致发光衰减曲线图。
具体实施方式
下面结合附图及具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的操作方法,通常按照常规条件,或按照制造厂商所建议的条件。
以下实施例中各原料均为市售。
实施例1
本实施例中,采用(100)晶向的p型直拉单晶硅片,硅片单面抛光、电阻率ρ=10~20ω·cm,使用的有机铒化合物是三(2,2,6,6-四甲基-3,5-庚二酮酸)铒(iii),将其完全溶于fox-16之后旋涂在硅片上,热处理条件是在n2或o2气氛中975~1200℃热处理1小时。
具体制备方法如下:
(1)按照er/si原子比为0.2:1称取三(2,2,6,6-四甲基-3,5-庚二酮酸)铒(iii),溶解在fox-16溶液中,磁力搅拌或者超声至完全溶解,得到粉红色澄清透明溶胶,记为er-hsq;
(2)对硅片进行标准的rca清洗,在氢氟酸中漂洗之后,用氮气吹干表面待用;
(3)在干净硅片中央滴加100μl的er-hsq溶液,设置12秒加速到6000转/分钟,再维持6000转/分钟转速30秒;将得到的薄膜放置在空气中等待有机溶剂完全挥发完毕;
(4)将步骤(3)得到的样品放于管式炉中,通入n2或o2升温至975~1200℃保温1h后随炉降温至室温。
将热处理后得到的样品做xrd测试,证实的确生成了α-er2si2o7,且样品中有且仅有α-er2si2o7相,如图1所示。以1200℃氧气下热处理的样品为例,其微观结构如图2(a)的tem所示,深色的纳米线包裹在浅色的非晶基质中,图2(b)中深色区域的hrtem可以看出明显的晶格条纹,对应于α-er2si2o7的(110)晶面,图2(c)中的fft也证实了纳米线是α-er2si2o7相。
样品的pl谱如图3所示,可以看到发光谱由一系列分裂的发光峰组成,主峰在1529nm和1533nm,是典型的α-er2si2o7的发光特征。进一步测试1533nm处发光的衰减曲线,见图4,可以采用单指数函数拟合出寿命,列于表1,寿命均达到400μs以上,最长可达844μs。
表1
实施例2
本实施例中,长寿命硅酸铒的制备仍采用(100)晶向的p型单晶硅片,硅片单面抛光、电阻率ρ=10~20ω·cm,按照不同的er/si比称取er(tmhd)3,将其完全溶于fox-16之后旋涂在硅片上,热处理条件是在o2气氛中1200℃热处理1小时。
制备方法和实施例1类似,具体如下:
(1)按照er/si原子比为0.1~0.5:1称取不同质量的er(tmhd)3,分别溶解在fox-16溶液中,然后磁力搅拌或者超声至完全溶解得到粉红色澄清透明溶胶,分别记为10%~50%er-hsq;
(2)对硅片进行标准的rca清洗,在氢氟酸中漂洗之后,用氮气吹干表面待用;
(3)分别在干净硅片中央滴加10%~50%er-hsq溶胶,设置16秒加速到8000转/分钟,再维持8000转/分钟转速20秒;将得到的薄膜放置在空气中等待有机溶剂完全挥发完毕;
(4)将步骤(3)得到的不同er/si原子比样品放于管式炉中,通入保护气氛o2升温至1200℃保温1h后随炉降温至室温。
测试不同er/si原子比的样品的xrd,见图5,可以发现er/si原子比为10%的时候没有出现硅酸铒结晶,大于10%的样品均生成了α-er2si2o7相。图6所示为不同er/si原子比在1533nm处的衰减曲线,随着er/si原子比从10%增加到50%,铒离子寿命先增加后减小。将衰减曲线采用单指数函数拟合,得到的寿命列于下表2中,从表2可以看出10%样品寿命最短,是由于er3+浓度较低,在薄膜中没有结晶所以寿命较短;20%时硅酸铒结晶且尺寸较小,寿命最长;继续提高浓度薄膜中生成的硅酸铒尺寸变大,其他条件不变的情况下er-er相互作用的限制减弱,所以寿命降低。
表2
采用本发明制备的硅酸铒均具有较长的发光寿命,不仅采用常规降低缺陷密度的思路,还创新地采用降低er-er相互作用来抑制激发能的长距离迁移过程,这一发明可用于硅基光电集成和纳米光子学等领域。
此外应理解,在阅读了本发明的上述描述内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。