一种硅酸铒晶体和硅纳米晶共镶嵌二氧化硅薄膜及其制备方法和应用与流程

文档序号:21174206发布日期:2020-06-20 17:22阅读:226来源:国知局
一种硅酸铒晶体和硅纳米晶共镶嵌二氧化硅薄膜及其制备方法和应用与流程

本发明涉及硅基光电子技术领域,具体涉及一种硅酸铒晶体和硅纳米晶共镶嵌二氧化硅薄膜及其制备方法和应用。



背景技术:

随着微电子产业随着摩尔定律高速发展,单个芯片上的晶体管越来越多,传统的金属导线互连造成的信号延迟,热量释放和信号干扰的问题暴露的越来越明显,光互连由于其信号传输速度快、损耗小、不受干扰的优势成为集成电路发展的必然趋势。

目前,硅基光互连在光波导、光信号调制器、光信号放大器以及光信号探测器都有了长足的进步,唯有高效的光源,特别是适用于成熟的cmos工艺的高效低开启电压的电致发光光源没有突破。掺铒硅基光源由于er的1535nm特征发光峰位于光纤损耗最低窗口以及与现有cmos工艺适配,一直以来是人们研究热点。

科研工作者为提高er的发光效率和有效掺杂浓度,先后尝试将铒掺入体硅、氧化硅、氮化硅和氮氧化硅中,最高将er的有效掺杂浓度达到1020cm-3数量级。

硅酸铒由于其中er元素不再作为掺杂剂而是作为化合物的组成元素,并且已被证明几乎所有硅酸铒中的铒都有光学活性,即铒的有效发光浓度达到1022cm-3数量级。

有研究组用射频磁控溅射制备了掺y和掺yb的硅酸铒薄膜室温下电致发光器件(near-infraredelectroluminescenceinerybsilicatebasedlight-emittingdevice,b.wang,r.m.guo,x.j.wang,l.wang,l.y.hong,b.yin,l.f.gao,z.zhou.opticalmaterials34(2012)1371-1374):实验为以er2o3:yb2o3:sio2=1:9:10为靶,射频磁控溅射在4寸的p型硅上,厚度约为60nm。将溅射得到的薄膜在1000℃下氮气气氛中高温热处理30分钟,再在薄膜两侧溅射了铝电极和ito电极,基于晶体er0.2yb1.8sio5薄膜获得1535nm处发光的电致发光器件。但是得到电致发光的强度较低,更关键的是其开启电压在60v以上,难以投入常规的cmos工艺应用中。

为降低开启电压使薄膜可以用于常规cmos工艺中,科研工作者尝试在溅射后的薄膜中共镶嵌硅纳米晶,高宇晗博士论文研究了硅酸铒镶嵌氧化硅薄膜的制备方法(硅酸铒镶嵌氧化硅薄膜的制备及其光学性能的研究,2019年),采用射频溅射法制备富硅硅酸铒薄膜,结果发现950℃热处理后无硅酸铒晶体形成,1000℃热处理才形成硅酸铒晶体,同时也发现900℃热处理可形成硅纳米晶,但当热处理温度大于900℃时,硅纳米晶便消失了。以上结果说明其无法同时得到硅酸铒晶体和硅纳米晶。



技术实现要素:

针对本领域存在的不足之处,本发明提供了一种硅酸铒晶体和硅纳米晶共镶嵌二氧化硅薄膜的制备方法,通过对射频溅射各条件参数的优化以及后续热处理条件的相应调整,同时得到硅酸铒晶体和硅纳米晶。

一种硅酸铒晶体和硅纳米晶共镶嵌二氧化硅薄膜的制备方法,包括步骤:

(1)将p型硅片清洗后作为衬底加热;在真空下,以50~60ml/min通入ar和o2的混合气体,利用射频磁控溅射对硅靶和铒靶进行反应共溅射,在预溅射至挡板至少20min后再开始在衬底上溅射沉积薄膜;

所述混合气体中o2体积百分含量不大于1%;

(2)惰性气氛下,对步骤(1)得到的薄膜进行1050~1300℃热处理,自然降温即得所述的硅酸铒晶体和硅纳米晶共镶嵌二氧化硅薄膜。

本发明采用反应射频磁控共溅射制备含铒硅氧的薄膜,然后通过高温热处理在薄膜内形成硅酸铒晶体和硅纳米晶共镶嵌的氧化硅。本发明制备方法的关键在于:

1、ar和o2的混合气体中o2体积百分含量以及混合气体流速的严格控制;

2、射频溅射一开始不稳定,所以将其预溅射至挡板,待溅射稳定后才开始在衬底上溅射沉积薄膜;

3、后续热处理温度的适配以及采用随炉自然降温而不是骤冷。

上述各关键因素的同时把控从而保证所得薄膜同时具备硅酸铒晶体和硅纳米晶。进一步优选,所述混合气体中o2体积百分含量不大于0.5%。

作为优选,步骤(1)中,衬底加热至100℃以上,在通入ar和o2的混合气体前,先抽真空至真空度不大于2×10-3pa。

本发明制备的富硅硅酸铒薄膜中各个元素比例对最终得到的薄膜的电致发光性能有着直接影响,而各个元素比例通过共溅射时的溅射功率实现。作为优选,步骤(1)中,溅射时,硅靶功率为50~190瓦,铒靶功率为5~100瓦,溅射腔室的压强为0.1~10pa,在衬底上溅射沉积薄膜的时间为15~60min。进一步优选,所述硅靶功率为140~190w。硅靶功率的调整可辅助同时获得硅酸铒晶体和硅纳米晶。

溅射镀膜后还需进行热处理,促进硅酸铒晶体和硅纳米晶在基体中分相和激活发光中心。作为优选,步骤(2)中,1050~1300℃热处理停留时间为0.5~2h。

本发明还提供了所述的制备方法制备得到的硅酸铒晶体和硅纳米晶共镶嵌二氧化硅薄膜。

本发明还提供了所述的硅酸铒晶体和硅纳米晶共镶嵌二氧化硅薄膜在发光领域的应用,如用于制备发光二极管。

本发明还提供了一种低开启电压高效率红外发光二极管的制备方法,包括步骤:

(i)在真空下将所述的硅酸铒晶体和硅纳米晶共镶嵌二氧化硅薄膜加热至100℃以上,通入保护气体,利用直流溅射对金靶进行溅射,在p型硅一侧沉积金属电极;

(ii)在真空下,通入保护气体,将步骤(i)沉积金属电极后的薄膜加热至100℃以上,利用直流溅射对氧化铟锡靶进行溅射,在硅酸铒晶体和硅纳米晶共镶嵌二氧化硅薄膜一侧沉积薄膜,即得到所述的低开启电压高效率红外发光二极管。

作为优选,步骤(i)中,所述保护气体为ar,通入ar前,先抽真空至真空度不大于2×10-3pa,溅射时压强为1~10pa。

作为优选,步骤(ii)中,所述保护气体为ar,通入ar前,先抽真空至真空度不大于2×10-3pa,溅射时压强为0.1~1pa。

本发明还提供了所述的制备方法制备得到的低开启电压高效率红外发光二极管。制备得到的发光二极管器件具有高效的红外处发光效率,且开启电压可降低至20v以下,可应用于硅基集成光源。

本发明采用反应射频磁控共溅射制备含铒硅氧的薄膜,然后通过高温热处理在薄膜内形成硅酸铒晶体和硅纳米晶共镶嵌的氧化硅,再在薄膜两侧直流溅射上金电极和ito电极得到电致发光器件。由于薄膜内硅酸铒的存在,所有铒都有光学活性,故相较于传统的掺铒硅基光源拥有更高的红外发光效率;同时,硅纳米晶的加入大幅提高了薄膜的导电性,使器件相较于传统的纯硅酸铒电致发光器件有更低的开启电压和更高的效率。

本发明解决了现有技术中基于硅酸铒晶体的硅基掺铒光源存在的效率不高、开启电压高的问题。

本发明与现有技术相比,主要优点包括:

本发明采用较低的气体通入速率和预溅射一定时间来避免了薄膜分布不均匀的问题,成功制备了硅酸铒晶体和硅纳米晶共镶嵌的氧化硅薄膜,本发明相较于传统的掺铒硅基电致发光薄膜,采用硅酸铒这种铒的化合物来规避了传统薄膜中铒作为掺杂元素造成的固溶度低和浓度猝灭的问题;同时,相对于传统的基于纯硅酸铒晶体的发光薄膜,本发明采用了富硅薄膜在高温退火之后形成的硅纳米晶,大幅提高了薄膜的电导率,从而显著降低了器件的开启电压。整个生产工艺简单,技术成熟,具有一定的工业应用前景。

附图说明

图1为实施例中不同温度热处理后得到薄膜的xrd图谱;

图2为实施例中不同温度热处理后得到薄膜的tem和hrtem照片;

图3为实施例中不同温度热处理后得到薄膜制备的器件的电流-电压特性曲线图;

图4为实施例中不同温度热处理后得到薄膜制备的器件的可见和红外电致发光图谱;

图5为实施例中不同温度热处理后得到薄膜制备的器件的1450~1600nm电致发光积分强度和注入功率的关系图。

具体实施方式

下面结合附图及具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的操作方法,通常按照常规条件,或按照制造厂商所建议的条件。

本实施例中,基于硅酸铒晶粒和硅纳米晶共镶嵌二氧化硅的薄膜制备的电致发光器件的制备采用射频磁控溅射向(100)晶向的单面抛光电阻率ρ=0.1~1ω.cm的p型直拉单晶硅片溅射薄膜,溅射薄膜时衬底加热温度300℃,射频溅射设备背底真空度为2×10-3pa,溅射气体为含1vol%o2的高纯ar+o2混合气体和纯氩气的混合气,气体通入速率为氩氧混合气和氩气比为1:10,硅靶功率175瓦,铒靶功率为45瓦,溅射压强1pa,将溅射挡板挡住衬底,进行30分钟预溅射,待溅射稳定之后开始衬底溅射,溅射时长为35分钟,溅射之后薄膜在1100℃、氮气气氛下热处理1小时,随炉升温随炉降温,再用直流磁控溅射在p型硅一侧溅射金电极,在硅酸铒薄膜一侧溅射ito透明电极,即得到电致发光的led器件。

具体制备方法如下:

(1)对硅片进行标准的rca清洗,然后用稀氢氟酸去除硅片表面的氧化层后,将硅片放入射频溅射设备,然后抽真空至真空度为2×10-3pa,并同时将作为衬底的硅片加热至300摄氏度;在同时通入含1vol%o2的高纯ar+o2混合气体和纯氩气(含1vol%氧气的氩氧混合气和纯氩气的气体通入速率为5ml/min:50ml/min)、溅射压强1pa条件下,利用高纯硅靶和高纯铒靶,将溅射挡板挡住衬底,进行30分钟预溅射,然后再在硅单晶衬底片上溅射沉积一层富硅硅酸铒薄膜;

(2)通过真空管式炉,在高纯惰性气氛保护下对前述反应共溅射制备的富硅硅酸铒薄膜进行随炉加热,然后进行1100℃高温保温1小时热处理,之后随炉降温,从而在薄膜中形成硅酸铒晶粒和硅纳米晶粒,得到薄膜的xrd图像如图1所示,得到薄膜tem和hrtem图像如图2中(a)(b)(c)图所示。

为体现硅酸铒结晶对薄膜的红外电致发光性能的影响,在其他条件不变的情况下,改变热处理温度为1000℃和900℃为对照,得到xrd如图1所示,得到tem和hrtem图像如图2中(d)(e)图所示。

可以从xrd和tem结果看出,900℃~1100℃热处理后薄膜中都会形成硅纳米晶,但是只有在1100℃热处理后,薄膜内才形成了硅酸铒晶体(如图1和图2(c)所示)。

(3)对热处理后的样品背面(p型硅一侧)涂上少量稀氢氟酸去除表面氧化层后,将样品放入直流磁控溅射腔体内,抽真空至真空度为2×10-3pa,在通入高纯氩气、溅射压强为5pa的条件下,利用高纯金靶,在样品背面溅射沉积一层金薄膜电极;

(4)对热处理后的样品正面(富硅硅酸铒薄膜一侧)放入直流磁控溅射腔体内,抽真空至真空度为2×10-3pa,并同时将样品加热至150℃;在通入高纯氩气、溅射压强为0.2pa的条件下,利用氧化铟锡靶,在样品正面溅射沉积一层ito透明薄膜电极,即完成发光二极管器件制备;

(5)将制备好的器件通电,可以得到器件的电流-电压特性曲线如图3所示,其测试范围在0~45v,从图3可以看出,在900℃、1000℃和1100℃热处理的样品由于硅纳米晶的存在器件电致发光开启电压都在20v以下,相比于传统纯硅酸铒薄膜制备的电致发光器件开启电压大幅下降。

(6)将制备好的器件进行电致发光的测试,测试结果如图4所示,加入600℃热处理样品为对照组,可以看到,在同等电流2ma通入器件的情况下,1100℃热处理后的样品红外电致发光强度远强于900℃和1000℃的样品,而可见电致发光强度减弱;并且1100℃热处理后的样品在通入更高的电流之后,器件发光仍然保持变强,直到器件击穿。同时,图5为1450~1600nm的电致发光积分强度和通过p=i*v计算得到输入功率的曲线图,可以看到,1100℃热处理的样品相对于1000℃和900℃热处理的样品的红外电致发光积分强度保持在2倍左右,说明1100℃硅酸铒结晶之后薄膜红外电致发光效率更高。

此外应理解,在阅读了本发明的上述描述内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1