一种水煤浆气化制甲醇装置一氧化碳变换系统及方法与流程

文档序号:22168955发布日期:2020-09-11 20:56阅读:469来源:国知局
一种水煤浆气化制甲醇装置一氧化碳变换系统及方法与流程

本发明属于煤化工装置工艺设计优化和余热回收利用技术领域,涉及一种水煤浆气化制甲醇装置一氧化碳变换系统及方法,具体是变换技术在甲醇生产装置上的工业化应用。



背景技术:

来自上游水煤浆气化装置的粗合成气中co的含量较多,干基含量约为40%~47%,水气比较高,一般在1.3~1.5之间,有时高达1.7左右。在配套水煤浆气化制甲醇的变换装置技术中,需要通过一氧化碳变换催化反应将co与水反应转化成co2和h2,对工艺气体的组分进行调节,使其满足f=(h2-co2)/(co+co2)=2.0~2.15,然后进入甲醇合成装置。

现有煤制甲醇一氧化碳变换工艺中,在变换炉的进出口设置未变换气旁路管线,主要存在以下问题:(1)热量利用不合理,未变换气先被粗煤气预热器升温后,通过变换炉旁路又进入后续冷却系统,旁路管线设置不合理,造成了能量浪费;(2)从粗合成器管线到变换炉入口的管线和设备的气体负荷较大,设备投资高;(3)脱毒槽的催化剂空速大,寿命较短。

因此,结合水煤浆气化粗合成气的组分特点,合理选择和优化设计相匹配一氧化碳变换技术显得尤其重要,近些年备受行业内研究者和设计人员的广泛关注。



技术实现要素:

本发明的目的在针对现有技术存在的不足之处,而提供一种水煤浆气化制甲醇装置一氧化碳变换系统及工艺。结合煤制甲醇部分变换和能量利用的特点,优化和搭建工艺流程,提出将来自上游气化装置的粗合成气分为两股,其中一股经过粗煤气预热器升温后经过脱毒槽进入变换炉进行反应;另外一股不参与反应的未变换气,作为配气与反应后的变换气混合。在满足工艺生产要求的同时获得良好能量利用效果,并节省了投资成本。

本发明的目的可以通过以下技术方案实现:

一种水煤浆气化制甲醇装置一氧化碳变换系统,该系统包括第一气液分离器、第二气液分离器、第三气液分离器和第四气液分离器,粗合成气的输出管道与第一气液分离器相连,所述第一气液分离器顶部的输出端分为两路:其中一路通过粗煤气预热器与脱毒槽的输入端相连;

所述脱毒槽底部的输出端与变换炉顶部的输入端相连,所述变换炉底部的输出端通过粗煤气预热器与中压蒸汽过热器相连,所述中压蒸汽过热器的输出端与中压蒸汽发生器相连,另外一路与中压蒸汽发生器出口端相连后通过中低压蒸汽发生器进入第二气液分离器,所述第二气液分离器顶部的输出端通过低压蒸汽发生器与第三气液分离器相连,所述第三气液分离器经过脱盐水预热器和水冷器进入第四气液分离器,所述第四气液分离器顶部的输出端与送去界外。

上述系统中:所述的脱毒槽和变换炉为绝热固定床反应器。

一种上述的系统实现水煤浆气化制甲醇装置一氧化碳变换方法,该方法包括以下步骤:

1)来自上游水煤浆煤气化单元粗合成气进入第一气液分离器后,顶部气相分为两股气体,其中一股工艺气被粗煤气预热器加热至260~300℃后,进入脱毒槽除去杂质后,进入变换炉进行一氧化碳变换反应;

2)变换炉出口的变换气温度为390~430℃经过粗煤气预热器被降温至350~370℃后,进入中压蒸汽过热器,将饱和蒸汽过热后送至界外蒸汽管网,变换气进入中压蒸汽发生器副产饱和蒸汽;

3)变换气被进一步降至220~240℃后与另外一股未变换气混合后进入中低压蒸汽发生器,副产中低压饱和蒸汽,变换气被冷却至200~220℃后,进入第二气液分离器,底部分离液相后,顶部气相进入低压蒸汽发生器副产低压饱和蒸汽;

4)变换气被进一步冷却至165~175℃后进入第三气液分离器,顶部气相经过脱盐水预热器和水冷器被冷却至后,进入第四气液分离器,从第四气液分离器出来气体送至界外;

5)第二气液分离器和第三气液分离器的底部凝液汇合后送去气化单元,第四气液分离器的底部凝液送去界外进一步处理

上述方法中:所述的第一气液分离器顶部出口粗合成气作为未变换气的分流率为0.4~0.6。

上述方法中:所述的脱毒槽和变换炉的入口温度控制在260~300℃。

上述方法中:变换反应过程产生的热量用于副产蒸汽,蒸汽压力等级为0.4mpag~4.0mpag。

上述方法中:第一气液分离器(1)的操作温度控制在240~250℃、第二气液分离器(8)的操作温度控制在200~220℃、第三气液分离器(10)的操作温度控制在165~180℃、第四气液分离器(13)的操作温度控制在35~40℃。

本发明的有益效果:

与现有技术相比,本发明将来自上游煤气化单元的粗合成气分为两股,其中一股通过经过粗煤气预热器升温后经过脱毒槽进入变换炉进行反应;另外一股作为未变换气和变换后的工艺气混合,该股气体流量约占40%~60%,在满足工艺生产要求的前提下,极大减少了进入脱毒槽和变换炉的气体负荷,具有能量集成效果好、余热利用合理、建设投资省等特点。

附图说明

图1是本发明的工艺流程示意图。

图中:1-第一气液分离器,2-粗煤气预热器,3-脱毒槽,4-变换炉,5-中压蒸汽过热器,6-中压蒸汽发生器,7-中低压蒸汽发生器,8-第二气液分离器,9-低压蒸汽发生器,10-第三气液分离器,11-脱盐水预热器,12-水冷器,13-第四气液分离器。

具体实施方式

下面结合实施例对本发明做进一步说明,但本发明的保护范围不限于此:

一种水煤浆气化制甲醇装置一氧化碳变换系统及工艺,其特征在于:该系统包括第一气液分离器(1)、第二气液分离器(8)、第三气液分离器(10)和第四气液分离器(13);粗合成气的输出管道与第一气液分离器(1)相连,所述第一气液分离器(1)顶部的输出端分为两股:其中一股通过粗煤气预热器(2)与脱毒槽(3)的输入端相连;所述脱毒槽(3)底部的输出端与变换炉(4)顶部的输入端相连,所述变换炉(4)底部的输出端通过粗煤气预热器(2)与中压蒸汽过热器(5)相连,所述中压蒸汽过热器(5)的输出端与中压蒸汽发生器(5)相连,另外一股与中压蒸汽发生器(5)出口端相连后通过中低压蒸汽发生器(7)进入第二气液分离器(8),所述第二气液分离器(8)顶部的输出端通过低压蒸汽发生器(9)与第三气液分离器(10)相连,所述第三气液分离器(10)经过脱盐水预热器(11)和水冷器(12)进入第四气液分离器(13)。所述第四气液分离器(13)顶部的输出端与送去界外。

实施例1

来自上游水煤浆煤气化单元的439105kg/h粗合成气(主要成分为co、h2、co2、h2s、h2o等,6.25mpa),进入第一气液分离器(1),该设备操作温度控制在240℃,经过气液分离后,顶部气相分为两股气体,其中一股占总气量的60%,被粗煤气预热器(2)加热至260℃后,进入脱毒槽除去杂质后,进入变换炉进行一氧化碳变换反应,该反应为强放热过程,变换炉出口的变换气温度升高至390℃后,经过粗煤气预热器(2)被降温至350℃后,进入中压蒸汽过热器,将饱和蒸汽过热至300℃后送至界外蒸汽管网,变换气进入中压蒸汽发生器副产饱和蒸汽(2.5mpa,31500kh/h),变换气被进一步降低至226℃后与另外一股约占粗合成气总量40%的未变换气混合后进入中低压蒸汽发生器,副产中低压饱和蒸汽(1.0mpa,97500kg/h),变换气被冷却至200℃后进入第二气液分离器,该设备操作温度控制在200℃,底部分离液相后,顶部气相进入低压蒸汽发生器副产低压饱和蒸汽(0.4mpa,65000kg/h),变换气被进一步冷却至165℃后进入第三气液分离器,同时该设备操作温度控制在165℃,顶部气相经过脱盐水预热器和水冷器被冷却后,进入第四气液分离器,该设备操作温度控制在35℃,从第四气液分离器出来238792kg/h气体送至界外。第二气液分离器和第三气液分离器的底部凝液汇合后送去气化单元,第四气液分离器的底部凝液送去界外进一步处理。

实施例2

来自上游水煤浆煤气化装置的439105kg/h粗合成气(主要成分为co、h2、co2、h2s、h2o等,6.25mpa),进入第一气液分离器(1),该设备操作温度控制在245℃,经过气液分离后,顶部气相分为两股气体,其中一股占总气量的50%,被粗煤气预热器(2)加热至280℃后,进入脱毒槽除去杂质后,进入变换炉进行一氧化碳变换反应,该反应为强放热过程,变换炉出口的变换气温度升高至410℃后,经过粗煤气预热器(2)被降温至359℃后,进入中压蒸汽过热器,将饱和蒸汽过热至300℃后送至界外蒸汽管网,变换气进入中压蒸汽发生器副产饱和蒸汽(2.5mpa,28500kh/h),变换气被进一步降低至220℃后与另外一股约占粗合成气总量50%的未变换气混合后进入中低压蒸汽发生器,副产中低压饱和蒸汽(1.0mpa,98800kg/h),变换气被冷却至210℃,进入第二气液分离器,该设备操作温度控制在210℃,底部分离液相后,顶部气相进入低压蒸汽发生器副产低压饱和蒸汽(0.4mpa,76000kg/h),变换气被进一步冷却至169℃后进入第三气液分离器,同时该设备操作温度控制在169℃,顶部气相经过脱盐水预热器和水冷器被冷却后,进入第四气液分离器,该设备操作温度控制在38℃,从第四气液分离器出来232547kg/h气体送至界外。第二气液分离器和第三气液分离器的底部凝液汇合后送去气化单元,第四气液分离器的底部凝液送去界外进一步处理。

实施例3

来自上游水煤浆煤气化装置的439105kg/h粗合成气(主要成分为co、h2、co2、h2s、h2o等,6.25mpa),进入第一气液分离器(1),该设备操作温度控制在250℃,经过气液分离后,顶部气相分为两股气体,其中一股占总气量的40%,被粗煤气预热器(2)加热至300℃后,进入脱毒槽除去杂质后,进入变换炉进行一氧化碳变换反应,该反应为强放热过程,变换炉出口的变换气温度升高至430℃后,经过粗煤气预热器(2)被降温至370℃后,进入中压蒸汽过热器,将饱和蒸汽过热至320℃后送至界外蒸汽管网,变换气进入中压蒸汽发生器副产饱和蒸汽(4.0mpa,18500kh/h),变换气被进一步降低至237℃后与另外一股约占粗合成气总量60%的未变换气混合后进入中低压蒸汽发生器,副产中低压饱和蒸汽(1.0mpa,11500kg/h),变换气被冷却至220℃,进入第二气液分离器,该设备操作温度控制在220℃,底部分离液相后,顶部气相进入低压蒸汽发生器副产低压饱和蒸汽(0.4mpa,58000kg/h),变换气被进一步冷却至175℃后进入第三气液分离器,同时该设备操作温度控制在175℃,顶部气相经过脱盐水预热器和水冷器被冷却后进入第四气液分离器,该设备操作温度控制在40℃,从第四气液分离器出来226550kg/h气体送至界外。第二气液分离器和第三气液分离器的底部凝液汇合后送去气化单元,第四气液分离器的底部凝液送去界外进一步处理。

上述实施例和说明书中描述的只是说明本发明创造的原理,并不因此而限定本发明的保护范围,在不脱离本发明创造精神和范围的前提下,本技术发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明未涉及部分均与现有技术相同或可采用现有技术加以实现。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1