一种铬酸稀土基多孔导电高熵陶瓷的制备方法及应用与流程

文档序号:29068136发布日期:2022-03-01 20:10阅读:350来源:国知局
一种铬酸稀土基多孔导电高熵陶瓷的制备方法及应用与流程

1.本发明属于多孔高熵陶瓷领域,具体涉及一种铬酸稀土基多孔导电高熵陶瓷材料的制备方法及应用。


背景技术:

2.高熵陶瓷通常指由5种或5种以上陶瓷组元形成的固溶体,其具有非常优异的高熵效应及性能。2004年中国台湾的叶均蔚教授提出了高熵合金的概念,2015年,美国北卡罗莱纳州立大学的rost、maria和杜克大学的curtarolo等报道了一种岩盐结构的熵稳定氧化物陶瓷,高熵陶瓷的概念由此被提出。高熵陶瓷主要有以下四个特点:(1)热力学的高熵效应;(2)结构的晶格畸变效应;(3)动力学的迟滞扩散效应;(4)性能上的“鸡尾酒”效应。
3.从上世纪70年代开始,铬酸镧做为固体氧化物燃料电池连接体材料,其在各种气氛下均具有良好的导电性能,铬酸镧本身导电性能很差,但是通过碱土金属掺杂之后可极大幅度提高其导电性能,这是因为晶体中的镧被二价碱土金属取代后,为保持自身的电中性,铬原子由三价变为四价并形成电子空位,从而成为了一种p型半导体。根据现有文献,高熵化会降低材料的热导率、提高电导率和塞贝克系数,从而提高材料的热电性能。
4.多孔陶瓷可分为微孔陶瓷、介孔陶瓷和大孔陶瓷,其中微孔陶瓷指孔径小于2nm的多孔陶瓷,介孔陶瓷指孔径介于2nm和50nm之间的多孔陶瓷,大孔陶瓷指孔径大于50nm的多孔陶瓷。目前多孔陶瓷的制备方法主要有四种,分别是部分烧结法、牺牲模板法、复制模板法和直接发泡法。多孔陶瓷的应用领域广泛,在催化、催化剂载体、耐火绝缘材料等领域均有非常广泛的应用。


技术实现要素:

5.本发明提供一种铬酸稀土基高熵陶瓷粉体,其化学式为(nre
x
maey)cro3;
6.其中,re为稀土元素;所述稀土元素选自sc、y、la、ce、pr、nd、sm、eu、gd、tb、dy、er、tm、yb、lu中的n种;
7.ae为碱土金属;所述碱土金属选自ca、sr、ba中的m种;
8.n为稀土元素re的种类数,选自4-15的数,如4、5、6、7、8、9、10、11或12;
9.m为碱土金属ae的种类数,选自1、2或3;
10.x为稀土元素re在一个高熵陶瓷粉体分子中占的个数,选自0.1-0.6,如0.2、0.3、0.4、0.5;
11.y为碱土金属ae在一个高熵陶瓷粉体分子中占的个数,选自0.1-0.6,如0.2、0.3、0.4、0.5;
12.且,n
×
x+m
×
y=1。
13.根据本发明的实施方案,所述铬酸稀土基高熵陶瓷粉体,其化学式为(4re
0.2
ae
0.2
)cro3;
14.re选自钪(sc)、钇(y)、镧(la)、铈(ce)、镨(pr)、钕(nd)、钐(sm)、铕(eu)、钆(gd)、
铽(tb)、镝(dy)、铒(er)、铥(tm)、镱(yb)、镥(lu)中的4种;
15.ae选自钙(ca)、锶(sr)、钡(ba)中的1种。
16.根据本发明的实施方案,所述铬酸稀土基高熵陶瓷粉体,具体为(la
0.2y0.2
nd
0.2
gd
0.2
sr
0.2
)cro3、(la
0.2
nd
0.2
sm
0.2
gd
0.2
sr
0.2
)cro3、(la
0.2y0.2
gd
0.2
yb
0.2
sr
0.2
)cro3、(la
0.2y0.2
sm
0.2
eu
0.2
ca
0.2
)cro3、(la
0.2y0.2
nd
0.2
yb
0.2
sr
0.2
)cro3。
17.根据本发明的实施方案,所述铬酸稀土基高熵陶瓷粉体具有基本如图5所示的xrd谱图。
18.本发明还提供所述铬酸稀土基高熵陶瓷粉体的制备方法,包括以下方案(一)和/或方案(二):
19.根据本发明的实施方案,所述方案(一),即高温固相合成法,包括以下步骤:
20.(1-1)将三氧化二铬、re氧化物和ae氧化物混合后研磨,得到的混合物经过干燥、过筛、压块,得到致密的坯体;
21.(1-2)将所述坯体经过烧结、保温,得到预处理铬酸稀土基高熵陶瓷;
22.(1-3)所述铬酸稀土基高熵陶瓷碎样处理后,得到所述高熵陶瓷粉体;
23.根据本发明的实施方案,所述re氧化物选自氧化钪、氧化钇、氧化镧、氧化铈、氧化镨、氧化钕、氧化钐、氧化铕、氧化钆、氧化铽、氧化镝、氧化铒、氧化铥、氧化镱、氧化镥中的至少四种;
24.根据本发明的实施方案,所述ae氧化物选自氧化钙、氧化钡或氧化锶中的至少一种;
25.根据本发明的实施方案,步骤(1-1)中ae氧化物+re氧化物中总的金属元素与cr元素的摩尔比为1:1;优选地,re氧化物中各金属元素与ae氧化物中金属元素的摩尔比为1:1;
26.根据本发明的实施方案,步骤(1-2)中烧结温度为1200-1800℃,例如1600℃;所述保温时间为2-24h,例如6h、12h;
27.根据本发明的实施方案,步骤(1-3)中,所述碎样处理的时间为5-30s,设备为碳化钨震动磨样机。
28.根据本发明的实施方案,步骤(1-1)中所述研磨为球磨,所述球磨为高能球磨。所述高能球磨的转速为200-700rpm;所述高能球磨的时间为6-24h;所述球磨模式为工作2min,暂停4min,正反转依次轮换;所述球磨所用的球为氧化锆球,氧化锆球与粉体原料的质量比为(2-20):1;球磨球中大球、中球和小球的质量比为1:(1-3):1,亦可只是用小球。
29.根据本发明的实施方案,步骤(1-1)中所述干燥温度为60-90℃,例如80℃,进一步地,所述的干燥时间为12-24h,例如16h。
30.根据本发明的实施方案,步骤(1-1)中所述压块的压力为5-15mpa,例如10mpa;所述压块的压制时间为0.5-5min,例如1min。
31.根据本发明的实施方案,步骤(1-1)中所述烧结温度为1200-1800℃,例如1600℃;所述保温时间为2-24h,例如6h、12h。
32.根据本发明的实施方案,所述方案(二),即溶胶-凝胶法,包括以下步骤:
33.(2-1)包含铬盐、ae盐、re盐、有机螯合剂和分散剂的混合物,加热回流,反应得到铬酸稀土基溶胶;
34.(2-2)所述溶胶经蒸发、干燥处理,得到铬酸稀土基凝胶;
35.(2-3)所述铬酸稀土基凝胶研磨后煅烧,得到所述的铬酸稀土基高熵陶瓷粉体;
36.根据本发明的实施方案,所述铬盐选自铬的硝酸盐、硫酸盐、氯酸盐及其水合物,例如硝酸铬、九水合硝酸铬;
37.根据本发明的实施方案,所述ae盐选自re的硝酸盐、硫酸盐、氯酸盐及其水合物,例如硝酸锶;
38.根据本发明的实施方案,所述re盐选自re的硝酸盐、硫酸盐、氯酸盐及其水合物,例如硝酸钪、硝酸钇、硝酸镧、硝酸铈、硝酸镨、硝酸钕、硝酸钐、硝酸铕、硝酸钆、硝酸铽、硝酸镝、硝酸铒、硝酸铥、硝酸镱、硝酸镥、六水合硝酸镧、六水合硝酸钇、六水合硝酸钕、六水合硝酸钆中的至少四种;
39.根据本发明的实施方案,所述有机螯合剂选自柠檬酸、一水合柠檬酸或草酸中的至少一种;
40.根据本发明的实施方案,所述分散剂选自乙二醇、丙二醇、丁二醇、聚乙二醇中的至少一种;
41.根据本发明的实施方案,步骤(2-1)中ae盐+re盐中总的金属元素与cr元素的摩尔比为1:1;优选地,re盐中各金属元素与ae盐中金属元素的摩尔比为1:1;
42.根据本发明的实施方案,步骤(2-1)中,金属离子总摩尔量与柠檬酸的摩尔比为1:(0.6-5),例如1:(1.1-2),如1:1.2;
43.根据本发明的实施方案,步骤(2-1)中,所述柠檬酸与乙二醇的质量比为1:(0.6-5),例如1:(1.1-2),如1:1.2;
44.根据本发明的实施方案,步骤(2-1)中,所述加热回流的温度为50-120℃,例如70-90℃;
45.根据本发明的实施方案,步骤(2-1)中,所述加热回流条件下保持搅拌,搅拌速度为300-800rpm,例如500rpm;
46.根据本发明的实施方案,步骤(2-1)中,所述反应的时间为1-12h,例如2-8h,如4h。
47.根据本发明的实施方案,步骤(2-2)中,所述蒸发的温度为70-90℃,例如80℃;所述蒸发的时间为2-24,例如3h、6h、12h。
48.根据本发明的实施方案,步骤(2-2)中,所述干燥处理的温度为60-100℃,例如80℃。
49.根据本发明的实施方案,步骤(2-3)中,所述煅烧的温度为900-1800℃,例如1600℃;所述煅烧时间为2-12h,例6h、8h。
50.本发明还提供一种铬酸稀土基多孔导电高熵陶瓷材料,其由上述铬酸稀土基高熵陶瓷粉体制备得到。
51.根据本发明的实施方案,所述铬酸稀土基多孔高熵铁酸稀土陶瓷材料的孔径为0.1-25μm。
52.根据本发明的实施方案,所述的孔均匀分布在所述铬酸稀土基多孔导电高熵陶瓷材料中,优选地,所属孔为通孔。
53.根据本发明的实施方案,所述铬酸稀土基多孔导电高熵陶瓷材料的电阻率为2-25ω
·
cm,例如为6.06315ω
·
cm,15.18432ω
·
cm,18.01063ω
·
cm,20.98722ω
·
cm。
54.本发明还提供一种所述铬酸稀土基多孔导电高熵陶瓷材料的制备方法,包括如下
步骤(a)和/或步骤(b):
55.步骤(a):将上述方案(一)和/或方案(二)中得到的铬酸稀土基高熵陶瓷粉体与成孔剂a、水和任选添加或不添加的粘结剂混合研磨,得到的混合物经干燥、压块得到致密的坯体,所述的坯体经烧结,得到所述的铬酸稀土基多孔导电高熵陶瓷材料;
56.根据本发明的实施方案,所述成孔剂a为纤维素纳米纤维、纤维素纳米晶和纤维素粉中的至少一种。所述纤维素纳米纤维的直径为4-10nm,长为1-3μm;例如直径4-8nm,长为1.5-2μm;所述纤维素纳米晶的直径为5-20nm,长为50-200nm;例如直径为8-16nm,长为80-150nm;所述纤维素粉粒径≤25μm,例如纤维素粉粒径≤15μm。
57.根据本发明的实施方案,方案(a)中,所述铬酸稀土基高熵陶瓷粉体与成孔剂a的质量比为1:(0.1-0.5),例如1:0.16、1:0.3。
58.根据本发明的实施方案,方案(a)中,所述粘结剂为pvp、pvb、聚乙二醇等中的至少一种。进一步地,所述粘结剂与所述铬酸稀土基高熵陶瓷粉体的质量比为(0.01-0.1):1,例如(0.03-0.08):1,如0.05:1。
59.根据本发明的实施方案,方案(a)所述研磨为球磨,所述球磨为高能球磨。所述高能球磨的转速为200-700rpm;所述高能球磨的时间为6-24h;所述球磨模式为工作2min,暂停4min,正反转依次轮换;所述球磨所用的球为氧化锆球,氧化锆球与粉体原料的质量比为(2-20):1;球磨球中大球、中球和小球的质量比为1:(1-3):1,亦可只是用小球。
60.根据本发明的实施方案,方案(a)所述干燥温度为60-90℃,例如80℃,进一步地,所述的干燥时间为12-24h,例如16h。
61.根据本发明的实施方案,方案(a)所述压块的压力为5-15mpa,例如10mpa;所述压块的压制时间为0.5-5min,例如1min。
62.根据本发明的实施方案,方案(a)所述烧结温度为1200-1800℃,例如1600℃;所述保温时间为2-24h,例如6h、12h。
63.步骤(b):上述方案(一)和/或方案(二)中得到的铬酸稀土基高熵陶瓷粉体与成孔剂b形成的胶体经冷冻干燥后,烧结、保温得到所述铬酸稀土基多孔导电高熵陶瓷材料;
64.根据本发明的实施方案,所述成孔剂b为三聚氰胺-二硼酸盐微纤维溶胶。
65.根据本发明的实施方案,方案(b)中,所述铬酸稀土基高熵陶瓷粉体与成孔剂b的摩尔比为1:(0.1-0.5),例如1:(0.2-0.4)。
66.根据本发明的实施方案,方案(b)中,所述铬酸稀土基高熵陶瓷粉体与成孔剂b混合,加热条件下搅拌形成悬浮液,所述悬浮液自然冷却至室温形成胶体。其中,所述加热的温度为85-95℃,实施例中为90℃,其中所述搅拌为高速搅拌。
67.根据本发明的实施方案,方案(b)中,所述冷冻干燥的温度为-40℃
--
90℃,例如-80℃;所述冻干时间为12-72h,例如36h。
68.根据本发明的实施方案,方案(b)所述烧结温度为1200-1800℃,例如1600℃;所述保温时间为2-24h,例如6h、12h。
69.本发明还提供所述铬酸稀土基多孔导电高熵陶瓷材料在催化、催化剂载体、耐火绝缘材料中的应用。
70.有益效果
71.本发明提供了一种铬酸稀土基高熵陶瓷粉体,并将其多孔化,制备了铬酸稀土基
多孔导电高熵陶瓷。利用纤维素和三聚氰胺造孔,降低了材料热导率,而且这两种成孔剂含碳量均较低,防止烧结过程中的碳化,同时不会引入杂质。利用三聚氰胺成孔可通过降温凝胶方式形成块体,免去了压片成型的步骤。通过孔隙率的升高,最终得到的多孔陶瓷的热导率降低至了0.3w/mk以下,多孔化增加了陶瓷的韧性,而且通过对成孔剂的加入量、种类以及烧结温度的改变使得孔径在0.1-25μm范围可控,在热电转化方面表现优异。
72.本发明提供多种多孔高熵陶瓷制备工艺,工艺简单易行,合成的晶粒细小均匀。采用高温固相合成或溶胶-凝胶法,流程简单而操作条件可控,易于产业化推广。
附图说明
73.图1为本发明的高温固相合成制备铬酸稀土基多孔导电高熵陶瓷工艺流程图。
74.图2为本发明的溶胶-凝胶法制备铬酸稀土基多孔导电高熵陶瓷工艺流程图。
75.图3为本发明实施例2中合成的(la
0.2y0.2
nd
0.2
gd
0.2
sr
0.2
)cro3导电高熵陶瓷粉体的xrd图谱。
76.图4为本发明实施例2中合成的(la
0.2y0.2
nd
0.2
gd
0.2
sr
0.2
)cro3多孔导电高熵陶瓷的sem图及eds元素分布图。
77.图5为本发明制备的其他部分铬酸稀土基高熵陶瓷粉体的xrd图谱。
78.图6为本发明制备的部分铬酸稀土基多孔导电高熵陶瓷的电阻率图。
具体实施方式
79.下文将结合具体实施例对本发明的技术方案做更进一步的详细说明。应当理解,下列实施例仅为示例性地说明和解释本发明,而不应被解释为对本发明保护范围的限制。凡基于本发明上述内容所实现的技术均涵盖在本发明旨在保护的范围内。
80.除非另有说明,以下实施例中使用的原料和试剂均为市售商品,或者可以通过已知方法制备。
81.实施例1一种铬酸稀土基多孔导电高熵陶瓷材料的制备,经过以下步骤(流程如图1所示):
82.(1)分别称取0.0125mol的la2o3、y2o3、nd2o3、yb2o3、0.025mol的sro2、以及0.0625mol的cr2o3粉置于500ml氧化锆球磨罐中,加入30ml超纯水,74g氧化锆小球进行高能球磨,控制球磨机转速400rpm,球磨24h;
83.(2)将球磨后的混合物置于80℃条件下干燥24h,完成后过200目标准筛进行筛分,而后将粉体进行压块,设置压块机压力为10mpa,压制1min,压制完成后将坯体a放入马弗炉中进行烧结,控制烧结温度1500℃,升温速度为2℃/min,保温时间2h,反应完成后将其置于碳化钨震动碎样机中,时长10s,得到铬酸稀土基高熵陶瓷粉体(la
0.2y0.2
nd
0.2
yb
0.2
sr
0.2
)cro3;
84.(3)称取30g铬酸稀土基高熵陶瓷粉体(la
0.2y0.2
nd
0.2
yb
0.2
sr
0.2
)cro3,6g纤维素纳米纤维(其直径4-10nm,长度为1-3μm)-成孔剂a,置于500ml氧化锆球磨罐中进行球磨,加入100ml超纯水,72g氧化锆小球,进行高能球磨,控制球磨机转速400rpm,球磨24h;
85.(4)将球磨后的混合物置于80℃条件下干燥24h,完成后过100目标准筛进行筛分,而后将粉体进行压块,设置压块压力为10mpa,压制1min,压制完成后将坯体b放入马弗炉中
进行烧结,控制烧结温度1600℃,升温速度2℃/min,保温时长6h,即可得到铬酸稀土基多孔导电高熵陶瓷材料(la
0.2y0.2
nd
0.2
yb
0.2
sr
0.2
)cro3。
86.实施例2一种铬酸稀土基多孔导电高熵陶瓷材料的制备,经过以下步骤:
87.(1)分别称取0.006mol的la(no3)3·
6h2o、y(no3)3·
6h2o、nd(no3)3·
6h2o、gd(no3)3·
6h2o、sr(no3)2,0.03mol的cr(no3)3·
9h2o以及0.072mol的一水合柠檬酸置于200ml圆底烧瓶中,配置成总金属离子浓度为0.4mol
·
l-1
的水溶液,再添加18.1561g的乙二醇作为分散剂;
88.(2)将上述溶液在80℃条件下进行加热回流,控制搅拌速度500rpm,反应4h,形成溶胶,将溶胶在80℃条件下蒸发3h,完成后,在80℃条件下干燥6h,得到干凝胶,然后将凝胶在1250℃下焙烧2h,得到铬酸稀土基高熵陶瓷粉体(la
0.2y0.2
nd
0.2
gd
0.2
sr
0.2
)cro3;
89.(3)称取30g铬酸稀土基高熵陶瓷粉体(la
0.2y0.2
nd
0.2
gd
0.2
sr
0.2
)cro3,9g纤维素纳米晶-成孔剂a,置于500ml的氧化锆球磨罐中进行球磨,加入100ml超纯水,300g氧化锆球(大中小球质量比=1:2:1)进行高能球磨,控制球磨机转速500rpm,球磨24h;
90.(4)将球磨后的混合物置于90℃条件下干燥后12h,完全干燥后进行压块,设置压块压力为10mpa,压制1min,压制完成后将块体放入马弗炉中进行烧结,控制烧结温度为1600℃,升温速度为2℃/min,保温时间为24h,即可得到铬酸稀土基多孔导电高熵陶瓷。
91.实施例3一种铬酸稀土基多孔导电高熵陶瓷材料的制备,经过以下步骤(流程如图2所示):
92.(1)分别称取0.006mol的la(no3)3·
6h2o、y(no3)3·
6h2o、nd(no3)3·
6h2o、gd(no3)3·
6h2o、sr(no3)2,0.03mol的cr(no3)3·
9h2o以及0.072mol的一水合柠檬酸置于200ml圆底烧瓶中,配置成总金属离子浓度为0.4mol
·
l-1
的水溶液,再添加18.1561g的乙二醇作为分散剂;
93.(2)将上述溶液在80℃条件下进行加热回流,控制搅拌速度500rpm,反应4h,形成溶胶,将溶胶在80℃条件下蒸发3h,完成后,在80℃条件下干燥6h,得到干凝胶,然后将凝胶在1250℃下焙烧2h,得到铬酸稀土基高熵陶瓷粉体(la
0.2y0.2
nd
0.2
gd
0.2
sr
0.2
)cro3;
94.(3)分别量取50ml 0.03mol
·
l-1
三聚氰胺与硼酸,将二者等比例混合,在90℃条件下反应1h制备得到三聚氰胺-二硼酸盐微纤维溶胶,然后加入30g铬酸稀土基高熵陶瓷粉体(la
0.2y0.2
nd
0.2
gd
0.2
sr
0.2
)cro3,在80℃条件下高速搅拌1h形成悬浮液,悬浮液自然冷却至室温后进行-80℃冷冻干燥,干燥时间36h,完全干燥后将凝胶放入马弗炉中进行烧结,控制烧结温度为1600℃,升温速度为2℃/min,保温时间2h,即可得到铬酸稀土基多孔导电高熵陶瓷(la
0.2y0.2
nd
0.2
gd
0.2
sr
0.2
)cro3。
95.实施例4性能测试
96.本发明对实施例1-3制备的铬酸稀土基多孔导电高熵陶瓷性能进行测试;
97.热电性能测试:在室温-800℃温度范围内,使用热电性能测定仪(型号zem-3)对其热电性能进行测试。
98.机械性能测试:使用万能试验平台对其机械性能进行测试。
99.以上,对本发明的实施方式进行了说明。但是,本发明不限定于上述实施方式。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1