一种高含铈掺钪钆铁石榴石磁光晶体及其制备方法和应用与流程

文档序号:23339783发布日期:2020-12-18 16:35阅读:279来源:国知局
一种高含铈掺钪钆铁石榴石磁光晶体及其制备方法和应用与流程

本发明属于磁光晶体制备领域,具体涉及一种高含铈掺钪钆铁石榴石磁光晶体及其制备方法和应用。



背景技术:

随着光子、光通信以及光电子集成电路的发展,人类进入了信息时代。信息技术的快速发展也给光通讯材料提出了新的要求。作为光功能信息材料核心材料之一的磁光材料,发展与应用前景广阔,已经备受研究人员瞩目。其中,稀土铁石榴石材料具有法拉第旋转角较大、光吸收系数较小、磁光优值较高、磁化强度较高等的优点,已经被应用于光隔离器、磁光存储器、磁光环形器、磁光调制器等多种非互易性磁光器件中。

与目前商用的钇铁石榴石(yig)和掺铋稀土铁石榴石(bi:rig)磁光材料相比,掺铈稀土铁石榴石(ce:rig)晶体及薄膜拥有更加优异的磁光性能,具有温度系数小、磁光优值高且成本低廉等优点。在同等掺杂浓度条件下,ce:yig晶体的比法拉第旋转角是掺铋的6倍。因而,相关研究一直是磁光材料领域的热点。但由于ce3+半径偏大,掺杂进入稀土铁石榴石十二面体晶格比较困难;且由于ce3+易被氧化为ce4+,而非磁性ce4+对磁光无贡献,这对于制备高掺ce3+稀土铁石榴石晶体又增加了难度。到目前为止,已报道的ce最高掺杂浓度是t.sekijima等人采用浮区法生长的ce0.5y2.5fe5o12晶体,其在1550nm处的比法拉第旋转角达到-1300deg/cm,但ce浓度的更高的ce0.6y2.4fe5o12晶体内部开始出现ceo2杂相(t.sekijima,h.itoh,t.fujii,k.wakino,m.okada,influenceofgrowthatmosphereonsolubilitylimitofce3+ionsince-substitutedfibrousyttriumirongarnetsinglecrystals.journalofcrystalgrowth,2001(229):409-414)。因此,为了获得高掺ce3+稀土铁石榴石晶体,首先需要通过选择合适掺杂离子来稳定高掺ce3+稀土铁石榴石结构。本发明研究发现,与y3+离子相比,gd3+离子的半径更接近ce3+离子的半径,这有利于将ce3+离子掺杂到gd3fe5o12晶体中,同时,掺杂适量sc3+则有助于稳定rig石榴石结构,并使晶格膨胀,也有助于提高晶体中ce掺杂量,同时增强了晶体的饱和磁化强度,进而增强了晶体磁光性能,ca掺杂则有利于降低材料吸收系数。此外,ce,sc:gig晶体生长的相关研究暂未见文献报道。

其次,ce:rig晶体由于稀土铁石榴石材料的非一致熔融性,因而生长困难,无法采用传统的提拉法进行生长获得大尺寸单晶。目前相继发展了液相外延法、高温溶液法和激光浮区法进行此类晶体的生长。高温溶液法易获得单晶,但存在晶体生长速率慢、周期长,且ce分凝系数低(0.07~0.12)等缺点。激光浮区法所生长晶体直径小,且设备昂贵,难以用于实际生产与大型磁光器件应用需求。液相外延法目前仅日本和美国成熟掌握此工艺来生长bi:rig单晶薄膜,厚度小于0.5mm,且需要采用昂贵的钙镁锆掺杂钆镓石榴石晶体(camgzrggg)作为外延基底。此外高温溶液法和液相外延法选用的pb体系助溶剂易腐蚀坩埚,且对人体和环境有害。

因此,探索一种快速、低成本的高含ce3+的稀土石榴石晶体生长新方法是该材料获得应用的关键。本发明首次通过导模提拉法生长了高含铈掺钪钆铁石榴石晶体。此方法可制备厘米级尺寸的高含铈掺钪钆铁石榴石晶体,具有晶体制备成本低,生长速率快,周期短,易于晶体后加工、光学均匀性好等优点。通过适量掺杂sc则有助于稳定rig石榴石结构,并使晶胞膨胀,利于提高ce在晶体中的掺杂量,并且增强了晶体的磁性与磁光性能。对所生长的gd3-x-ycexcaysczfe5-z-wvwo12,(x=0.33-0.54,y=0.02-0.06,z=0.45-0.96,w=0.01)晶体的物相分析、透过光谱、磁滞回线、法拉第旋转角等测试,表明该晶体材料物相纯度高、光学透过性能好、磁性增强、法拉第旋转角大。采用此方法生长的高含铈掺钪钆铁石榴石晶体则有望用于各种磁光器件的制备。



技术实现要素:

本发明涉及一种高含铈掺钪钆铁石榴石磁光晶体及其制备方法和应用。采用导模提拉法生长了化学式为gd3-x-ycexcaysczfe5-z-wvwo12,(x=0.33-0.54,y=0.02-0.06,z=0.45-0.96,w=0.01)磁光晶体。该方法可简化晶体后加工工艺,降低晶体制备的成本,且晶体生长速率快,光学均匀性好,可制备厘米级尺寸单晶。通过适量掺杂sc则有助于稳定rig石榴石结构,并使晶胞膨胀,利于提高ce在晶体中的掺杂量,并且增强了晶体磁性,提升了晶体的磁光性能。该晶体有望在磁光隔离器、磁光环形器、磁光调制器等器件中获得实际应用。

为实现上述发明目的,本发明采用如下技术方案:

一种高含铈掺钪钆铁石榴石磁光晶体及其制备方法,所述晶体化学式为gd3-x-ycexcaysczfe5-z-wvwo12,(x=0.33-0.54,y=0.02-0.06,z=0.45-0.96,w=0.01),属于立方晶系,空间群为iad,晶格常数为12.55-12.58å,是一种稀土铁石榴石结构,其中ce、ca掺杂进入十二面体格位,sc掺杂择优占据八面体格位,v掺杂进入四面体格位。

一种高含铈掺钪钆铁石榴石磁光晶体的制备方法,包括如下具体步骤:

(1)多晶原料合成:按照化学计量比称取高纯的gd2o3、fe2o3药品,经研磨混合均匀压片后在800℃下预烧结10h,然后在1300℃下烧结10h,取出后研磨压片在1300℃下二次烧结10h后获得gd3fe5o12多晶原料。将化学计量比的ceo2、nh4vo3的粉末经混合均匀、压片后进行升温烧结,烧结时分别在200℃、400℃、670℃以及800℃各恒温2h,获得cevo4多晶粉末。将化学计量比的caco3、fe2o3粉末经研磨、压片后在900℃预烧结10h,然后在1100℃烧结10h获得cafe2o4多晶粉末。

(2)单晶生长:采用导模提拉法进行单晶生长。按比例混合的多晶原料是由gd3fe5o12、gafe2o4、cevo4、ceo2、sc2o3中的一种或几种化合物与fe2o3组成,其中gd+ce/(gd+ce+fe+sc+v)的摩尔百分数为20.0~23.1%、sc/(fe+sc+v)的摩尔百分数为4.85~9.68%、ce/(gd+ce)的摩尔百分数为37.1~53.2%、ca/(ca+gd+ce)的摩尔百分数为0.5~2.1%、v/(fe+sc+v)的摩尔百分数为1.32~1.39%的比例计算。准确称量后加入坩埚,加热坩埚使多晶原料熔化。生长温度为1500~1550℃,接近固液生长界面处的轴向温度梯度为10~20℃,提拉速率为0.3~1mm/h,晶体转速为5~10r/min,生长气氛为惰性气体气氛。

(3)晶体退火:步骤(2)晶体生长结束后,将晶体提起脱离导模模具上表面熔体1~2mm,然后设定降温程序,以30~50℃/h的降温速率退火至室温,获得晶体。

所制备的高含铈掺钪钆铁石榴石磁光晶体经定向、切割、抛光、镀膜后可有望在磁光隔离器、磁光环形器、磁光调制器等器件中获得实际应用。

本发明的有益效果在于:

(1)本发明的高含铈掺钪钆铁石榴石磁光晶体gd3-x-ycexcaysczfe5-z-wvwo12,(x=0.33-0.54,y=0.02-0.06,z=0.45-0.96,w=0.01),属于立方晶系,空间群为iad,晶格常数为12.55-12.58å。该磁光晶体物相纯度高,结晶性好,光学均匀性好。

(2)本发明中可通过调整晶体生长时的原料比例,进而调控晶体中sc和ce的含量。适量的sc掺杂有助于增强晶体磁性,同时也促使晶胞膨胀,进而提高ce含量。

(3)本发明的高含铈掺钪钆铁石榴石磁光晶体具有较好的光学透过性能、较高的饱和磁化强度和较优的磁光性能。当晶体化学式为gd2.44ce0.54ca0.02sc0.45fe4.54v0.01o12时,饱和磁化强度为11.5emu/g,比法拉第旋转角达到1534deg/cm,比商用bi:rig提高了70.4%。表明该材料磁光性能优异,有望在磁光隔离器、磁光环形器、磁光调制器等器件中获得实际应用。

(4)本发明的制备方法可简化晶体后加工工艺,降低晶体制备的成本,且晶体生长速率快,光学均匀性好,可制备厘米级尺寸单晶。

附图说明

图1为gd3-x-ycexcaysczfe5-z-wvwo12,(x=0.33-0.54,y=0.02-0.06,z=0.45-0.96,w=0.01)晶体粉末的x-射线衍射(xrd)谱,pdf#48-0077:gd3fe5o12标准卡片;

图2为高含铈掺钪钆铁石榴石磁光晶体的晶胞参数随sc掺杂浓度的变化;

图3为gd3-x-ycexcaysczfe5-z-wvwo12,(x=0.33-0.54,y=0.02-0.06,z=0.45-0.96,w=0.01)晶体的透过光谱;

图4为gd2.59ce0.37ca0.04sc0.83fe4.16v0.01o12晶体的ce3dxps谱;

图5为gd3-x-ycexcaysczfe5-z-wvwo12,(x=0.33-0.54,y=0.02-0.06,z=0.45-0.96,w=0.01)晶体的室温磁滞回线;

图6为gd3-x-ycexcaysczfe5-z-wvwo12,(x=0.33-0.54,y=0.02-0.06,z=0.45-0.96,w=0.01)晶体的比法拉第旋转角与外加磁场关系曲线。

具体实施方式

为使本发明所述内容更加便于理解,下面结合具体实例的实施方式对本发明所述的技术方案做进一步的说明,但本发明不仅限于此处所给出的实例。

实施例1

一种高含铈掺钪钆铁石榴石磁光晶体gd2.60ce0.36ca0.04sc0.96fe4.03v0.01o12及其制备方法,具体步骤如下:

(1)多晶原料合成:按照化学计量比称取高纯的gd2o3、fe2o3药品,经研磨混合均匀压片后在800℃下预烧结10h,然后在1300℃下烧结10h,取出后研磨压片在1300℃下二次烧结10h后获得gd3fe5o12多晶原料。将化学计量比的ceo2、nh4vo3的粉末经混合均匀、压片后进行升温烧结,烧结时分别在200℃、400℃、670℃以及800℃各恒温2h,获得cevo4多晶粉末。将化学计量比的caco3、fe2o3粉末经研磨、压片后在900℃预烧结10h,然后在1100℃烧结10h获得cafe2o4多晶粉末。

(2)单晶生长:采用导模提拉法进行单晶生长。将多晶原料gd3fe5o12、cevo4、cafe2o4、fe2o3、sc2o3、ceo2按gd+ce/(gd+ce+fe+sc+v)的摩尔百分数为21.66%、sc/(fe+sc+v)的摩尔百分数为9.68%、ce/(gd+ce)的摩尔百分数为40.82%、ca/(ca+gd+ce)的摩尔百分数为1.43%、v/(fe+sc+v)的摩尔百分数为1.39%比例计算,准确称量后加入坩埚,加热坩埚使多晶原料熔化,生长温度为1525℃,接近固液生长界面处的轴向温度梯度为10℃,提拉速率为0.4mm/h,晶体转速为5r/min,生长气氛为惰性气体气氛。

(3)晶体退火:步骤(2)晶体生长结束后,将晶体提起脱离导模模具上表面熔体1mm,以35℃/h的降温速率退火至室温,获得晶体。晶体尺寸为16×16×11mm3

对gd2.60ce0.36ca0.04sc0.96fe4.03v0.01o12晶体的物相进行表征,x-射线衍射(xrd)谱(见图1)显示,晶体物相与gd3fe5o12标准卡片(pdf#48-0077)符合,表明晶体为石榴石相,无其它杂相生成。采用icp-oes测试晶体各元素摩尔百分数为ce:5.71%、gd:41.01%、ca:0.67%、sc:9.63%、fe:40.19%、v:0.13%,确定晶体化学式并计算ce分凝系数为0.29。拟合晶胞参数为a=b=c=12.58å,见图2。图3是晶体的透过光谱,结果表明晶体在未镀膜的情况下,在1550nm处透过率为61%。图5为gd2.60ce0.36ca0.04sc0.96fe4.03v0.01o12晶体的室温磁滞回线,由图5可知,gd2.60ce0.36ca0.04sc0.96fe4.03v0.01o12晶体的饱和磁化强度为4.6emu/g,饱和磁场1434oe。采用消光法测试了gd2.60ce0.36ca0.04sc0.96fe4.03v0.01o12晶体在1550nm处的饱和比法拉第旋转角为-284deg/cm(见图6)。

实施例2

一种高含铈掺钪钆铁石榴石磁光晶体gd2.61ce0.33ca0.06sc0.87fe4.12v0.01o12及其制备方法,具体步骤如下:

(1)多晶原料合成:按照化学计量比称取高纯的gd2o3、fe2o3药品,经研磨混合均匀压片后在800℃下预烧结10h,然后在1300℃下烧结10h,取出后研磨压片在1300℃下二次烧结10h后获得gd3fe5o12多晶原料。将化学计量比的ceo2、nh4vo3的粉末经混合均匀、压片后进行升温烧结,烧结时分别在200℃、400℃、670℃以及800℃各恒温2h,获得cevo4多晶粉末。将化学计量比的caco3、fe2o3粉末经研磨、压片后在900℃预烧结10h,然后在1100℃烧结10h获得cafe2o4多晶粉末。

(2)单晶生长:采用导模提拉法进行单晶生长。将多晶原料gd3fe5o12、cevo4、cafe2o4、fe2o3、sc2o3、ceo2按gd+ce/(gd+ce+fe+sc+v)的摩尔百分数为20.57%、sc/(fe+sc+v)的摩尔百分数为8.57%、ce/(gd+ce)的摩尔百分数为39.62%、ca/(ca+gd+ce)的摩尔百分数为2.02%、v/(fe+sc+v)的摩尔百分数为1.34%比例计算,准确称量后加入坩埚,加热坩埚使多晶原料熔化,生长温度为1500℃,接近固液生长界面处的轴向温度梯度为15℃,提拉速率为0.5mm/h,晶体转速为6r/min,生长气氛为惰性气体气氛。

(3)晶体退火:步骤(2)晶体生长结束后,将晶体提起脱离导模模具上表面熔体2mm,以30℃/h的降温速率退火至室温,获得晶体。晶体尺寸为13×13×8mm3

对gd2.61ce0.33ca0.06sc0.87fe4.12v0.01o12晶体的物相进行表征,x-射线衍射(xrd)谱(见图1)显示,晶体物相与gd3fe5o12标准卡片(pdf#48-0077)符合,表明晶体为石榴石相,无其它杂相生成。采用icp-oes测试晶体各元素摩尔百分数为ce:5.29%、gd:41.95%、ca:0.96%、sc:8.76%、fe:41.31%、v:0.12%,确定晶体化学式并计算ce分凝系数为0.28。拟合晶胞参数为a=b=c=12.569å,见图2。图3是晶体的透过光谱,结果表明晶体在未镀膜的情况下,在1550nm处透过率为51%。图5为gd2.61ce0.33ca0.06sc0.87fe4.12v0.01o12晶体的室温磁滞回线,由图5可知,gd2.61ce0.33ca0.06sc0.87fe4.12v0.01o12晶体的饱和磁化强度为8.6emu/g,饱和磁场749oe。采用消光法测试了gd2.61ce0.33ca0.06sc0.87fe4.12v0.01o12晶体在1550nm处的饱和比法拉第旋转角为-750deg/cm(见图6)。

实施例3

一种高含铈掺钪钆铁石榴石磁光晶体gd2.59ce0.37ca0.04sc0.83fe4.16v0.01o12及其制备方法,具体步骤如下:

(1)多晶原料合成:按照化学计量比称取高纯的gd2o3、fe2o3药品,经研磨混合均匀压片后在800℃下预烧结10h,然后在1300℃下烧结10h,取出后研磨压片在1300℃下二次烧结10h后获得gd3fe5o12多晶原料。将化学计量比的ceo2、nh4vo3的粉末经混合均匀、压片后进行升温烧结,烧结时分别在200℃、400℃、670℃以及800℃各恒温2h,获得cevo4多晶粉末。将化学计量比的caco3、fe2o3粉末经研磨、压片后在900℃预烧结10h,然后在1100℃烧结10h获得cafe2o4多晶粉末。

(2)单晶生长:采用导模提拉法进行单晶生长。将多晶原料gd3fe5o12、cevo4、cafe2o4、fe2o3、sc2o3、ceo2按gd+ce/(gd+ce+fe+sc+v)的摩尔百分数为20.96%、sc/(fe+sc+v)的摩尔百分数为8.07%、ce/(gd+ce)的摩尔百分数为41.37%、ca/(ca+gd+ce)的摩尔百分数为1.28%、v/(fe+sc+v)的摩尔百分数为1.37%比例计算,准确称量后加入坩埚,加热坩埚使多晶原料熔化,生长温度为1525℃,接近固液生长界面处的轴向温度梯度为16℃,提拉速率为0.55mm/h,晶体转速为6r/min,生长气氛为惰性气体气氛。

(3)晶体退火:步骤(2)晶体生长结束后,将晶体提起脱离导模模具上表面熔体1.5mm,以40℃/h的降温速率退火至室温,获得晶体。晶体尺寸15×15×10mm3

对gd2.59ce0.37ca0.04sc0.83fe4.16v0.01o12晶体的物相进行表征,x-射线衍射(xrd)谱(见图1)显示,晶体物相与gd3fe5o12标准卡片(pdf#48-0077)符合,表明晶体为石榴石相,无其它杂相生成。采用icp-oes测试晶体各元素摩尔百分数为ce:5.83%、gd:40.93%、ca:0.67%、sc:8.35%、fe:41.78%、v:0.13%,确定晶体化学式并计算ce分凝系数为0.30。拟合晶胞参数为a=b=c=12.57å,见图2。图3是晶体的透过光谱,结果表明晶体在未镀膜的情况下,在1550nm处透过率为59%。采用光电子能谱xps对晶体中ce离子的价态进行分析(见图4)。由图4知,本实施例的gd2.59ce0.37ca0.04sc0.83fe4.16v0.01o12晶体中ce离子的价态主要均为+3价,利用峰面积估算ce4+含量仅为5%,(ce4+特征峰位位于916.9ev)。图5为gd2.59ce0.37ca0.04sc0.83fe4.16v0.01o12晶体的室温磁滞回线,由图5可知,gd2.59ce0.37ca0.04sc0.83fe4.16v0.01o12晶体的饱和磁化强度为9.4emu/g,饱和磁场766oe。采用消光法测试了gd2.59ce0.37ca0.04sc0.83fe4.16v0.01o12晶体在1550nm处的饱和比法拉第旋转角为-1030deg/cm(见图6),比商用bi:rig磁光晶体高14.4%。

实施例4

一种高含铈掺钪钆铁石榴石磁光晶体gd2.44ce0.54ca0.02sc0.45fe4.54v0.01o12及其制备方法,具体步骤如下:

(1)多晶原料合成:按照化学计量比称取高纯的gd2o3、fe2o3药品,经研磨混合均匀压片后在800℃下预烧结10h,然后在1300℃下烧结10h,取出后研磨压片在1300℃下二次烧结10h后获得gd3fe5o12多晶原料。将化学计量比的ceo2、nh4vo3的粉末经混合均匀、压片后进行升温烧结,烧结时分别在200℃、400℃、670℃以及800℃各恒温2h,获得cevo4多晶粉末。将化学计量比的caco3、fe2o3粉末经研磨、压片后在900℃预烧结10h,然后在1100℃烧结10h获得cafe2o4多晶粉末。

(2)单晶生长:采用导模提拉法进行单晶生长。将多晶原料gd3fe5o12、cevo4、cafe2o4、fe2o3、sc2o3、ceo2按gd+ce/(gd+ce+fe+sc+v)的摩尔百分数为20.58%、sc/(fe+sc+v)的摩尔百分数为4.82%、ce/(gd+ce)的摩尔百分数为52.9%、ca/(ca+gd+ce)的摩尔百分数为0.65%、v/(fe+sc+v)的摩尔百分数为1.34%的比例计算,准确称量后加入坩埚,加热坩埚使多晶原料熔化,生长温度为1530℃,接近固液生长界面处的轴向温度梯度为20℃,提拉速率为0.45mm/h,晶体转速为6r/min,生长气氛为惰性气体气氛。

(3)晶体退火:步骤(2)晶体生长结束后,将晶体提起脱离导模模具上表面熔体1mm,以50℃/h的降温速率退火至室温,获得晶体。晶体尺寸为15×15×8mm3

对gd2.44ce0.54ca0.02sc0.45fe4.54v0.01o12晶体的物相进行表征,x-射线衍射(xrd)谱(见图1)显示,晶体物相与gd3fe5o12标准卡片(pdf#48-0077)符合,表明晶体为石榴石相,无其它杂相生成。采用icp-oes测试晶体各元素摩尔百分数为ce:8.38%、gd:37.56%、ca:0.31%、sc:4.51%、fe:45.31%、v:0.12%,确定晶体化学式并计算ce分凝系数为0.33。拟合晶胞参数为a=b=c=12.55å,见图2。图3是晶体的透过光谱,结果表明晶体在未镀膜的情况下,在1550nm处透过率为52%。图5为gd2.44ce0.54ca0.02sc0.45fe4.54v0.01o12晶体的室温磁滞回线,由图5可知,gd2.44ce0.54ca0.02sc0.45fe4.54v0.01o12晶体的饱和磁化强度为11.5emu/g,饱和磁场803oe。采用消光法测试了gd2.44ce0.54ca0.02sc0.45fe4.54v0.01o12晶体在1550nm处的饱和比法拉第旋转角为-1534deg/cm(见图6),比商用bi:rig磁光晶体高70.4%。

采用本发明生长的高含铈掺钪钆铁石榴石磁光晶体可用于制备光纤通讯波段用光隔离器、磁光环形器、磁光调制器等器件。

以上所述仅为本发明的较佳实施案例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1