一种B4C基双层陶瓷复合材料及其制备方法与流程

文档序号:23461785发布日期:2020-12-29 12:41阅读:118来源:国知局
一种B4C基双层陶瓷复合材料及其制备方法与流程

技术领域:

本发明属于材料技术领域,具体涉及一种b4c基双层陶瓷复合材料及其制备方法。



背景技术:

随着世界范围内恐怖活动的蔓延及局部地区战争的不断升级,在战争和突发的爆炸事件中防弹材料对于安全防护所起的作用越来越大。当今新的战斗形式和更高的威胁等级对防弹材料提出高硬度、高强度、高韧性和低密度等性能要求。金属防弹材料可以用于人体防护和机车防护,但由于其密度较大,常常靠增加防弹材料的厚度来实现抗弹效果,而使用过厚过重的防弹材料,对于防护对象来说不仅牺牲了其有效载荷,同时也降低了其操纵性和灵活性。因此轻质的防弹装甲材料已成为目前研究和发展的重点和趋势。作为装甲防弹材料的玻璃钢具有高强度和低密度的特点,纤维材料具有密度低和韧性好的优点,然而它们的硬度都比较低。陶瓷材料具有密度低、热膨胀系数小、强度高、硬度大、抗氧化、耐高温、良好的高温耐磨性和蠕变性能等优异的综合性能,因此成为很有潜力的装甲防护材料。其中b4c陶瓷具有很小的体积密度、高硬度、高熔点和高中子吸收截面等性能,能够很好地满足轻质装甲材料的要求。然而b4c高的共价键含量和较低的自扩散系数,使得b4c陶瓷的致密化烧结需要较高的烧结温度。另外,由于b4c较低的断裂韧性极大地限制了其在轻质陶瓷装甲材料、喷嘴和研磨用耐磨部件材料等方面的广泛应用,因此如何提高b4c陶瓷材料的断裂韧性成为其应用于装甲防护材料亟待解决的问题。层状复合结构及第二相增韧技术可使陶瓷材料实现有效增韧,目前国内外的研究集中在使用硼化物,碳化物,氧化物,氮化物和金属等单一第二相增韧b4c陶瓷材料,关于宏观层状b4c基陶瓷复合材料的报道尚不多见。近年来研究者们注意到材料的组成和结构的梯度分布可以较好地调控材料的微观形貌和力学性能,因此本专利结合宏观层状结构和复合第二相增韧的技术,制备致密的b4c基双层陶瓷复合材料,其中b4c陶瓷层使用b4c、ti和c为原料,b4c增韧层使用b4c、ti3sic2、si和wc为原料,经模压成型后采用热压或无压烧结,在1850~2050℃下合成该复合材料。已有的实验结果显示在该烧结温度范围可获得高致密度且性能优良的b4c基双层陶瓷复合材料。



技术实现要素:

本发明的目的是克服上述现有技术存在的不足,提供一种热压或无压烧结的b4c基双层陶瓷复合材料,利用材料宏观双层结构的设计和b4c增韧层中反应自生多相复合增韧机制优化材料的性能。

为实现上述目的,本发明采用以下技术方案:

一种b4c基双层陶瓷复合材料,包括b4c陶瓷层和b4c增韧层,其中:

所述的b4c陶瓷层包括组分及质量百分含量为b4c粉192~96%、ti粉2~4%和c粉1~5%;

所述的b4c增韧层包括组分为b4c粉2、ti3sic2粉、w2b5制备用原料粉和si粉,其中:

按质量比,b4c粉2:ti3sic2粉:w2b5制备用原料粉=(60~80):(5~15):(15~25);

所述的w2b5制备用原料粉包括组分及摩尔比为,b4c粉3:wc粉=5:8;

所述的si粉加入量按摩尔比,b4c粉3:wc粉:si粉=5:8:(13~20)。

所述的b4c陶瓷层和b4c增韧层厚度比例1:1。

所述的w2b5制备用原料粉中的b4c粉3和wc粉用于原位反应生成w2b5,二者加入的摩尔比例参照原位反应方程式(5b4c+8wc=4w2b5+13c)进行。

所述的si的加入量参照反应方程式(si+c=sic),按照等量或过量加入。

所述的b4c基双层陶瓷复合材料中的b4c粉末粒径为1~10μm,纯度>98%;ti3sic2粉末粒度为50~100μm,纯度为99.9%;wc粉末粒径为150~400nm,纯度为99.9%;si粉末粒径为0.5~5μm,纯度为99.9%;ti粉粒径为10~100μm,纯度为99.9%;c粉粒径为0.5~1μm,纯度>99.9%。

所述的c粉为碳黑。

所述的b4c基双层陶瓷复合材料的制备方法,包括以下步骤:

步骤1,备料:

按比例,分别称取b4c陶瓷层原料和b4c增韧层原料,各自进行球磨混料,获得球磨好的b4c陶瓷层原料和b4c增韧层原料,烘干备用;其中:

所述的b4c陶瓷层混料转速为200~400转/分,混料时间为6~20h;

所述的b4c增韧层混料转速为200~400转/分,混料时间为6~24h;

步骤2,干燥:

分别将球磨好的b4c陶瓷层原料和b4c增韧层原料在60℃烘箱中干燥后,再经30~80目过筛处理后待用;

步骤3,烧结,采用以下两种方式中的一种:

(1)热压烧结:

将过筛的b4c陶瓷层原料和b4c增韧层原料先后等厚度铺设在高纯石墨模具中,模压成型后,将模具置于真空热压烧结炉中,抽真空至20pa以下,进行升温烧结,所述的烧结过程如下:

(1-1)300~500℃/h速率下升温至1400~1550℃,保温1h;

(1-2)200~400℃/h速率下升温至1850~1950℃,加压至压力保持在20~35mpa,保温1~1.5h后,带压冷却0.5h后,随炉冷却至室温,得b4c基双层陶瓷复合材料;

(2)无压烧结:

分别向过筛的b4c陶瓷层原料和b4c增韧层原料中加入粘结剂,混合均匀后,通过过筛处理进行手工造粒,获得30-60目b4c陶瓷层颗粒原料和b4c增韧层颗粒原料,放在密封容器中困料1~4小时后,先后等厚度铺设b4c陶瓷层颗粒原料和b4c增韧层颗粒原料,模压成型后的生坯经烘干后,在真空烧结炉中升温烧结,制得b4c基双层陶瓷复合材料,其中,所述的烧结操作在氩气气氛中进行。

所述的步骤1中,b4c陶瓷层和b4c增韧层原料混料的磨球均为碳化钨球,并在球磨过程中加入酒精进行混料。

所述的步骤3(1)中,使用高纯石墨模具逐层压制粉料的预压制压力为4~6mpa。

所述的步骤3(1)中,烧结过程中保持真空气氛。

所述的步骤3(2)中,粘结剂为聚乙烯醇,加入质量为过筛的b4c陶瓷层原料/b4c增韧层原料质量的2~6%。

所述的步骤3(2)中,模压成型压力为200~260mpa,烘干温度为100℃,烘干时间为12h。

所述的步骤3(2)中,无压烧结升温制度为:300~500℃/h速率升温到1400~1550℃保温1h,200~400℃/h速率升温至1950~2050℃,保温1.5~2.5h后随炉冷却,得b4c基双层陶瓷复合材料。

所述的步骤3中,制得的b4c基双层陶瓷复合材料包括b4c陶瓷层和b4c增韧层,所述的b4c增韧层中包括b4c基体,板条状的w2b5,sic和tib2。

所述的步骤3中,制得的b4c基双层陶瓷复合材料的b4c陶瓷层为受力面时,其硬度为31.3~34.0gpa,断裂韧性为3.5~6.0mpa·m1/2,抗折强度为310~620mpa,密度为2.70~2.90g/cm3

所述的步骤3中,当采用热压烧结,制得的b4c基双层陶瓷复合材料的b4c陶瓷层为受力面时,其硬度为31.3~34.0gpa,断裂韧性为5.5~6.0mpa·m1/2,抗折强度为560~620mpa,密度为2.84~2.90g/cm3

本发明的有益效果:

本发明的b4c基双层陶瓷复合材料制备工艺通过宏观双层结构以及反应自生多相复合增韧机制,改善了b4c基陶瓷材料的力学性能,制备出的b4c基双层陶瓷复合材料在轻质防弹装甲领域有很大的应用潜力。

附图说明:

图1为本发明实施例1制备的b4c基双层陶瓷复合材料的扫描电镜显微组织照片,其中:图1(a)为b4c基双层陶瓷复合材料的整体显微组织照片,图1(b)为b4c增韧层的局部显微组织放大图。

具体实施方式:

下面结合实施例对本发明作进一步的详细说明。

实施例1

配料,b4c陶瓷层中b4c粉的质量百分数为94.5%,ti粉的质量百分数为2.5%,碳黑的质量百分数为3%;b4c增韧层中b4c粉(纯度>98wt.%,粒径为3.5μm)的质量百分数为70%,ti3sic2的质量百分数为10%,原位反应生成w2b5相的质量百分数为20%,对应方程式分别计算出所需要的原料粉末b4c、wc和si粉摩尔比例为5:8:13,将两层粉料经计算称量后分别放入球磨罐中,以酒精为球磨介质,b4c陶瓷层和增韧层均选用碳化钨球作为磨球;经球磨混合好的原材料在60℃烘箱中干燥后,再经60目过筛处理,将过筛的b4c陶瓷层原料和b4c增韧层原料先后等厚度铺设在高纯石墨模具中,4~6mpa下预先压制成型后,将模具置于真空热压烧结炉中,采用真空热压烧结,抽真空低于20pa,升温速率为300℃/h,温度达到1400℃时保温1h,继续升温,升温速率为200℃/h,温度达到烧结温度1850℃时,开始加压,压力保持在35mpa,保温1.5h,保温结束后,带压冷却0.5h后随炉冷却至室温,整个过程真空气氛,即可得到热压b4c基双层陶瓷复合材料。经检测,其密度为2.84g/cm3,硬度为31.3gpa,抗弯强度为560mpa,断裂韧性为6.0mpa·m1/2

制备的b4c基双层陶瓷复合材料的整体显微组织照片如图1(a)所示,b4c增韧层的局部显微组织放大图如图1(b)所示,由图1可以看出该陶瓷复合材料由b4c陶瓷层和b4c增韧层组成,且两层界面处冶金结合良好,未见明显的气孔和裂纹。通过eds和xrd分析可知,图1(b)b4c增韧层中深灰色衬度区域是b4c基体,白色衬度区域为板条状的w2b,浅灰色衬度区域为反应自生复合第二相,主要是sic和tib2。首先,w2b5是原材料粉末b4c和wc在高温下经过原位反应形成的产物相,原位反应方程式为5b4c+8wc=4w2b5+13c。其次,ti3sic2在高温下发生分解反应,先分解为sic和tic的细小颗粒,进而分解产物tic和b4c基体发生化学反应最终生成tib2相。另外,复合材料中的sic相有两个来源,其一是ti3sic2相在高温下分解产生的弥散第二相,其二为原材料中添加的si粉平衡复合材料中的自由c所产生的sic。上述这些反应自生相均可起到第二相增韧b4c基体的作用,并且借助三元化合物ti3sic2的热分解过程也可促进b4c陶瓷复合材料达到致密化。因此,在b4c增韧层中,上述原位反应、分解反应以及合成反应所生成的产物相均匀地分布在b4c基体中,这种反应自生多相作为复合第二相,很好地提高了该双层陶瓷复合材料的力学性能。

实施例2

配料,b4c陶瓷层中b4c粉的质量百分数为96%,ti粉的质量百分数为2%,碳黑的质量百分数为2%;b4c增韧层中b4c粉(纯度>98wt.%,粒径为3.5μm)的质量百分数为80%,ti3sic2的质量百分数为5%,原位反应生成w2b5相的质量百分数为15%,对应方程式分别计算出所需要的原料粉末b4c、wc和si粉摩尔比例为5:8:16,将两层粉料经计算称量后分别放入球磨罐中,以酒精为球磨介质,b4c陶瓷层和增韧层均选用碳化钨球作为磨球;经球磨混合好的原材料在60℃烘箱中干燥后,再经60目过筛处理后,将过筛的b4c陶瓷层原料和b4c增韧层原料先后等厚度铺设在高纯石墨模具中,4~6mpa下预先压制成型后,将模具置于真空热压烧结炉中,采用真空热压烧结,抽真空低于20pa,升温速率为400℃/h,温度达到1450℃时保温1h,继续升温,升温速率为300℃/h,温度达到烧结温度1900℃时,开始加压,压力保持在30mpa,保温1.2h,保温结束后,带压冷却0.5h后随炉冷却至室温,整个过程真空气氛,即可得到热压b4c基双层陶瓷复合材料。经检测,其密度为2.90g/cm3,硬度为34.0gpa,抗弯强度为620mpa,断裂韧性为5.5mpa·m1/2

实施例3

配料,b4c陶瓷层中b4c粉的质量百分数为92%,ti粉的质量百分数为3%,碳黑的质量百分数为5%;b4c增韧层中b4c粉(纯度>98wt.%,粒径为3.5μm)的质量百分数为60%,ti3sic2的质量百分数为15%,原位反应生成w2b5相的质量百分数为25%,对应方程式分别计算出所需要的原料粉末b4c、wc和si粉摩尔比例为5:8:20,将两层粉料经计算称量后分别放入球磨罐中,以酒精为球磨介质,b4c陶瓷层和增韧层均选用碳化钨球作为磨球;经球磨混合好的原材料在60℃烘箱中干燥后,再经60目过筛处理后,将过筛的b4c陶瓷层原料和b4c增韧层原料先后等厚度铺设在高纯石墨模具中,4~6mpa下预先压制成型后,将模具置于真空热压烧结炉中,采用真空热压烧结,抽真空低于20pa,升温速率为500℃/h,温度达到1550℃时保温1h,继续升温,升温速率为400℃/h,温度达到烧结温度1950℃时,开始加压,压力保持在25mpa,保温1h,保温结束后,带压冷却0.5h后随炉冷却至室温,整个过程真空气氛,即可得到热压b4c基双层陶瓷复合材料。经检测,其密度为2.88g/cm3,硬度为33.5gpa,抗弯强度为600mpa,断裂韧性为5.7mpa·m1/2

实施例4

配料,b4c陶瓷层中b4c粉的质量百分数为92%,ti粉的质量百分数为3%,碳黑的质量百分数为5%;b4c增韧层中b4c粉(纯度>98wt.%,粒径为3.5μm)的质量百分数为60%,ti3sic2的质量百分数为15%,原位反应生成w2b5相的质量百分数为25%,对应方程式分别计算出所需要的原料粉末b4c、wc和si粉摩尔比例为5:8:20,将两层粉料经计算称量后分别放入球磨罐中,以酒精为球磨介质,b4c陶瓷层和增韧层均选用碳化钨球作为磨球;经球磨混合好的原材料在60℃烘箱中干燥后,向烘干的各层粉料中加入粘结剂聚乙烯醇,加入质量分别为过筛的b4c陶瓷层原料、b4c增韧层原料质量的3%,将粉体通过过筛处理进行手工造粒,造粒所得颗粒尺寸在30目到60目之间的b4c陶瓷层颗粒原料和b4c增韧层颗粒原料,放在密封容器中困料1小时,先后等厚度铺设b4c陶瓷层颗粒原料和b4c增韧层颗粒原料,220mpa下模压成型后的生坯经烘干后待用。采用真空烧结炉,氩气气氛,升温速率为500℃/h,温度达到1550℃时保温1h,升温速率为400℃/继续升温烧结温度1950℃,保温1h,之后随炉冷却至室温,即可得到无压烧结b4c基双层陶瓷复合材料。经检测,其密度为2.70g/cm3,硬度为32.5gpa,抗折强度为310mpa,断裂韧性为3.5mpa·m1/2

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1