一种氧化物靶材及其制备方法与流程

文档序号:23798455发布日期:2021-02-02 11:33阅读:93来源:国知局

[0001]
本发明涉及显示器靶材领域,具体涉及一种氧化物靶材及其制备方法。


背景技术:

[0002]
在目前平板显示器(fpd)市场上,薄膜晶体管(tft)显示器占据绝对主导地位,全球年产值数千亿元。在薄膜晶体管(tft)显示器制备中,其核心技术是驱动机构薄膜晶体管(tft)的制作,而影响薄膜晶体管(tft)性能的关键之一就是在电场下产生开关作用的半导体沟道层材料。这类半导体沟道材料可以分成以下三类:非晶硅(a-si)、多晶硅(poly-si)和氧化物半导体(以铟镓锌氧化物,简称igzo,为代表)。非晶硅薄膜晶体管(tft)显示器属于传统tft显示技术,而igzo tft属于新一代显示技术。氧化物半导体沟道材料较之非晶硅材料,前者载流子迁移率高。结晶态igzo的电子迁移率是非晶硅的20-50倍。igzo tft较传统非晶硅tft具有以下优势:(1)分辨率约是后者的两倍;(2)显示器面板功耗约节省80%-90%;(3)高精度触控性能(更高的信噪比);(4)关闭电源后还可以保持屏幕图像;鉴于此,igzo-tft沟道层材料在液晶显示器(lcd)以及有机发光显示器(oled)上具有巨大的应用潜力。
[0003]
氧化物半导体薄膜具有高电子迁移率、高透光率和低生长温度的优异特性,有望取代传统的硅基薄膜晶体管,成为下一代显示技术驱动器件。在已知的氧化物半导体薄膜中,非晶态igzo薄膜(a-igzo)又是最优异的材料之一。现今,a-igzo主要采用磁控溅射进行制备,该方法需要使用高性能的igzo靶材,而igzo靶材的相对密度、微结构等性质又对溅射薄膜性能的影响关系密切。因此,要想得到高性能的a-igzo,首先需要获取高品质的igzo靶材。目前制备的igzo薄膜,其微观结构较为稀疏、不致密,往往导致薄膜中与氧的弱结合和晶格内过量氧的吸收;与稀疏膜结构相关的亚稳态缺陷可导致电荷补偿,进而产生tft的不稳定性,导致制备的igzo器件的均匀性和稳定性较差;成膜均匀性较差,导致大面积成膜的电导率和透光率稳定性差,α-igzo薄膜的平均透射率仅为80%左右;在靶材溅射过程中容易开裂和节瘤,导致溅射靶材利用率较低,并且靶材毒化现象的发生会导致制备的igzo薄膜霍尔载流子迁移率普遍低于20cm2/v
·
s。这些问题的存在阻碍了igzo薄膜在电子显示领域的应用。


技术实现要素:

[0004]
本发明的目的在于克服现有技术存在的不足之处而提供一种氧化物靶材及其制备方法。
[0005]
为实现上述目的,本发明采取的技术方案为:一种氧化物靶材,所述氧化物靶材包括氧化金属组合物,所述氧化金属组合物包括in2o3、ga2o3、zno和pr6o
11
,所述pr6o
11
占所述氧化物靶材重量的0.5%~1.5%;
[0006]
所述氧化金属组合物成型烧结得到所述氧化物靶材。
[0007]
上述的氧化物靶材搭配in2o3、ga2o3、zno和pr6o
11
后,通过溅射制备的氧化物靶材
薄膜的霍尔载流子迁移率达到了μ=30~40cm2/v
·
s,与igzo薄膜相比,霍尔载流子迁移率获得了显著的提升,便于在柔性基底上生长,成本低廉,制备的平面显示器耗能低,作为薄膜晶体管沟道层材料,在电子纸张、液晶显示(lcd)等新一代平板和柔性显示领域具有广阔的应用前景。
[0008]
优选地,所述氧化金属组合物包括以下重量份的组分:pr6o
11
和500~600重量份的in2o3、350~400重量份的ga2o3、140~180重量份的zno。
[0009]
优选地,所述氧化物靶材的最高烧结温度为1250℃~1500℃。
[0010]
优选地,所述氧化物靶材的最高烧结温度为1280℃~1450℃。
[0011]
发明人通过发现,上述的氧化物靶材搭配in2o3、ga2o3、zno和pr6o
11
后,在烧结温度1280℃~1450℃下,就能形成性能优异的靶材,与igzo靶材相比,igzo靶材的烧结温度一般为1400℃~1500℃,上述的氧化物靶材降低了靶材烧结时的能耗,节约成本,有利于提高制备过程中的安全性。
[0012]
优选地,所述方法包括以下步骤:
[0013]
(1)将氧化金属组合物按照重量配比与粘结剂混匀得到浆料;所述氧化金属组合物包括in2o3、ga2o3、zno和pr6o
11

[0014]
(2)将浆料干燥造粒得到平均粒径25μm~75μm的靶材粉体;
[0015]
(3)将所述靶材粉体压制为成型胚体;
[0016]
(4)将所述成型胚体进行脱脂热处理和烧结,所述氧化物靶材的最高烧结温度为1250℃~1500℃。
[0017]
上述方法中对于粘结剂的选择,可以选择有机高分子类的粘结剂,起到粘结作用,经过高温烧结后形成无机氧化物气态物质。
[0018]
优选地,所述氧化物靶材的最高烧结温度为1280℃~1450℃。
[0019]
上述的氧化物靶材通过组分的优选搭配,能够降低烧结温度,降低了靶材烧结时的能耗,节约成本,有利于提高制备过程中的安全性。
[0020]
优选地,所述步骤(1)中,in2o3、ga2o3、zno和pr6o
11
按照重量配比经过球磨混匀。
[0021]
优选地,所述步骤(2)中,所述浆料的干燥造粒方法为喷雾干燥造粒。
[0022]
优选地,所述步骤(3)中,控制所述成型胚体的相对密度为55%~65%,所述相对密度的参考基准为真密度。
[0023]
优选地,所述步骤(4)中,脱脂热处理的最高温度为350℃~450℃,脱脂热处理的保温时间为2.5~3.5小时。
[0024]
优选地,所述步骤(4)中,所述氧化物靶材的最高烧结温度下的保温时间为2.5~3.5小时。
[0025]
本发明的有益效果在于:本发明提供了一种氧化物靶材,本发明的氧化物靶材搭配in2o3、ga2o3、zno和pr6o
11
后,通过溅射制备的氧化物靶材薄膜的霍尔载流子迁移率达到了μ=30~40cm2/v
·
s,与igzo薄膜相比,霍尔载流子迁移率获得了显著的提升,便于在柔性基底上生长,成本低廉,制备的平面显示器耗能低,作为薄膜晶体管沟道层材料,在电子纸张、液晶显示(lcd)等新一代平板和柔性显示领域具有广阔的应用前景。
具体实施方式
[0026]
为更好的说明本发明的目的、技术方案和优点,下面将结合具体实施例对本发明作进一步说明。
[0027]
实施例1
[0028]
作为本发明实施例的一种氧化物靶材,所述氧化物靶材包括氧化金属组合物,所述氧化金属组合物包括以下重量份的组分:554重量份的in2o3、374重量份的ga2o3、162重量份的zno和10.2重量份的pr6o
11
,所述氧化金属组合物成型烧结得到所述氧化物靶材,所述最高烧结温度为1280℃。
[0029]
本实施例的氧化物靶材的制备方法包括以下步骤:
[0030]
(1)将554g in2o3粉末、374g ga2o3粉末、162gzno粉末和10.2gpr6o
11
粉末加入球磨罐,加入400ml纯水和适量分散剂,经湿法球磨20h后加入粘结剂球磨2h后得到浆料,所述粘结剂为聚乙烯醇;
[0031]
(2)将步骤(2)所得浆料经喷雾造粒,得平均粒径为25-75μm靶材粉体;
[0032]
(3)取540g步骤(2)所得高迁移率氧化物靶材用粉体装入模具中进行液压成型,抽真空后,再经一步冷等静压成型,得成型坯体;制成的靶坯尺寸为φ110mm*14.2mm,按尺寸法计算成型坯体的相对密度为61.0%;
[0033]
(4)将步骤(3)所得成型坯体进行脱脂热处理,热处理升温速度0.25℃/min,升温至400℃后保温3h,自然冷却至常温;
[0034]
(5)将步骤(4)热处理后的成型坯体在氧气气氛下进行烧结,升温速率60℃/h,最高烧结温度1280℃,高烧结温度下保温3h,得到所述氧化物靶材。
[0035]
将本实施例的氧化物靶材进行抛光后,使用阿基米德排水法测致密度为6.40g
·
cm-3
,计算其相对密度为97.56%,采用三点抗弯法测得其抗折强度为83mpa,使用霍尔效应法测载流子迁移率为30.2cm2/v
·
s。
[0036]
实施例2
[0037]
作为本发明实施例的一种氧化物靶材,本实施例与实施例1的唯一区别为:
[0038]
本实施例的氧化物靶材的制备方法包括以下步骤:
[0039]
(1)将554g in2o3粉末、374g ga2o3粉末、162gzno粉末和10.2gpr6o
11
粉末加入球磨罐,加入400ml纯水和适量分散剂,经湿法球磨20h后加入粘结剂,球磨2h后得到浆料;
[0040]
(2)将步骤(2)所得浆料经喷雾造粒,得平均粒径为25-75μm靶材粉体;
[0041]
(3)取540g步骤(2)所得高迁移率氧化物靶材用粉体装入模具中进行液压成型,抽真空后,再经一步冷等静压成型,得成型坯体;制成的靶坯尺寸为φ110mm*14.3mm,按尺寸法计算成型坯体的相对密度为60.5%;
[0042]
(4)将步骤(3)所得成型坯体进行脱脂热处理,热处理升温速度0.25℃/min,升温至400℃后保温3h,自然冷却至常温;
[0043]
(5)将步骤(4)热处理后的成型坯体在氧气气氛下进行烧结,升温速率60℃/h,最高烧结温度1350℃,高烧结温度下保温3h,得到所述氧化物靶材。
[0044]
将本实施例的氧化物靶材进行抛光后,使用阿基米德排水法测致密度6.43g
·
cm-3
计算其相对密度为98.02%,采用三点抗弯法测得其抗折强度为91mpa,使用霍尔效应法测载流子迁移率为33.4cm2/v
·
s。
[0045]
实施例3
[0046]
作为本发明实施例的一种氧化物靶材,本实施例与实施例1的唯一区别为:
[0047]
本实施例的氧化物靶材的制备方法包括以下步骤:
[0048]
(1)将554g in2o3粉末、374g ga2o3粉末、162gzno粉末和10.2gpr6o
11
粉末加入球磨罐,加入400ml纯水和适量分散剂,经湿法球磨20h后加入粘结剂,球磨2h后得到浆料;
[0049]
(2)将步骤(2)所得浆料经喷雾造粒,得平均粒径为25-75μm靶材粉体;
[0050]
(3)取540g步骤(2)所得高迁移率氧化物靶材用粉体装入模具中进行液压成型,抽真空后,再经一步冷等静压成型,得成型坯体;制成的靶坯尺寸为φ110mm*14.2mm,按尺寸法计算成型坯体的相对密度为61.0%;
[0051]
(4)将步骤(3)所得成型坯体进行脱脂热处理,热处理升温速度0.25℃/min,升温至400℃后保温3h,自然冷却至常温;
[0052]
(5)将步骤(4)热处理后的成型坯体在氧气气氛下进行烧结,升温速率60℃/h,最高烧结温度1400℃,高烧结温度下保温3h,得到所述氧化物靶材。
[0053]
将本实施例的氧化物靶材进行抛光后,使用阿基米德排水法测致密度6.49g
·
cm-3
,计算其相对密度为98.93%,采用三点抗弯法测得其抗折强度为115mpa,使用霍尔效应法测载流子迁移率为38.7cm2/v
·
s。
[0054]
实施例4
[0055]
作为本发明实施例的一种氧化物靶材,本实施例与实施例1的唯一区别为:
[0056]
本实施例的氧化物靶材的制备方法包括以下步骤:
[0057]
(1)将554g in2o3粉末、374g ga2o3粉末、162gzno粉末和10.2gpr6o
11
粉末加入球磨罐,加入400ml纯水和适量分散剂,经湿法球磨20h后加入粘结剂,球磨2h后得到浆料;
[0058]
(2)将步骤(2)所得浆料经喷雾造粒,得平均粒径为25-75μm靶材粉体;
[0059]
(3)取540g步骤(2)所得高迁移率氧化物靶材用粉体装入模具中进行液压成型,抽真空后,再经一步冷等静压成型,得成型坯体;制成的靶坯尺寸为φ110mm*14.2mm,按尺寸法计算成型坯体的相对密度为61.0%;
[0060]
(4)将步骤(3)所得成型坯体进行脱脂热处理,热处理升温速度0.25℃/min,升温至400℃后保温3h,自然冷却至常温;
[0061]
(5)将步骤(4)热处理后的成型坯体在氧气气氛下进行烧结,升温速率60℃/h,最高烧结温度1430℃,高烧结温度下保温3h,得到所述氧化物靶材。
[0062]
将本实施例的氧化物靶材进行抛光后,使用阿基米德排水法测致密度6.48g
·
cm-3
,计算其相对密度为98.78%,采用三点抗弯法测得其抗折强度为108mpa,使用霍尔效应法测载流子迁移率为38.1cm2/v
·
s。
[0063]
实施例5
[0064]
作为本发明实施例的一种氧化物靶材,本实施例与实施例1的唯一区别为:
[0065]
本实施例的氧化物靶材的制备方法包括以下步骤:
[0066]
(1)将554g in2o3粉末、374g ga2o3粉末、162gzno粉末和10.2gpr6o
11
粉末加入球磨罐,加入400ml纯水和适量分散剂,经湿法球磨20h后加入粘结剂,球磨2h后得到浆料;
[0067]
(2)将步骤(2)所得浆料经喷雾造粒,得平均粒径为25-75μm靶材粉体;
[0068]
(3)取540g步骤(2)所得高迁移率氧化物靶材用粉体装入模具中进行液压成型,抽
真空后,再经一步冷等静压成型,得成型坯体;制成的靶坯尺寸为φ110mm*14.2mm,按尺寸法计算成型坯体的相对密度为61.0%;
[0069]
(4)将步骤(3)所得成型坯体进行脱脂热处理,热处理升温速度0.25℃/min,升温至400℃后保温3h,自然冷却至常温;
[0070]
(5)将步骤(4)热处理后的成型坯体在氧气气氛下进行烧结,升温速率60℃/h,最高烧结温度1450℃,高烧结温度下保温3h,得到所述氧化物靶材。
[0071]
将本实施例的氧化物靶材进行抛光后,使用阿基米德排水法测致密度6.46g
·
cm-3
,计算其相对密度为98.48%,采用三点抗弯法测得其抗折强度为101mpa,使用霍尔效应法测载流子迁移率为36.8cm2/v
·
s。
[0072]
实施例6
[0073]
作为本发明实施例的一种氧化物靶材,本实施例与实施例1的唯一区别为:所述氧化物靶材包括以下氧化金属组合物,所述氧化金属组合物包括以下重量份的组分:554重量份的in2o3、374重量份的ga2o3、162重量份的zno和6重量份的pr6o
11
,所述氧化金属组合物成型烧结得到所述氧化物靶材,所述最高烧结温度为1280℃。
[0074]
本实施例的氧化物靶材的制备方法除重量比之外与实施例1一致。
[0075]
将本实施例的氧化物靶材进行抛光后,使用阿基米德排水法测致密度6.41g
·
cm-3
,计算其相对密度为97.71%,采用三点抗弯法测得其抗折强度为91mpa,使用霍尔效应法测载流子迁移率为29.9cm2/v
·
s。
[0076]
实施例7
[0077]
作为本发明实施例的一种氧化物靶材,本实施例与实施例1的唯一区别为:所述氧化物靶材包括以下氧化金属组合物,所述氧化金属组合物包括以下重量份的组分:554重量份的in2o3、374重量份的ga2o3、162重量份的zno和16重量份的pr6o
11
,所述氧化金属组合物成型烧结得到所述氧化物靶材,所述最高烧结温度为1280℃。
[0078]
将本实施例的氧化物靶材进行抛光后,使用阿基米德排水法测致密度6.40g
·
cm-3
,计算其相对密度为97.56%,采用三点抗弯法测得其抗折强度为78mpa,使用霍尔效应法测载流子迁移率为31.5cm2/v
·
s。
[0079]
最后所应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1