1.本发明属于核燃料制备技术领域,涉及采用氧化石墨烯掺杂制备二氧化铀复合燃料芯块的方法。
背景技术:
2.目前国际上普遍采用陶瓷二氧化铀芯块作为反应堆燃料。陶瓷二氧化铀具有很多优点,例如良好的核物理特性、辐照稳定性好、熔点高达2800℃、熔点以内只有一种结晶形态、各向同性。但是陶瓷二氧化铀导热系数仅为金属铀的十几分之一,并且导热系数随温度的上升而下降。而在堆芯温度下,若芯块向冷却剂传热不畅,易引起芯块局部过热,导致包壳肿胀破裂。
3.为了提高燃料芯块导热性能,提升核反应堆安全性、经济性,各国都在研发新型先进燃料,例如uc燃料、u3n2燃料等非氧化物燃料;金属mo
‑
uo2、金刚石
‑
uo2等复合燃料;或掺杂氧化铍、乙炔黑的uo2燃料等,在现有uo2燃料基础上掺杂改性。
4.石墨烯是由碳原子sp2杂化方式形成的单原子层石墨,由于其具有离域的π键,故具有非常好的热传导性能,导热系数高达5300w/mk。因此在uo2芯块中掺杂石墨烯有望提高其导热性能。但是石墨烯和uo2的密度以及其它物性相差很大,导致石墨烯很难均匀掺杂进uo2芯块中(国外相关研究主要采用物理混合与放电等离子烧结工艺,存在均匀度和生产效率低等问题;国内报道了采用石墨烯掺杂uo2芯块,在混料时需要采用超声分散。但是石墨烯极易出现偏析、团聚问题,会影响粉料的均匀性,故直接采用石墨烯来制备均匀掺杂的uo2芯块很困难)。
技术实现要素:
5.本发明的目的是提供采用氧化石墨烯掺杂制备二氧化铀复合燃料芯块的方法,以能够制备得到高导热性的新型复合燃料芯块,从而提高核反应堆运行时的安全性。
6.为实现此目的,在基础的实施方案中,本发明提供采用氧化石墨烯掺杂制备二氧化铀复合燃料芯块的方法,所述的制备方法包括如下步骤:
7.(1)向硝酸铀酰溶液中加入氧化石墨烯,混合均匀后加入氨水,获得含有氧化石墨烯的重铀酸铵沉淀;
8.(2)过滤步骤(1)得到的沉淀,滤饼经烘干、粉碎、筛分,得到重铀酸铵
‑
氧化石墨烯复合物;
9.(3)将步骤(2)得到的重铀酸铵
‑
氧化石墨烯复合物煅烧后再在氢气还原气氛下进一步进行加热处理,获得二氧化铀粉末;
10.(4)将步骤(3)得到的二氧化铀粉末装入模具冷压成型,脱模,得到生坯;
11.(5)将步骤(4)得到的生坯在还原性气氛下进行烧结,得到二氧化铀复合燃料芯块。
12.在一种优选的实施方案中,本发明提供采用氧化石墨烯掺杂制备二氧化铀复合燃
料芯块的方法,其中步骤(1)中,所述的硝酸铀酰溶液的浓度为300
‑
500g/l,所述的氨水的浓度为10
‑
14mol/l,加入过量所述的氨水使溶液的ph为10
‑
12。
13.在一种优选的实施方案中,本发明提供采用氧化石墨烯掺杂制备二氧化铀复合燃料芯块的方法,其中步骤(1)中,所述的氧化石墨烯为溶液、粉体或悬浮液。
14.在一种优选的实施方案中,本发明提供采用氧化石墨烯掺杂制备二氧化铀复合燃料芯块的方法,其中步骤(2)中,所述的烘干为真空干燥箱中烘干。
15.在一种优选的实施方案中,本发明提供采用氧化石墨烯掺杂制备二氧化铀复合燃料芯块的方法,其中步骤(2)中,得到重铀酸铵
‑
氧化石墨烯复合物的平均粒径为0.1
‑
10μm。
16.在一种优选的实施方案中,本发明提供采用氧化石墨烯掺杂制备二氧化铀复合燃料芯块的方法,其中步骤(3)中,所述的煅烧的温度为300
‑
550℃,时间为1
‑
4h。
17.在一种优选的实施方案中,本发明提供采用氧化石墨烯掺杂制备二氧化铀复合燃料芯块的方法,其中步骤(3)中,所述的加热处理的温度为600
‑
700℃,时间为20
‑
30min。
18.在一种优选的实施方案中,本发明提供采用氧化石墨烯掺杂制备二氧化铀复合燃料芯块的方法,其中步骤(4)中,所述的冷压成型的压力为10
‑
17kn,保压时间为10
‑
30s。
19.在一种优选的实施方案中,本发明提供采用氧化石墨烯掺杂制备二氧化铀复合燃料芯块的方法,其中步骤(5)中,所述的还原性气氛中氢气与氩气的体积比为0.1
‑
6:94。
20.在一种优选的实施方案中,本发明提供采用氧化石墨烯掺杂制备二氧化铀复合燃料芯块的方法,其中步骤(5)中,所述的烧结的温度为1600
‑
1800℃,时间为1
‑
5h。
21.本发明的有益效果在于,利用本发明的采用氧化石墨烯掺杂制备二氧化铀复合燃料芯块的方法,能够制备得到高导热性的新型复合燃料芯块,从而提高核反应堆运行时的安全性。
22.氧化石墨烯表面含有大量亲水性含氧官能团(例如羟基、羧基、环氧等功能团),改善了石墨烯亲水性,获得了较好的润湿性和表面活性,能够均匀分散在水溶液中。在硝酸铀酰中加入氨水形成重铀酸铵的过程中,氧化石墨烯均匀悬浮在溶液中,作为晶核与重铀酸铵以共沉淀的方式从溶液中析出,获得均匀分散的重铀酸铵
‑
氧化石墨烯粉料,经还原
‑
压制
‑
烧结后,能够通过高温还原生成单层还原氧化石墨烯,获得了石墨烯均匀掺杂的uo2芯块,提高了复合燃料芯块的热导率。
23.本发明的有益效果具体体现在:
24.(1)本发明采用氧化石墨烯而不是石墨烯进行掺杂。商业石墨烯生产广泛采用氧化还原法,将石墨氧化并分散为氧化石墨烯,然后进一步还原成石墨烯。因此采用氧化石墨烯相比于石墨烯,可以大幅降低原材料成本;同时氧化石墨烯表面富含有氧的功能团,容易均匀分散在水溶液中,易于制备均匀混合的前驱体。
25.(2)本发明采用氧化石墨烯与硝酸铀酰的水溶液混合,然后通过加入氨水使氧化石墨烯同铀以重铀酸铵的形式共沉淀,而不是将氧化石墨烯与uo2或u3o8粉体混合,这样可以达到分子尺度的均匀混合。
26.(3)本发明的掺杂了2
‑
5%体积比的氧化石墨烯的二氧化铀芯块,其成型性、外观与常规二氧化铀芯块无异,密度达到95%理论密度;在1000℃时,其导热系数比常规二氧化铀芯块有显著提高。
具体实施方式
27.以下通过实施例对本发明的具体实施方式作出进一步的说明。
28.实施例1:二氧化铀复合燃料芯块的制备
29.(1)取180ml浓度为500g/l的硝酸铀酰溶液,酸度为1.5mol/l hno3,向其中加入40g含量为1%(m/m)的氧化石墨烯悬浮液,混合均匀后缓慢加入400ml浓氨水,使溶液的ph为10
‑
12,获得含有氧化石墨烯的重铀酸铵(adu)沉淀。
30.(2)过滤步骤(1)得到的沉淀,滤饼经真空干燥箱中烘干、粉碎、筛分,得到平均粒径为0.1
‑
10μm的重铀酸铵
‑
氧化石墨烯复合物。
31.(3)将步骤(2)得到的重铀酸铵
‑
氧化石墨烯复合物转入石英舟,送入马弗炉内,通入氮气加热至350℃,再升温至550℃煅烧2h烧成uo3。再升温至680℃并将氮气切换为氢气,还原15min,以将uo3还原为uo2。断电降温并将气体切回氮气,待炉温降至室温后出料,物料过50目筛,获得二氧化铀粉末。
32.(4)将步骤(3)得到的二氧化铀粉末装入模具冷压成型(17kn,保压时间为10s),脱模,得到生坯。
33.(5)将步骤(4)得到的生坯放在钼坩埚中,置于高温烧结炉中,在还原性气氛(还原性气氛中氢气与氩气的体积比为6:94)下进行固化烧结(烧结的温度为1600
‑
1800℃,时间为2
‑
4h),得到理论密度95%的,表面光洁完整,无裂纹及掉盖等缺陷的二氧化铀复合燃料芯块。
34.实施例2:制备中间产物及最终得到的二氧化铀复合燃料芯块的检测
35.将实施例1制备中间产物及最终得到的二氧化铀复合燃料芯块进行如下检测。
36.(1)二氧化铀复合物粉末检测
37.依据gb/t 11847
‑
2008《二氧化铀粉末比表面积测定bet容量法》,对通过掺杂氧化石墨烯制得的二氧化铀复合物粉末进行比表面积检测,结果复合物比表面积为10.05m2/g,而未加氧化石墨烯的uo2对照样比表面积为3.01m2/g。
38.依据gb/t 11842
‑
89《二氧化铀粉末和芯块的氧铀原子比测定热重法》测定氧铀比,结果掺杂氧化石墨烯制备的二氧化铀复合物粉末的氧铀比为2.11,而未通过掺杂氧化石墨烯制备的对照样uo2粉体氧铀比为2.12。
39.(2)二氧化铀复合燃料芯块检测
40.依据gb/t 11927
‑
1989《二氧化铀芯块密度和开口孔隙度的测定》,对二氧化铀复合燃料芯块密度及开口孔隙率进行检测。
41.依据gb/t 11842
‑
89《二氧化铀粉末和芯块的氧铀原子比测定热重法》,对二氧化铀复合燃料芯块的铀含量(质量百分比)进行检测。
42.结果如下表1所示。
43.表1二氧化铀复合燃料芯块密度、开口孔隙率及铀含量检测结果
44.样品密度(g/cm3)开口孔隙率(%)u(%)uo2芯块9.539.3788.08复合燃料芯块10.490.3987.62
45.根据密度与开口孔隙率检测结果可以看出:二氧化铀复合燃料芯块的密度大于纯uo2芯块的密度;二氧化铀复合燃料芯块开口孔隙率小,主要是因为石墨烯对uo2芯块基体中
产生的气孔等缺陷进行了填充,从而使芯块的物理性能有了一定程度的提升。
46.铀含量检测结果表明掺杂后的芯块铀含量没有明显下降。
47.(3)二氧化铀复合燃料芯块导热系数检测
48.依据gb/t 5598
‑
2015《氧化铍瓷导热系数测定方法》中规定的激光闪射法,对二氧化铀复合燃料芯块导热系数进行检测。结果1000℃时,未通过掺杂氧化石墨烯制备的二氧化铀燃料芯块导热系数为0.9w/m*k,实施例1制得的二氧化铀复合燃料芯块的导热系数为3.0w/m*k,二氧化铀复合燃料芯块热导率提升效果明显。
49.显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若对本发明的这些修改和变型属于本发明权利要求及其同等技术的范围之内,则本发明也意图包含这些改动和变型在内。上述实施例或实施方式只是对本发明的举例说明,本发明也可以以其它的特定方式或其它的特定形式实施,而不偏离本发明的要旨或本质特征。因此,描述的实施方式从任何方面来看均应视为说明性而非限定性的。本发明的范围应由附加的权利要求说明,任何与权利要求的意图和范围等效的变化也应包含在本发明的范围内。