一种氮化铝钪靶材及其制备方法与流程

文档序号:24872564发布日期:2021-04-30 12:45阅读:280来源:国知局

本发明属于半导体用溅射靶材制备技术领域,具体涉及一种氮化铝钪靶材及其制备方法。



背景技术:

氮化铝钪是一种良好的压电薄膜材料,是制备高频、高功率及高集成化声波器件的理想材料,其压电系数和机电耦合系数高,压电薄膜材料的性能。目前氮化铝钪功能薄膜及其制备方法是国内外争相研究的热点,通过研究取得了有益成果。这种氮化铝钪功能薄膜的制备基本都是采用反应溅射的方式,以铝钪金属靶材或铝金属靶材与钪金属靶材为溅射镀膜原料,在含氮气的反应气体中溅射沉积,在基材表面结晶形成一层氮化铝钪功能薄膜。这种方式制备条件较难控制,易出现靶材中毒现象、薄膜成分和形态不均匀、可能会出现部分非晶态、薄膜质量难以控制等问题,从而产生成本增加、生产效率降低、薄膜性能不高等诸多不利因素。有研究表明通过氮化铝钪靶材直接溅射成膜的可改善诸多不利因素,使得成膜质量提高。但是氮化铝和氮化钪均为高温陶瓷,采用常规的粉末冶金方法难以制备得到高致密性的氮化铝钪靶材。



技术实现要素:

为了解决现有技术中存在的问题,本发明的目的是在于提供一种氮化铝钪靶材及其制备方法。

为了实现上述技术目的,本发明采用如下技术方案:

一种氮化铝钪靶材,包括氮化铝、氮化钪、氮化铝钪和单质钪中至少两种组元,其中钪的原子百分比为5~40%,铝的原子百分比为20~50%,余量为氮;所述氮化铝钪靶材的平面尺寸不低于1×103mm2,杂质氧含量小于600ppm,其它杂质含量总和小于500ppm,相对密度大于98%,平均晶粒尺寸小于100μm。

本发明还提供了上述氮化铝钪靶材的制备方法,包括以下步骤:

(1)配料

按设定原子比,将氮化铝粉末、氮化钪粉末和添加剂x进行配料得混合料,所述添加剂x为高纯金属钪和氢化钪中的至少一种;

(2)制坯

将混合料预压成型,升温至1000~1650℃保压,冷却得到坯料;

(3)均温处理

将坯料进行均温处理后冷却;

(4)后处理

均温处理后的坯料经退火并机械加工制成靶材。

优选的,步骤(1)中,所述氮化铝粉末、氮化钪粉末和添加剂x均先经过除氧除杂处理,采用弱酸或弱碱活化液进行活化并用酒精清洗后晾干,以便降低原材料的杂质含量,其中氮化铝粉末、氮化钪粉末、高纯金属钪粉和氢化钪粉的纯度均不低于99.95%。

优选的,步骤(1)中,所述添加剂x配重占混合料总重量的百分比为0.1~20%,进一步优选为0.5~10%。

优选的,步骤(1)中,所述添加剂x为高纯金属钪和氢化钪的混合物,高纯金属钪和氢化钪的质量比为0.2~5:1,进一步优选为0.5~2:1。

在烧结过程中,钪的熔点低于氮化物的熔点,钪在烧结时可改善各组分间相互接触关系,起到粘结作用,且在烧结时受力变形状态下,含钪组元为软相,可协调各相间的变形,起到润滑作用;进一步添加氢化钪,其在高温时易分解得到游离的活性氢和单质钪,其中活性氢易于粉体和环境中的氧结合形成气态的水蒸气并脱离粉体,起到除氧的作用,且单质钪也可起到粘结和润滑作用。优选采用两者的混合物作为添加剂,协同起到除氧除杂、粘结润滑和协调变形作用,但由于氢化钪较难获得,在氧含量满足使用要求时,尽量只添加单质钪。

优选的,步骤(2)中,混合料放入模具中预压成型,先以20~120℃/min升温至300~800℃,保温5~30min;再以10~60℃/min升温至900~1650℃保压30~120min,保压状态的压力为30~200mpa;冷却至300~800℃得到坯料。本发明中,制坯时用的模具优选采用无污染模具,表面进行高温涂层防护处理,不与原材料和坯料发生反应,以减少模具带来不必要的污染。

优选的,步骤(3)中,将坯料在300~800℃条件下均温不低于0.5小时后冷却至室温。

优选的,步骤(2)的制坯和步骤(3)的均温处理过程,原材料和坯料均处于厌氧环境,这种厌氧环境可为氮气或惰性气体的环境,其中氧的分压不高于0.1pa,优选为不高于0.01pa,进一步优选为不高于0.001pa。

本发明制得的氮化铝钪靶材,致密性高,氧含量低,成分均匀,在可控的含氮气的气氛中进行溅射沉积,可形成一致性好的氮化铝钪功能薄膜,以满足高性能的压电特性需求,在半导体行业中广泛推广应用。

工作原理:

氮化铝和氮化钪均为高温陶瓷,采用常规的粉末冶金方法难以制备得到高致密性的氮化铝钪靶材。单质钪的熔点较高,但低于氮化物的熔点,在高温状态下为软相,在烧结时,可改善各氮化物组分间相互接触关系,起到粘结作用,在变形状态下,软相起润滑作用,起到协调变形的作用;氢化钪,其在高温时易分解得到游离的活性氢和单质钪,其中活性氢易于粉体和环境中的氧结合形成气态的水蒸气并脱离粉体,起到除氧的作用,且单质钪也可起到粘结和润滑作用。优选采用两者的混合物作为添加剂,协同起到除氧除杂、粘结润滑和协调变形作用。通过上述系列的工艺流程,并结合添加剂的作用,氮化铝和氮化钪可有效烧结,成为致密的氮化铝钪烧结体,最终得到氧含量低、成分均匀和致密性高的氮化铝钪靶材。

与现有技术相比,本发明的优点在于:

1.靶材杂质和氧含量低:原材料纯度高,再经过除氧除杂处理,大大减少了杂质含量;坯料采用无污染的模具制坯工艺,杜绝了合成过程中杂质的引入;大尺寸靶坯制备全程处于厌氧环境中处理,大大减少了杂质的引入,因此可以获得低杂质和氧含量的合金产品,使得靶材杂质氧含量小于600ppm,其它杂质含量总和小于500ppm。

2.靶材致密度好:制坯过程经阶梯式升温保压和后处理处理,且有钪金属在变形过程中作为粘结剂起到粘结氮化物的作用,靶材完整性好,可显著消除材料中的气孔和杂质,提升了材料致密度。

3.成分均匀性好:通过制坯过程中阶梯式升温保压,并在低温状态长时间的均温处理,保证了大尺寸靶材的成分均匀性。

4.晶粒晶向可控:坯料经长时间退火,材料的组分均匀,晶粒晶向可控,平均晶粒尺寸可控制在小于100μm。

5.成膜质量高:该氮化铝钪靶材氧含量低,成分均匀,致密性高,应于溅射成膜,可避免了因采用金属或合金靶材溅射引起的靶材中毒现象、薄膜成分和形态不均匀、可能会出现部分非晶态、薄膜质量难以控制等问题,成膜质量高,薄膜性能稳定,提高了成膜的生产效率并降低生产成本,可广泛用作半导体溅射靶材。

具体实施方式

实施例1

一种氮化铝钪靶材,其制备方法如下:

(1)配料原材料为高纯的氮化铝粉末、氮化钪粉末和添加剂x1粉末,其中钪的原子比为25at.%,铝的原子比为25at.%,原材料的纯度≥99.9996%,预先用3%草酸活化液进行表面活化处理并用酒精清洗晾干,进行除氧除杂处理;其中添加剂x1粉末为高纯钪和氢化钪粉的混合物,各占原材料总重量的质量百分比为3%。

(2)制坯将混料机中混好的料放入模具中预压成型,并以40℃/min升温至600℃,保温20分钟;再以20℃/min升温至1000℃保压60分钟,压力100mpa;然后冷却至600℃;其中模具内表面涂覆了一层氮化硼保护层,以避免模具与坯料发生反应。

(3)均温处理将坯料在600℃的环境中均温2小时后炉冷至室温。

(4)后处理均温后的坯料退火并经机械加工工序制成靶材。

整个备料和受热过程,原材料和坯料均处于富氮气的厌氧环境,并处于适时循环除氧的状态,这种厌氧环境中的氧的分压不高于0.001pa。

最终制备得到大尺寸靶材,钪的原子百分比含量为25.07at.%,铝的原子百分比含量为24.94at.%,成分均匀度(不同部位取5个点得到的成分偏差范围占该元素平均成分的百分数的最大值,以下实施例同)为±2.74%,尺寸规格为直径350mm×高10mm,靶材杂质氧含量为22.8ppm,其它杂质含量总和小于20.5ppm,相对密度为99.1%,平均晶粒尺寸62.8μm。

对比例1

一种氮化铝钪靶材,其制备方法如下:

原材料为高纯的氮化铝粉末和氮化钪粉末,其中钪的原子比为25at.%,铝的原子比为25at.%,原材料的纯度≥99.9996%,未添加添加剂,预先用3%草酸活化液进行表面活化处理并用酒精清洗晾干,进行除氧除杂处理;其它步骤同实施例1。

最终制备得到大尺寸靶材,钪的原子百分比含量为24.98at.%,铝的原子百分比含量为25.06at.%,成分均匀度为±6.87%,尺寸规格为直径350mm×高10mm,靶材杂质氧含量为825.8ppm,其它杂质含量总和小于32.4ppm,相对密度为97.3%,平均晶粒尺寸185.7μm,成分均匀度较差,晶粒较大,氧含量偏高,致密度偏低。

实施例2

一种氮化铝钪靶材,其制备方法如下:

原材料为高纯的氮化铝粉末、氮化钪粉末和添加剂x2粉末,其中钪的原子比为25at.%,铝的原子比为25at.%,原材料的纯度≥99.9996%,预先用3%草酸活化液进行表面活化处理并用酒精清洗晾干,进行除氧除杂处理;其中添加剂x2粉末为高纯钪粉,占原材料总重量的质量百分比为6%;其它步骤同实施例1。

最终制备得到大尺寸靶材,钪的原子百分比含量为24.92at.%,铝的原子百分比含量为25.12at.%,成分均匀度为±2.54%,尺寸规格为直径350mm×高10mm,靶材杂质氧含量为249.5ppm,其它杂质含量总和小于19.5ppm,相对密度为99.6%,平均晶粒尺寸54.3μm,氧含量略高于实施例1。

实施例3

一种氮化铝钪靶材,其制备方法如下:

原材料为高纯的氮化铝粉末、氮化钪粉末和添加剂x3粉末,其中铝和钪的原子比为25at.%,原材料的纯度≥99.9996%,预先用3%草酸活化液进行表面活化处理并用酒精清洗晾干,进行除氧除杂处理;其中添加剂x3粉末为氢化钪粉,占原材料总重量的质量百分比为6%;其它步骤同实施例1。

最终制备得到大尺寸靶材,钪的原子百分比含量为24.98at.%,铝的原子百分比含量为25.06at.%,成分均匀度为±3.54%,尺寸规格为直径350mm×高10mm,靶材杂质氧含量为25.3ppm,其它杂质含量总和小于21.3ppm,相对密度为99.3%,平均晶粒尺寸95.6μm。

实施例4

一种氮化铝钪靶材,其制备方法如下:

(1)配料原材料为高纯的氮化铝粉末、氮化钪粉末和添加剂x1粉末,其中钪的原子比为25at.%,铝的原子比为25at.%,原材料的纯度≥99.96%,未进行除氧除杂处理;其中添加剂x4粉末为高纯钪粉和氢化钪粉的混合物,各占原材料总重量的质量百分比为6%。

(2)制坯将混料机中混好的料放入模具中预压成型,并以40℃/min升温至600℃,保温20分钟;再以20℃/min升温至1000℃保压60分钟,压力100mpa;然后冷却至600℃;其中模具内表面涂覆了一层氮化硼保护层,以避免模具与坯料发生反应。

(3)均温处理将坯料在600℃的环境中均温2小时后炉冷至室温。

(4)后处理均温后的坯料退火并经机械加工工序制成靶材。

整个备料和受热过程,原材料和坯料均处于富氩气的厌氧环境,并处于适时循环除氧的状态,这种厌氧环境中的氧的分压不高于0.01pa。

最终制备得到大尺寸靶材,钪的原子百分比含量为25.03at.%,铝的原子百分比含量为24.91at.%,成分均匀度为±2.98%,尺寸规格为直径350mm×高10mm,靶材杂质氧含量为82.3ppm,其它杂质含量总和小于258.2ppm,相对密度为99.2%,平均晶粒尺寸32.8μm。虽采用较低纯度(99.96%)的原材料,且未进行除氧除杂处理,但由于添加剂的作用,最终得到的靶材的氧含量和其它杂质含量也均在可控的范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1