一种稳定输出的连续白光透明陶瓷材料及其制备方法和应用

文档序号:27125024发布日期:2021-10-27 20:01阅读:228来源:国知局
一种稳定输出的连续白光透明陶瓷材料及其制备方法和应用

1.本发明属于固体发光材料技术领域,具体涉及一种稳定输出的连续白光透明陶瓷材料及其制备方法和应用。


背景技术:

2.宽频白光光谱能够覆盖可见到红外连续波段,其光谱特征接近太阳光,对光学研究有着重大意义。热辐射光是获得宽频连续白光的一种方式,任何温度大于0 k的物体都会不断地辐射电磁波,即热辐射光。热辐射光强度主要取决于物体自身的温度,根据维恩位移定律,热辐射光辐射峰位于可见光波段(350~750 nm)长波端(750 nm)时,物体温度为3863 k,也就是说,常温下物体热辐射的主要能量都在红外波段,无法实现可见光发光。
3.近年研究发现,近红外激光辐照光学活性材料可以产生一种宽带连续白光,这种白光发光是在低于相对黑体辐射温度下产生的高效的、类似热辐射的可见白光。近红外激光驱动连续白光发光不依赖于独立的发光中心,而是通过介质材料对连续近红外光有效吸收并伴随热效应激励而产生,其光谱可连续覆盖可见到红外波段。同时,这种连续白光产生机制可以获得比传统上转换发光高得多的上转换效率,wang等人(wang j, tanner pa. upconversion for white light generation by a single compound. j am chem soc. 2010;132; 947

949)报道了当激发密度达到800 w/cm2时,在zro2: 28% yb
3+
中连续白光发光效率高达16%。因此,探索更高稳定性近红外光驱动宽带白光产生对于更好地控制激光驱动连续白光生成,加速近红外光驱动宽带白光产业化具有非常重要的意义。
4.作为一种块体材料,荧光陶瓷是一种全无机荧光转换体,其具有不吸水、不易变形、且耐高温、耐氧化等稳定的化学性质。同时,可通过组分调控、烧结过程的控制实现对透明度的调控,进而优化其对光的散射、透过和吸收。以透明陶瓷材料为载体有望实现高稳定性近红外激光驱动连续白光输出,并可被应用于精密光谱学等领域。
5.随着人们对白光的不断深入探索及宽带连续白光的诸多优势,连续白光领域无论在技术还是材料上都得到的快速发展,如专利文献《一种紧凑型全光纤超连续白光光源》(cn102916328a)就公开了一种紧凑型全光纤超连续白光光源,其设备价格昂贵,获得连续白光方法复杂。如专利文献《飞秒高功率超连续白光产生装置与方法》(cn107069408b)公开了一种飞秒高功率超连续白光产生装置与方法,基于飞秒激光激发获得超连续白光的方法同样所需的装置设备昂贵,获得连续白光技术复杂。


技术实现要素:

6.本发明克服现有技术存在的不足,所要解决的技术问题为:提供一种连续激光激发的高稳定输出的宽带连续白光透明陶瓷;本发明的另一目的在于提供上述连续白光透明陶瓷材料的无需高压和高真空的制备方法及其应用。
7.为了解决上述技术问题,本发明采用的技术方案为:一种稳定输出的连续白光透明陶瓷材料,由稀土或过渡金属离子与铝酸盐晶体按化学组成y3‑
x
r
x
al8o
12
的元素计量比制
备而成,其中,掺杂离子r为稀土离子或过渡金属离子中的一种或多种元素,x的取值范围为:0<x≤3。
8.所述r为稀土离子yb
3+
、er
3+
、nd
3+
、tm
3+
、pr
4+
、tb
4+
或过渡金属离子cu
2+
、fe
3+
、ni
2+
中的一种或多种元素。
9.所述铝酸盐晶体为氧化铝或钇铝石榴石。
10.此外,本发明还提供了所述的一种稳定输出的连续白光透明陶瓷材料的制备方法,包括以下步骤:(1)按照化学组成y3‑
x
r
x
al8o
12
及计量比,称取原料,然后通过研磨、搅拌方式将原料充分混合;(2)将步骤(1)中的原料,在熔化设备中进行熔融操作,然后经冷却后得到透明玻璃样品;(3)将步骤(2)所得的透明玻璃样品放入箱式炉中进行析晶处理,在常压下,首先在800~900℃下进行保温,随后升温至950~1300℃进行致密化烧结,并在气氛下进行析晶,经冷却后得到致密化的宽带连续白光透明陶瓷;(4)将步骤(3)所得的致密化的宽带连续白光透明陶瓷依次进行打磨成片状、表面抛光处理后最终得到稳定输出宽带连续白光的透明陶瓷。
11.所述步骤(3)中,保温的时间和致密化烧结的时间均为1~40h。
12.所述步骤(3)中的气氛为空气、氧气、氮气和氢气混合气、氩气、一氧化碳气体中的至少一种。
13.所述的一种稳定输出的连续白光透明陶瓷材料的应用,所述连续白光透明陶瓷应用于红外到可见可调谐型固态光源,所述的红外到可见可调谐型固态光源采用波长分别为1064,980,808,663, 632,532,488 nm的激光器或太阳光作为固态激发光源。
14.本发明与现有技术相比具有以下有益效果:本发明公开了一种可在连续激光激发下实现高稳定输出的连续白光透明陶瓷材料,其采用稀土或过渡金属离子做为光吸收离子与铝酸盐晶体按化学组成y3‑
x
r
x
al8o
12
的元素计量比制备而成,其制备方法不需要复杂的制备工艺,也不需要高压、高真空等极端条件,在常压下通过激光加热悬浮熔炼法即可得到致密度高、透过率可调、化学性质及物理性质稳定的连续白光透明陶瓷,并且其可在多种连续波长激光器激发下,输出随激发功率密度变化发光性能稳定的宽带连续白光,并有望作为红外到可见可调谐型固态光源应用于照明显示及精密光谱系统。
附图说明
15.图1是本发明实施例1制备的玻璃球样品的tg和dsc分析图谱;图2是本发明实施例1制备的宽带连续白光透明陶瓷样品的发射光谱;图3是本发明实施例2制备的玻璃球样品的tg和dsc分析图谱;图4是本发明实施例2制备的宽带连续白光透明陶瓷样品的xrd图谱;图5~7本发明实施例3制备的宽带连续白光透明陶瓷样品的xrd图谱;图8是本发明实施例2制备的宽带连续白光透明陶瓷样品样品的发射光谱;图9是本发明实施例2制备的宽带连续白光透明陶瓷样品的白光发射强度与激发
光功率密度的对应关系;图10是本发明实施例2制备的宽带连续白光透明陶瓷样品在固定激光功率密度激发下的激光焦点的温度空间分布;图11是本发明实施例2制备的宽带连续白光透明陶瓷样品在不同激发密度下激光焦点周围的温度分布;图12是本发明实施例2制备的宽带连续白光透明陶瓷样品的激光焦点的温度与激光激发密度的对应关系;图13为本发明实施例4制备的宽带连续白光透明陶瓷样品的发射光谱;图14为本发明实施例5制备的宽带连续白光透明陶瓷样品的发射光谱;图15为本发明实施例6制备的宽带连续白光透明陶瓷样品的发射光谱。
具体实施方式
16.为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例;基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
17.实施例1按以下分子式y
2.4
yb
0.6
al8o
12
的计量比分别称取氧化钇、氧化镱和氧化铝原料,然后将原料放入玛瑙研钵中,加入3ml酒精,搅拌、研磨20min使原料充分混合后得到混合粉体,将混合粉体置于25 mm直径模具中,使用压片机将混合粉体压制成薄片,得到厚底约为3 mm直径约为25 mm的圆饼型块体,然后截取该薄片的二十分之一,放入配备有双光束二氧化碳激光器的气悬浮炉中,使用高纯氧气作为载气,对样品进行悬浮熔炼,通过电脑端实时监控样品的烧制过程,控制实验条件,使样品保持熔融状态约30s,通过切断激光使熔体快速冷却,获得具有相应组分的玻璃球。
18.如图1所示,是实施例1制备的玻璃球样品的tg和dsc分析图谱,从图中可知,制备的玻璃球转换为连续白光陶瓷的相变温度为960℃左右。
19.将前述步骤获得的玻璃球放入高温箱式炉中进行析晶处理,在空气氛围下以10℃/min的速度升至850℃并保温10h,最后以5℃/min的速度升至1250℃,常压下进行致密化烧结2h,并在气氛下进行析晶,自然冷却后,得到致密化的球形白光透明陶瓷(如图1插图上)。将球形白光透明陶瓷打磨成片状,对白光透明陶瓷片进行表面抛光处理后,即获得在980nm连续激光激发下可覆盖整个可见光谱的宽带连续暖白光透明陶瓷(如图1插图下)。
20.如图2所示,实施例1制备的宽带连续白光透明陶瓷在980nm连续激光激发下可覆盖整个可见光波段的连续白光发射光谱,光谱是由短波长到长波长发光强度逐渐增强的连续宽带白光光谱,同时说明了此宽带连续白光透明陶瓷可应用于照明显示及精密光谱系统。
21.实施例2除了按化学分子式yb3al8o
12
的计量比分别称取氧化镱和氧化铝原料,其他制备步骤和工艺条件与实施例1相同,获得具有相应组分的玻璃球。
22.如图3所示,是实施例2制备的玻璃球样品的tg和dsc分析图谱,从图中可知,制备
的yb3al8o
12
玻璃球转换为连续白光陶瓷的相变温度为950℃左右。
23.将获得的yb3al8o
12
玻璃球按照实施例1制备步骤和工艺条件继续进行退火处理,获得在980 nm连续激光激发下更高强度的可覆盖整个可见光谱的宽带连续暖白光透明陶瓷。
24.如图4所示,是实施例2制备的白光透明陶瓷样品的xrd图谱,从图中可知,制备的宽带连续白光透明陶瓷属于石榴石结构的立方晶相,同时可以看出其中多了氧化铝的相。
25.如图8所示,是实施例2制备的白光透明陶瓷在不同激发功率密度的980nm连续激光激发下,发射出的可覆盖整个可见光波段的宽带连续白光发射光谱,并且发射光谱强度随着激发功率密度的增大而增强。
26.如图9所示,是实施例2制备的白光透明陶瓷样品在不同激发功率密度的980nm连续激光激发下的激发光功率密度与白光发射强度的对应关系,白光发射强度与激发功率密度存在e指数形式稳定依赖关系,及实施例4制备的白光透明陶瓷样品随激发功率密度变化具有高稳定性。
27.如图10所示,是实施例2制备的白光透明陶瓷样品在284 w
‧ꢀ
cm
‑2的980 nm连续激光激发下的温度的空间分布,此激发功率密度下样品激光焦点的最高温度可达1042度,宽带连续白光透明陶瓷材料基于高的热稳定性。
28.如图11所示,是实施例2制备的白光透明陶瓷样品在不同激发功率密度的980 nm连续激光激发下激光焦点的温度的分布,随激发功率密度的增大,样品激光焦点的温度逐渐升高。
29.如图12所示,是实施例2制备的白光透明陶瓷样品激光焦点的温度随980 nm激光激发密度的变化,样品激光焦点的温度与激发功率密度存在明显的线性依赖关系,说明了此高稳定宽带连续白光输出的透明陶瓷可应用于高温温度探测及红外到可见可调谐型固态光源。
30.实施例3实施例3按表1中的实施例化学式组成及其化学计量比称取相应原料,并分为三组,分别编号为1,2,3,其致密化温度、致密化时间和气氛见表1,工艺步骤与上述实施例1和实施例2皆相同。本实施例所制备样品的发射光谱及发光稳定性与实施例4相似。
31.如图5

7所示,为本实施例按照不同的致密化温度制备的样品的xrd图谱,从图中可知,退火温度为1150℃时所制备的宽带连续白光透明陶瓷属于石榴石结构的立方晶相,由于退火温度较低使得晶粒尺寸比实施例2制备的白光透明陶瓷的小,导致衍射峰展宽较宽;退火温度分别为1050℃和950℃时所制备的宽带连续白光样品为微晶玻璃态。
32.表1实施例5的参数
实施例4按以下分子式y
2.4
er
0.6
al8o
12
的计量比分别称取氧化钇、氧化铒和氧化铝原料,其他制备步骤和工艺条件与实施例1相同,获得具有相应组分的玻璃球。
33.如图13所示,为实施例4制备的铒离子掺杂宽带连续白光透明陶瓷在980nm连续激光激发下可覆盖整个可见光波段的连续白光发射光谱,发射光谱表现出和上述实例类似的特征。
34.实施例5按以下分子式y
2.4
pr
0.6
al8o
12
的计量比分别称取氧化钇、氧化镨和氧化铝原料,其他制备步骤和工艺条件与实施例1相同,获得具有相应组分的玻璃球。
35.如图14所示,实施例5制备的镨离子掺杂宽带连续白光透明陶瓷在980nm连续激光激发下可覆盖整个可见光波段的连续白光发射光谱,同样表现出和上述实例类似的特征。
36.实施例6按以下分子式y
2.4
cu
0.6
al8o
12
的计量比分别称取氧化钇、氧化铜和氧化铝原料,其他制备步骤和工艺条件与实施例1相同,获得具有相应组分的玻璃球。
37.如图15所示,实施例6制备的过渡金属离子掺杂宽带连续白光透明陶瓷在连续激光激发下的宽带连续白光发射光谱,也表现出和前述实施例类似的特征。
38.由此可见,本发明通过不同的元素配比、保温条件、烧结条件等工艺条件能得到不同形态的宽带连续白光样品,并可获得热稳定性、发光稳定性良好的宽带连续白光透明陶瓷材料。本发明透明陶瓷材料可在连续激光器激发下获得随激发功率密度稳定变化的光谱可覆盖可见到红外的宽带连续光谱白光,并有望应用于照明显示、精密光谱系统、高温温度测量及红外到可见可调谐型固态光源。具体地,本发明所述的连续白光透明陶瓷应用于红外到可见可调谐型固态光源,所述的红外到可见可调谐型固态光源采用波长分别为1064,980,808,663, 632,532,488 nm的激光器或太阳光作为固态激发光源。所述的可调谐型固态光源可以应用于照明显示及精密光谱系统。所述的可高稳定输出宽带连续白光的透明陶瓷还可以应用于高温温度探测方面。
39.综上所述,本发明提供了一种稳定输出的连续白光透明陶瓷材料及其制备方法和应用,其采用稀土或过渡金属离子做为光吸收离子与铝酸盐晶体按化学组成y3‑
x
r
x
al8o
12
的元素计量比制备而成,无需高压、高真空就可以制备出致密度高、透过率可调的可高稳定输出宽带连续白光的透明陶瓷,且其在较大功率激光激发下化学性质及物理性质稳定,输出的宽带连续白光与激发功率密度具有稳定依赖性,可实现高稳定连续白光输出。
40.最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽
管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1