Li离子导体及其制造方法与流程

文档序号:31836075发布日期:2022-10-18 21:19阅读:172来源:国知局
Li离子导体及其制造方法与流程
li离子导体及其制造方法
技术领域
1.本发明涉及li离子导体及其制造方法。


背景技术:

2.li离子二次电池的研究开发在便携设备、动力混合汽车、电动汽车、家庭用蓄电用途中积极开展。这些领域中使用的li离子二次电池要求安全性高、长期循环稳定性、高能量密度等。
3.其中,使用固体电解质的全固态电池因安全性高而受到关注。例如,专利文献1中,作为具有锂离子传导性的石榴石型氧化物,公开了li
7+x+y
la
3-xax
zr
2-y
tyo
12
(式中,元素a为选自由ba、sr、ca、mg及y组成的组中的1种以上的元素,元素t为选自由sc、ti、v、y、nb、hf、ta、al、si、ga及ge组成的组中的1种以上的元素,满足0《x≤1、0≤y≤1、x《y)。
4.现有技术文献
5.专利文献
6.专利文献1:日本特开2016-15213号公报


技术实现要素:

7.发明要解决的问题
8.本发明的目的在于,提供与以往不同的组成的li离子导体。
9.用于解决问题的方案
10.达成上述课题的本发明如下。
11.[1]一种li离子导体,其特征在于,含有选自由ga、v及al组成的组q中的至少1种且含有li、la及o,li位点的一部分任选被金属元素d置换,la位点的一部分任选被金属元素e置换,ga、v及al的位点的一部分任选被金属元素j置换,
[0012]
li的量相对于la、前述元素e、ga、v、al及前述元素j的合计量以摩尔比计为8.1/5以上且9.5/5以下,
[0013]
ga、v及al的合计量相对于la及前述元素e的合计量以摩尔比计为1.1/3以上且2/3以下。
[0014]
[2]根据[1]所述的li离子导体,其晶格常数为以上。
[0015]
[3]根据[1]或[2]所述的li离子导体,其由式(1):(li
p1dp2
)(la
p3ep4
)(q
p5jp6
)o
12
表示。
[0016]
上述式(1)中,q为选自由ga、v及al组成的组中的至少1种元素,d为对li位点的一部分进行置换的金属元素,e为对la位点的一部分进行置换的金属元素,j为对q位点的一部分进行置换的金属元素,
[0017]
p1、p3及p5为大于0的值,p2、p4及p6任选为0,p1/(p3+p4+p5+p6)为8.1/5以上且9.5/5以下,p5/(p3+p4)为1.1/3以上且2/3以下,满足(li的价数)
×
p1+(前述元素d的价数)
×
p2+(la的价数)
×
p3+(前述元素e的价数)
×
p4+(前述元素q的价数)
×
p5+(金属元素j的
价数)
×
p6=24。
[0018]
[4]根据[3]所述的li离子导体,其中,p1为8.1以上且9.5以下,p2、p4、p6均为0以上且0.5以下,p3为2.5以上且3以下,p5为1.5以上且2以下。
[0019]
[5]一种li离子导体,其由式(2):li
x1
la
x2
(ga、v、al)
x3
hf
x4
sr
x5
zr
x6o12
表示。
[0020]
式(2)中,x1为8.1以上且9.5以下,x2为2.5以上且3以下,x3为1.5以上且2以下,x4、x5及x6各自独立地均为0以上且0.5以下,满足x1+x2
×
3+x3
×
3+x4
×
4+x5
×
2+x6
×
4=24,(ga、v、al)是指包含ga、v及al中的至少1种,包含多种时的x3是指该多种的合计量。
[0021]
[6]一种li离子导体的制造方法,其特征在于,将原料混合物在1100℃以上进行烧成,所述原料混合物包含选自由ga、v及al组成的组q中的至少1种且包含li、la,并且根据需要包含能对晶体结构中的li位点的一部分进行置换的金属元素d、能对晶体结构中的la位点的一部分进行置换的金属元素e、能对晶体结构中的ga、v及al的位点的一部分进行置换的金属元素j中的至少1种,
[0022]
li的量相对于la、前述元素e、ga、v、al及前述元素j的合计量以摩尔比计为8.1/5以上且9.5/5以下,ga、v及al的合计量相对于la及前述元素e的合计量以摩尔比计为1.1/3以上且2/3以下。
[0023]
[7]根据[6]所述的制造方法,其中,前述原料混合物中的各金属元素的摩尔比为式(1):(li
p1dp2
)(la
p3ep4
)(q
p5jp6
)o
12
所示的化合物中的化学计量比。
[0024]
上述式(1)中,q为选自由ga、v及al组成的组中的至少1种元素,d为对li位点的一部分进行置换的金属元素,e为对la位点的一部分进行置换的金属元素,j为对q位点的一部分进行置换的金属元素,
[0025]
p1、p3及p5为大于0的值,p2、p4及p6任选为0,p1/(p3+p4+p5+p6)为8.1/5以上且9.5/5以下,p5/(p3+p4)为1.1/3以上且2/3以下,满足(li的价数)
×
p1+(前述元素d的价数)
×
p2+(la的价数)
×
p3+(前述元素e的价数)
×
p4+(前述元素q的价数)
×
p5+(金属元素j的价数)
×
p6=24。
[0026]
发明的效果
[0027]
根据本发明,能够提供以往不知道的组成的li离子导体。
附图说明
[0028]
图1为示出实施例中得到的粒料烧结体的截面sem观察图像的附图代用照片。
[0029]
图2为对实施例中得到的粒料烧结体的晶体结构进行解析而得到的xrd衍射图。
具体实施方式
[0030]
本发明人发现,利用与以往已知的li离子导体不同的下述的组成,会表现良好的li离子传导。本发明的li离子导体为含有选自由ga、v及al组成的组q中的至少1种且含有li、la及o的li离子导体,li位点的一部分任选被金属元素d置换,la位点的一部分任选被金属元素e置换,ga、v及al的位点的一部分任选被金属元素j置换,(i)li的量相对于la、前述元素e、ga、v、al及前述元素j的合计量以摩尔比计为8.1/5以上且9.5/5以下,(ii)ga、v及al的合计量相对于la及前述元素e的合计量以摩尔比计为1.1/3以上且2/3以下。
[0031]
本发明的li离子导体的特征在于以下方面:将选自由ga、v及al组成的组q中的至
少1种、以及li、la及o作为主要的构成元素,以规定水平以上包含较多的li量,及ga、v及al的合计量多于以往已知的llz系氧化物(将li7la3zr2o
12
作为基本组成的氧化物)中的这些元素的量(上述(ii))。
[0032]
li的量相对于la、前述元素e、ga、v、al及前述元素j的合计量以摩尔比计为8.1/5以上,能够实现良好的li离子传导。该摩尔比优选8.5/5以上、更优选为8.7/5以上、进一步优选8.9/5以上。该摩尔比的上限为9.5/5以下,可以为9.4/5以下,也可以为9.3/5以下。
[0033]
ga、v及al的合计量相对于la及前述元素e的合计量以摩尔比计为1.1/3以上。该摩尔比优选1.3/3以上、更优选为1.5/3以上、进一步优选1.7/3以上。
[0034]
前述金属元素d为能对li位点的一部分进行置换的元素,例如,可举出al、sr、ca、ba、mg、hf等,优选hf。前述金属元素e为能对la位点的一部分进行置换的元素,例如可举出zn、ca、mg、ba、sr等,优选sr。前述金属元素j为能对ga、v或al位点的一部分进行置换的元素,可举出te、ta、nb、zr等,优选zr。通过使前述金属元素d、e及j在li离子导体的晶体结构中对其他元素的各自的位点进行置换并使li载体浓度最适化,能够期待下述作用中的任意作用:提高本体(bulk)的离子电导率(即,晶体内的离子传导)的作用;及提高烧结性从而使颗粒界面的接合状态良好,形成致密的烧结体的作用。特别优选包含hf(金属元素d)、sr(金属元素e)及zr(金属元素j)中的至少2种,li载体浓度被最适化,能够提高本体的离子电导率,并且促进烧结从而能够得到致密的烧结体,本体和晶界合起来的整体的离子电导率会提高。特别优选li离子导体包含zr(金属元素j)、并且包含hf(金属元素d)及sr(金属元素e)中的至少一种,对提高整体的离子电导率有利。li离子导体也优选包含sr(金属元素e),并且包含hf(金属元素d)及zr(金属元素j)中的至少一种。另外,更优选本发明的li离子导体中包含sr、hf及zr全部,通过这样操作,能够进一步提高离子电导率。
[0035]
作为上述元素d、e、j的优选的元素举出的al、sr、ca、ba、mg、hf、zn、te、ta、nb、及zr也优选对如上所述的元素位点分别进行置换,只要使选自由ga、v及al组成的组q中的至少1种与li、la及o一起包含在li离子导体中,也可以对上述的位点以外进行置换。
[0036]
另外,本发明的li离子导体中包含的各元素优选以li离子导体保持电中性的摩尔比来包含。另外,组q的元素中,优选至少包含ga,优选组q的元素仅为ga。
[0037]
本发明的li离子导体通常为结晶性,作为主相的晶体结构,可举出石榴石结构、钙钛矿结构等,主相优选为石榴石结构。主相是指在x射线衍射光谱中强度最高的峰所归属的结构。本发明的li离子导体为结晶性的情况下,晶格常数优选为以上,通过使晶格常数大,从而有li离子传导性变良好的倾向。晶格常数更优选以上、进一步优选为以上,另外,也可以为以下。
[0038]
本发明的li离子导体优选由下述式(1)表示。
[0039]
式(1):(li
p1dp2
)(la
p3ep4
)(q
p5jp6
)o
12
[0040]
上述式(1)中,q为选自由ga、v及al组成的组中的至少1种元素,d、e及j分别与上述的金属元素d、e及j含义相同。另外,p1、p3及p5为大于0的值,p2、p4及p6可以为0(p2、p4及p6中的至少1者可以为0),p1/(p3+p4+p5+p6)为8.1/5以上且9.5/5以下,p5/(p3+p4)为1.1/3以上且2/3以下,满足(li的价数)
×
p1+(前述元素d的价数)
×
p2+(la的价数)
×
p3+(前述元素e的价数)
×
p4+(前述元素q的价数)
×
p5+(金属元素j的价数)
×
p6=24。
[0041]
式(1)中的d、e及j优选的范围也包括在内,可以参照上述的金属元素d、e及j的记载。另外,关于元素q,也可以全部参照上述的组q相关的记载。
[0042]
另外,p1/(p3+p4+p5+p6)的值相当于li相对于上述的la、前述元素e、ga、v、al及前述元素j的合计量的摩尔比,另外,p5/(p3+p4)的值相当于ga、v及al的合计量相对于上述的la及前述元素e的合计量的摩尔比,因此优选的范围全部可以参照上述的范围。
[0043]
p1~p6的值只要满足上述的关系式,则没有限定,优选的值分别如下。
[0044]
p1优选8.1以上、更优选为8.5以上、进一步优选为8.7以上,另外,可以为9.5以下、可以为9.4以下,另外,也可以为9.3以下。
[0045]
p2为0以上,优选0.01以上、更优选为0.05以上、进一步优选为0.075以上,另外,优选0.5以下、更优选为0.2以下、进一步优选为0.1以下。
[0046]
p3优选2.5以上、更优选为2.7以上、进一步优选为2.8以上,另外,优选3以下、更优选2.95以下、进一步优选2.9以下。
[0047]
p4为0以上,优选0.05以上、更优选为0.1以上,另外,优选为0.5以下、更优选为0.3以下、进一步优选为0.2以下。
[0048]
p5优选1.5以上、更优选为1.7以上,另外,优选2以下、更优选1.9以下。
[0049]
p6为0以上,优选0.05以上、更优选为0.1以上、优选0.5以下、更优选为0.3以下。
[0050]
p1为8.1以上且9.5以下,p2、p4、p6均为0以上且0.5以下,p3为2.5以上且3以下,p5特别优选为1.5以上且2以下。
[0051]
本发明的li离子导体优选在包含选自由ga、v及al组成的组q中的至少1种且包含li、la及o的同时,上述的al、sr、ca、ba、mg、hf、zn、te、ta、nb、及zr中,根据需要包含hf、sr、及zr中的至少1种,还优选具有特定的组成,更详细而言,式(2):li
x1
la
x2
(ga、v、al)
x3
hf
x4
sr
x5
zr
x6o12
所示的li离子导体也包含在本发明中。
[0052]
式(2)中,x1为8.1以上且9.5以下,x2为2.5以上且3以下,x3为1.5以上且2以下,x4、x5及x6各自独立地均为0以上且0.5以下,满足x1+x2
×
3+x3
×
3+x4
×
4+x5
×
2+x6
×
4=24,(ga、v、al)是指包含ga、v及al中的至少1种,包含多种时的x3是指该多种的合计量。式(2)中,包含hf、sr、及zr中至少任一者的情况下,其存在形态没有特别限定,可以对li、la、ga、v及al中任意元素的位点的一部分进行置换。式(2)中,也优选x1/(x2+x5+x3+x6)为8.1/5以上且9.5/5以下、并且x3/(x2+x5)为1.1/3以上且2/3以下(要件2-1)。另外,式(2)中,也优选x1为8.5~9、x2为2.9~3、x3为1.9~2、x4为0~0.1、x5为0~0.1、并且x6为0~0.1(要件2-2)。进而,也优选式(2)为li
x1
la
x2
ga
x3
hf
x4
sr
x5
zr
x6o12
(要件2-3)。式(2)更优选满足前述要件(2-1)及(2-2),进一步优选满足全部要件(2-1)~(2-3)。
[0053]
作为前述元素d,包含多个(k个)元素的情况下,将多个元素d的各价数设为di、将全部元素d中的各元素d的摩尔比设为ni时,元素d的价数通过下式来算出。包含多个元素作为元素e及元素j时的元素e的价数及元素j的价数也可以同样地算出。
[0054][0055]
本发明的li离子导体通过后述的实施例的方法测定的室温下的离子电导率σ
total
例如为1.0
×
10-6
s/cm以上,优选为1.0
×
10-5
s/cm以上、更优选为1.0
×
10-4
s/cm以上、进一步优选为2.0
×
10-4
s/cm以上,上限没有限定,可以为7.0
×
10-4
s/cm以下,也可以为6.0
×
10
‑4s/cm以下。另外,通过后述的实施例的方法测定的活化能ea(ev)例如为0.45ev以下,优选为0.40ev以下、更优选为0.37ev以下,下限没有特别限定,例如也可以为0.20ev以上。
[0056]
本发明的li离子导体通过将原料混合物在1100℃以上进行烧成来得到,所述原料混合物包含选自由ga、v及al组成的组中的至少1种且包含li、la,并且根据需要包含能对晶体结构中的li位点的一部分进行置换的金属元素d、能对晶体结构中的la位点的一部分进行置换的金属元素e、能对晶体结构中的ga、v及al的位点的一部分进行置换的金属元素j中的至少1种。
[0057]
前述原料混合物中的、li相对于la、前述元素e、ga、v、al及前述元素j的合计量的摩尔比、及ga、v及al的合计量相对于la及前述元素e的合计量的摩尔比与上述的本发明的li离子导体的这些摩尔比相同。另外,优选的方式中,前述原料混合物中的各金属元素的摩尔比为上述的式(1)所示的化合物中的化学计量比,全部可以参照作为本发明的li离子导体的优选的方式说明的上述式(1)相关的内容。
[0058]
作为构成本发明的li离子导体的各元素(o以外)的原料,可以使用各金属元素(即,li、la、ga、v、al、元素d、元素e、元素j)的氧化物、碳酸盐、氢氧化物、氯化物、醇盐等粉末。li源粉末优选为li氧化物或li碳酸盐,la源粉末优选为la氧化物或la氢氧化物,关于ga、v、al、元素d、元素e及元素j,均优选为氧化物、碳酸盐或氢氧化物(特别是氧化物或碳酸盐)。另外,更优选原料均为各金属的氧化物粉末。
[0059]
优选调整各元素的原料粉末的bet比表面积,例如优选la源粉末(特别是la2o3)设为5~15m2/g、li源粉末(特别是li2o)设为5~10m2/g、ga源粉末(特别是ga2o3)设为5~15m2/g、zr源粉末(特别是zro2)设为15~20m2/g。
[0060]
在1100℃以上进行的原料混合物的烧成优选包含:在大气中、在1100℃以上进行的第1烧成;和在第1烧成后进行、在非活性气体气氛下、在1100℃以上进行的第2烧成。
[0061]
第1烧成中,优选将原料混合物在例如150~400mpa(优选188~375mpa)的压力下进行成形,将得到的成形体(第1成形体)在1100℃以上进行8~15小时烧成。烧成可以在大气中进行。
[0062]
第2烧成中,优选第1烧成后、在干燥氮气、氩气等非活性气体气氛下、在1100℃以上(优选1200℃以上)进行3~30小时(优选5~25小时)烧成。
[0063]
第1烧成中,将原料混合物制成成形体后进行烧成的情况下,第1烧成后的第1成形体优选进行粉碎后供于第2烧成,通过粉碎得到的粉末优选再次在150~400mpa(优选188~375mpa)左右的压力下进行成形从而得到第2成形体,对第2成形体进行第2烧成。
[0064]
第1烧成温度优选为1200℃以下,第2烧成温度优选为1300℃以下,另外,优选第2烧成温度高于第1烧成温度。
[0065]
原料混合物的称量、前述第1烧成中的成形优选在减少了水分的环境中进行,优选均在露点值为-120℃~-40℃(优选-100℃~-50℃)的环境(手套箱、或干燥室等)中进行。另外,第2烧成的优选的方式中的粉碎也优选在与上述同样的减少了水分的环境中进行。进而,第2烧成也优选在减少了水分的环境中进行,可以使用露点值为-80℃~-40℃的干燥氮气等干燥非活性气体,该非活性气体的流量例如可以设为1~5l/min。
[0066]
本技术主张基于2020年3月5日申请的日本专利申请第2020-038111号的优先权的权益。2020年3月5日申请的日本专利申请第2020-038111号的说明书的全部内容为了参考
被援引至本技术中。
[0067]
实施例
[0068]
以下,举出实施例更具体地对本发明进行说明。本发明不受以下的实施例限制,当然也可以在可适合前述、后述的主旨的范围内适当地加以变更来实施,它们均包含在本发明的技术范围内。
[0069]
实施例1-1
[0070]
将li2o(株式会社高纯度化学制、纯度:99%、比表面积sw:8.4m2/g、比表面积径d
bet
:355nm)、la2o3(株式会社高纯度化学制、纯度:99.9%、比表面积sw:11.5m2/g、比表面积径d
bet
:80nm)、ga2o3(株式会社高纯度化学制、纯度:99.99%、比表面积sw:10.4m2/g、比表面积径d
bet
:90nm)的粉体在手套箱内(露点值-98℃)分别以生成的复合金属氧化物的组成为li9la3ga2o
12
的化学计量比称量合计5g。将这些粉体的混合物(原料混合物)在干燥室内(露点值-60℃)以375mpa的压力进行单螺杆加压成形,在大气中、在1100℃下进行12小时烧成。其后,将在干燥室内烧成的粒料在研钵中进行30分钟左右粉碎/混合,将粉碎后的试样放入模具中、以375mpa的压力进行单螺杆加压成形,形成直径10mm、厚度约1mm的粒料。将前述粒料在露点值为-60℃的干燥氮气氛中(流量2l/min)在1230℃下进行6小时烧成,得到粒料烧结体。
[0071]
实施例1-2~1-10、实施例2-1、实施例3-1~3-3
[0072]
将复合金属氧化物的组成、烧成时间设为如表1、2中所记载,除此以外,与实施例1-1同样地操作,得到粒料烧结体。需要说明的是,在包含hf的例中使用hfo2作为hf源,包含sr的例中使用srco3作为sr源,包含zr的例中使用zro2(bet比表面积为18.4m2/g)作为zr源。另外,原料混合物的合计量均设为与实施例1-1同样的5g。
[0073]
对上述实施例中得到的粒料烧结体两面进行研磨,并溅射au,形成直径8mm的电极。将形成有电极的粒料烧结体试样安装于宝泉株式会社制的全固态电池评价电池单元,与恒电位仪/恒电流仪(potentiostat/galvanostat)连接,在室温~100℃的温度范围进行阻抗测定,进行li离子电导率的评价。通过阻抗测定评价的离子电导率分为来自块状晶体的贡献和来自晶界的贡献的情况下,与总电导率σ
total
(s/cm)一起,对应于块状晶体部分的σ
bulk
(s/cm)的值也一并示出。进而,根据使用了各温度下的离子电导率的值的阿累尼乌斯曲线图算出活化能ea(ev)。将结果示于表1、2。需要说明的是,实施例3-2的离子电导率表示75℃下的值,实施例3-3的离子电导率表示50℃下的值,这些以外表示25℃下的离子电导率。
[0074]
另外,按照以下的要领测定表1所示的晶格常数。将粒料烧结体在手套箱内用研钵进行粉碎,使用bruker制的xrd(x-ray diffraction analysis)装置进行晶体结构解析。使用得到的x射线衍射峰的(400)面的峰,通过下式求出晶面间距d值,算出晶格常数。
[0075]
2dsinθ=nλ
ꢀꢀꢀ
(1)
[0076]
1/d2=(h2+k2+l2)/a2ꢀꢀꢀ
(2)
[0077]
d:晶面间距、a:晶格常数
[0078]
[表1]
[0079][0080]
[表2]
[0081][0082]
根据表1、2,可知,与以往不同的新的组成的化合物表现良好的li离子传导。
[0083]
另外,图1中示出实施例1-6及实施例1-8中得到的粒料烧结体的截面sem图像。图1的(a)为实施例1-6,图1的(b)为实施例1-8,对于同时包含sr和zr的实施例1-6、同时包含sr
及hf和zr的实施例1-8,烧结特性提高,从而颗粒彼此的界面消减的部位变多,为表现良好的li离子传导性的结果。
[0084]
进而,图2中示出对实施例1-8~1-10中得到的粒料烧结体进行xrd解析而得的结果。可知实施例1-8~1-10的主相均为石榴石结构。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1