一种高烧结活性纯相纳米MgAl2O4粉体及其制备方法和应用

文档序号:30232017发布日期:2022-06-01 05:48阅读:387来源:国知局
一种高烧结活性纯相纳米MgAl2O4粉体及其制备方法和应用
一种高烧结活性纯相纳米mgal2o4粉体及其制备方法和应用
技术领域
1.本发明涉及一种高烧结活性纯相纳米mgal2o4粉体及其制备方法和应用,属于陶瓷粉体制备技术领域。


背景技术:

2.mgal2o4(镁铝尖晶石,mas)陶瓷不仅在0.2~5.5μm宽波段范围内具有高透波性,而且还具有优异的物理和化学特性,如低密度(3.58g/cm3)、高硬度(16gpa)、高抗热震性、耐酸碱等,是一种综合性能优异的结构功能一体化陶瓷材料,可广泛用于国防和安全、能源和信息等诸多领域。
3.mas陶瓷的制备主要包括两种途径:一是al2o3和mgo两种粉体直接高温固相反应,二是先制备mas粉体再进行致密化烧结。但是,由于al2o3与mgo粉体直接反应过程中体积膨胀较大(~8%),因此直接固相反应法很难用于制备mas陶瓷。而基于mas粉体的致密化烧结工艺难度较低,且所得陶瓷性能较好,因而,多采用先合成mas粉体再进行烧结的方法进行mas陶瓷制备。因此,合成高烧结活性纯相mas粉体成为其陶瓷制备的关键。
4.固相反应和化学合成是制备mas粉体的两种主要方法。其中,化学合成方法(共沉淀法、溶胶-凝胶法、水热法、凝胶燃烧法)通常使用mg和al的硝酸盐/硫酸盐溶液作为原料,需要通过煅烧去除有机化合物,效率低,成本高,导致化学合成法很难实现大规模工业化生产。与之相比,固相反应法用于合成mas粉体具有技术简单、操作便利、对设备和场地要求较低以及成本低等优点。
5.固相反应法通常以α-al2o3或alooh作为al源,以mgo或mg(oh)2作为mg源在1400-1600℃合成mgal2o4粉体[m.a.malekabadi,et al,ceram.int.44(2018)20122

20131;h.r.zargar,et al,j.alloys compd.507(2010)443

447;k.itatani,et al,j.soc.inorg.mater.344(2006)336

344]。wang等以alooh和mgo为原料,在1400℃空气中保温3h后得到纯mgal2o4粉体,alooh随温度升高转变为γ-al2o3,与mgo反应形成mgal2o4粉体[x.h.wang,et al,adv.mater.res.79

82(2009)1811

1814]。目前,大多数研究采用添加lif、alf3、alcl3和nh4f等助剂的办法来降低mgal2o4粉体的合成温度[m.a.malekabadi,et al,ceram.int.44(2018)20122

20131;x.h.wang,et al,adv.mater.res.79

82(2009)1811

1814.]。其中,malekabadi等的研究表明,在α-al2o3和mgo粉体中不添加助剂时,1650℃保温2h合成了纯相的mgal2o4粉体,当添加1wt.%微米lif至α-al2o3和mgo粉体中时,可在1450℃保温2h获得纯相mgal2o4粉体,当添加的lif粒度降到纳米级时,mgal2o4的合成温度可降到1200℃。虽然助剂可以降低mgal2o4粉体的合成温度,但其不可避免地增加了粉体中的杂质含量,会对粉体的后期应用造成不利影响。
[0006]
另一方面,烧结活性是评价陶瓷粉体性能的重要方面,一般来说,减小尖晶石粉体粒度有益于提高其烧结活性。liu等[y.n.liu,et al,ceram.int.46(2020)25738

25740]以55nm的mgal2o4粉为原料,在1550℃空气中保温20h获得的陶瓷相对密度达到98.0%以上。zych等[zych,et al,ceram.int.40(2014)9783

9790]分别使用粒度为60nm和90nm的两
种mgal2o4粉体,在空气中1600℃保温3h后,陶瓷的相对密度达到99.87%和99.66%。
[0007]
对于陶瓷粉体烧结而言,粉体的烧结活性至关重要,良好的烧结活性可有效降低陶瓷的烧结温度、缩短保温时间,获得高致密度,从而提高陶瓷性能。因此,有必要探索更简单易行、节能环保、高效、低成本的高烧结活性mgal2o4粉体制备技术,以在对设备要求不高、较低温度和较短保温时间条件下实现高性能mgal2o4陶瓷制备,从而进一步推动mgal2o4透明陶瓷广泛应用。


技术实现要素:

[0008]
本发明的目的在于提供一种利用γ-al2o3低温固相反应制备纯相纳米mgal2o4粉体的方法,且所制得粉体具有较高的烧结活性。该方法以γ-al2o3和mgo为原料通过高温固相反应合成mgal2o4粉体,简单易行、操作方便。以商用γ-al2o3为原料,原料易得、质量稳定且价格便宜,粉体合成温度较低(1200~1400℃)且保温时间较短(60~180min),对设备要求不高,节能环保、效率高、成本低,易实现产业化。所合成的纯相mgal2o4粉体颗粒尺寸小,易于通过普通球磨实现颗粒细化,从而获得高烧结活性的具有双峰粒度分布特征的纳米mgal2o4粉体。特别是,该方法制备的mgal2o4粉体具有非常优异的烧结活性,1550℃不保温样品的相对密度达到95.81%,在1450℃保温120min制得的mgal2o4陶瓷相对密度达99.80%,具有63.8%的透过率,在1550℃保温10min制得的mgal2o4陶瓷相对密度达98.95%,具有28.7%的透过率。
[0009]
一种高烧结活性纯相纳米mgal2o4粉体的制备方法,将经球磨混合的γ-al2o3和mgo粉体进行烘干,过筛;将所得γ-al2o3和mgo混合粉体在空气气氛中,1200~1400℃保温60~180min,得纯相mgal2o4粉体;将所得纯相mgal2o4粉体进行球磨,获得具有高烧结活性的纯相纳米mgal2o4粉体,其中,γ-al2o3和mgo粉体的摩尔比为1:1~1.3:1。
[0010]
本发明所述高烧结活性纯相纳米mgal2o4粉体的制备方法中,所述γ-al2o3粉体纯度≥99.9%,平均粒径≤40nm,比表面积≥120m2/g。
[0011]
本发明所述高烧结活性纯相纳米mgal2o4粉体的制备方法中,所述mgo粉体由mg(oh)2在空气中600℃煅烧60min所得,纯度≥99.9%,平均一次粒径≤90nm,比表面积≥15m2/g。
[0012]
优选地,以无水乙醇为介质,将γ-al2o3和mgo粉体在球磨机上以170rpm球磨20~30h后烘干,过60~80目筛。
[0013]
进一步地,按γ-al2o3和mgo混合粉体:无水乙醇=20~30g:100ml,将γ-al2o3和mgo粉体在球磨机上以170rpm球磨20~30h后烘干,过60~80目筛。
[0014]
优选地,将γ-al2o3和mgo混合粉体装入al2o3坩埚中,在箱式炉中空气氛围下反应合成mgal2o4粉体。进一步地,γ-al2o3和mgo混合粉体在箱式炉中的升温速率是3~10℃/min,保温结束后随炉冷却。
[0015]
优选地,所得纯相mgal2o4粉体在行星式球磨机上进行球磨,170rpm球磨24h。
[0016]
本发明的另一目的是提供由上述方法制得的高烧结活性纯相纳米mgal2o4粉体。
[0017]
本发明所述mgal2o4粉体呈双峰粒度分布,粒度分布范围0.05~4.00μm,d
50
=0.40μm,比表面积≥18m2/g。
[0018]
本发明所述高烧结活性纯相纳米mgal2o4粉体球磨前一次粒径《110nm,球磨后一次
粒径≤100nm。
[0019]
本发明的又一目的是提供利用上述高烧结活性纯相纳米mgal2o4粉体制备mgal2o4陶瓷的方法。
[0020]
一种mgal2o4陶瓷的制备方法,其特征在于:将mgal2o4粉体干压成型后,在空气中升温到1350~1600℃,保温0~120min。
[0021]
进一步地,1550℃,不保温样品的相对密度为95.81%。
[0022]
进一步地,在1450℃保温120min样品相对密度高达99.80%,最大红外透过率达63.8%。
[0023]
进一步地,在1550℃保温10min所制备样品相对密度即可达到98.95%,最大红外透过率为28.7%。
[0024]
本发明的有益效果为:本发明利用纳米γ-al2o3与mgo粉体在低温下进行固相反应合成具有高烧结活性的纯相纳米mgal2o4粉体,在粉体合成的升温过程中通过γ-al2o3+mgo

mgal2o4和α-al2o3+mgo

mgal2o4两种途径获得mgal2o4。γ-al2o3为絮状多孔结构,与产物mgal2o4晶格具有相似性,与α-al2o3相比具有更多的缺陷和更短的扩散距离,使γ-al2o3作为原料时可在较低温度下与mgo直接反应生成颗粒细小的mgal2o4粉体。同时,部分γ-al2o3在升温过程中相变成α-al2o3,发生颗粒团聚与生长,再与mgo反应生成颗粒较大的mgal2o4粉体。在这两种反应途径共同参与下,使制备的mgal2o4粉体具有双峰粒度分布特征,有益于提高其烧结活性。所制备的mgal2o4粉体在空气中较低温度条件下保温较短时间即可制得高致密度陶瓷,例如:1450℃保温120min样品相对密度高达99.80%,最大红外透过率达63.8%;1550℃保温10min所制备样品相对密度即可达到98.95%,最大红外透过率为28.7%,表明使用纳米γ-al2o3和mgo制备的双峰粒度分布的纯相纳米mgal2o4粉体具有非常好的烧结活性,有助于制备高密度的mgal2o4陶瓷。此外,本发明工艺简单易行,有效降低了mgal2o4粉体的合成温度,并缩短保温时间,该技术对设备要求不高,操作方便,节能环保且效率高,适用于工业化生产。
附图说明
[0025]
图1为实施例1原料γ-al2o3粉体及mgo粉体的xrd图;
[0026]
图2为实施例1原料γ-al2o3粉体及mgo粉体的sem图;
[0027]
图3为实施例1所得γ-al2o3/mgo混合粉体的sem图;
[0028]
图4为实施例1、2、3所得mgal2o4粉体的xrd图谱;
[0029]
图5为实施例1所得mgal2o4粉体的sem图;
[0030]
图6为实施例1球磨后mgal2o4粉体的sem图;
[0031]
图7为实施例1球磨后mgal2o4粉体的粒度分布图;
[0032]
图8为实施例1球磨后的mgal2o4粉体在不同温度条件下的相对密度;
[0033]
图9为实施例1中,坯体升温至1350-1600℃所得陶瓷的sem图;
[0034]
图10为实施例1中,坯体保温烧结后陶瓷的sem图;
[0035]
图11为实施例1中,坯体保温烧结后陶瓷的透光性曲线;
[0036]
图12为实施例2所得mgal2o4粉体的sem图;
[0037]
图13为实施例3所得mgal2o4粉体的sem图。
具体实施方式
[0038]
下述非限制性实施例可以使本领域的普通技术人员更全面地理解本发明,但不以任何方式限制本发明。
[0039]
下述实施例中所述试验方法,如无特殊说明,均为常规方法;所述试剂和材料,如无特殊说明,均可从商业途径获得。
[0040]
具体实施方式之一:
[0041]
一种高烧结活性纯相纳米mgal2o4粉体的制备方法,包括下述工艺步骤:
[0042]
(1)按摩尔比1:1~1.3:1称取γ-al2o3和mgo原料粉体,其中,所述原料γ-al2o3和mgo均为高纯纳米粉体,其中,γ-al2o3纯度≥99.9%,平均粒径≤40nm,比表面积≥120m2/g;mgo由mg(oh)2在空气中600℃煅烧60min所得,纯度≥99.9%,平均一次粒径≤90nm,比表面积≥15m2/g;
[0043]
(2)以无水乙醇为介质,将称得的γ-al2o3和mgo粉体在行星式球磨机上以170rpm球磨20~30h球磨混合;
[0044]
(3)将球磨混合后的浆料烘干,过60~80目筛;
[0045]
(4)把烘干造粒所得γ-al2o3和mgo混合粉体装入坩埚,置于箱式炉中,在空气气氛中,升温速率3~10℃/min,1200~1400℃保温60~180min,得一次粒径《110nm的纯相mgal2o4粉体,保温结束后关闭电源,随炉冷却;
[0046]
(5)所述获得的纯相mgal2o4粉体在行星式球磨机上进行球磨,经170rpm球磨24h得高烧结活性纯相纳米mgal2o4粉体,所得粉体呈双峰粒度分布,粒度分布范围0.05~4.00μm,d
50
=0.40μm,比表面积≥18m2/g,一次粒径≤100nm。
[0047]
实施例1
[0048]
以纯度为99.99%、平均粒径为14nm、比表面积为128m2/g的γ-al2o3粉体和在空气中600℃保温60min煅烧mg(oh)2得到的纯相mgo粉体(平均粒径80nm,比表面积21m2/g)为原料(γ-al2o3和mgo的物相组成见图1,形貌见图2),按γ-al2o3和mgo摩尔比1:1(γ-al2o
3 71.83wt.%,mgo 28.17wt.%)称取原料粉体20g,加入无水乙醇100ml,配制γ-al2o3和mgo的混合浆料,在行星式球磨机上以170rpm球磨24h,所得混合浆料烘干、过60目筛,γ-al2o3+mgo混合粉体形貌如图3所示。
[0049]
将γ-al2o3+mgo混合粉体放入al2o3坩埚中,置入箱式炉,在空气环境中以10℃/min升温至1250℃保温60min,关闭电源随炉冷却,得到纯相mgal2o4粉体,图4是其xrd图谱,图5是粉体的sem图,粉体一次粒径为101nm,比表面积为16.57m2/g。
[0050]
将合成的20g mgal2o4粉体加入100ml无水乙醇,在行星式球磨机上以170rpm球磨24h,球磨后的粉体形貌见图6,该粉体平均粒径为85nm,比表面积为19.81m2/g,图7是采用激光粒度仪测得的粉体粒度分布,表明球磨后的粉体呈双峰分布特征,粒度分布范围0.05~4.00μm,中位粒度为0.4μm。
[0051]
球磨后的mgal2o4粉体干压成型后,在空气中升温到1350-1600℃(不保温),图8是其在不同温度条件下的相对密度测试结果,图9是样品的sem图,可见坯体升温至1550℃时其相对密度已达95.81%;该粉体在1450℃保温120min所得陶瓷的相对密度为99.80%,最大透过率为63.8%;该粉体在1550℃保温10min所得陶瓷的相对密度为98.95%,最大透过率为28.7%,表明所制备的mgal2o4粉体具有很好的烧结活性。图10是保温烧结后陶瓷的sem
图,图11是陶瓷的透光性曲线。
[0052]
实施例2
[0053]
实施例2与实施例1的区别是,γ-al2o3和mgo的质量比是1.1:1,所得纯相mgal2o4粉体的xrd图谱见图4,形貌见图12,测得所得粉体比表面积为24.99m2/g,平均一次颗粒粒径67nm。
[0054]
实施例3
[0055]
实施例3与实施例1的区别是,γ-al2o3和mgo的质量比是1.3:1,升温速率为5℃/min,粉体合成温度为1400℃,所得纯相mgal2o4粉体的xrd图谱见图4,形貌见图13,测得所得粉体比表面积为14.08m2/g,平均一次颗粒粒径119nm。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1