镍钴锰酸锂正极材料回收提锂过程中副产物含锂粗硫酸钠的提纯及回收锂的方法与流程

文档序号:30291305发布日期:2022-06-04 15:29阅读:435来源:国知局

1.本发明属于锂电池行业副产物回收领域,具体涉及一种镍钴锰酸锂正极材料回收提锂过程中副产物含锂粗硫酸钠的提纯及回收锂的方法。


背景技术:

2.锂离子电池作为二次能源,目前占据着重大的市场份额,而其正极材料的主要组成元素镍、钴、锰、锂等重金属,回收工艺流程是目前关注的一个焦点。现有的回收方法中,以湿法回收为主,主要是用硫酸将金属镍、钴、锰、锂与碳粉、pvdf等进行分离,再用氢氧化钠沉降回收镍钴锰氢氧化物,回收镍钴锰氢氧化物后的液体加入碳酸钠回收为碳酸锂。在回收过程中产生的镍钴锰氢氧化物洗液、碳酸锂母液及碳酸锂洗液均含有大量硫酸钠,对以上废液一般是通过蒸发方式回收硫酸钠,其中包括无水硫酸钠和十水硫酸钠,这部分硫酸钠主含量85-93%,含锂比较高,含锂在1.1-3.1%,且颜色泛黄,质量非常差。因此,如何对这部分含锂粗硫酸钠提纯为质量合格的无水硫酸钠,同时回收其中所含的锂,对于解决环保问题和资源浪费问题具有非常重大的意义。
3.该硫酸钠产品中锂含量高,在以往的回收方法“溶解
‑‑
过滤
‑‑
蒸发
‑‑
硫酸钠
‑‑
母液回收锂”中,母液中锂一般以氟化锂或磷酸锂进行回收。该工艺存在以下问题:硫酸钠溶液蒸发时泡沫多,蒸发很难进行,蒸发结晶回收的硫酸钠含锂还是很高,达到1.1-3.1%;产品有无水硫酸钠和十水硫酸钠,硫酸钠主含量低,一般在85-93%;有时该硫酸钠产品中含镍钴锰也高,达不到提纯目的,同时锂损失大;硫酸钠结晶中的锂以氟化锂或磷酸锂进行回收,还需要使用氢氟酸或磷酸,产品为氟化锂或磷酸锂,产品分散,回收产品氟化锂或磷酸锂后的液体含氟或磷,处理难度大。


技术实现要素:

4.本发明的目的是提供一种镍钴锰酸锂正极材料回收提锂过程中副产物含锂粗硫酸钠的提纯及回收锂的方法,以解决现有回收方法存在的硫酸钠纯度低、锂及其他杂质含量高、蒸发过程中泡沫多、蒸发过程难以控制的问题。
5.本发明的技术方案是:一种镍钴锰酸锂正极材料回收提锂过程中副产物含锂粗硫酸钠的提纯及回收锂的方法,包括以下步骤:步骤a、溶解含锂粗硫酸钠,保持温度60-70℃,得到硫酸钠溶液,控制硫酸钠含量300-360 g/l,镍、钴、锰含量均≤5 mg/l;步骤b、将步骤a所得的硫酸钠溶液进行过滤分离出不溶性杂质(包括镍、钴、锰的氢氧化物);步骤c、为保证硫酸钠溶液质量,对步骤b所得的过滤液进行精密过滤;步骤d、对步骤c所得的硫酸钠液体加硫酸调ph值至4-5,保持温度60-70℃,反应30-60 分钟;
步骤e、为保证无水硫酸钠和碳酸锂质量,将步骤d所得的硫酸钠液体进行精密过滤;步骤f、将步骤e过滤后的硫酸钠液体升温至90-100℃进行蒸发浓缩,溶液达到过饱和后,控制温度在60℃-70℃趁热过滤,得到无水硫酸钠;其中硫酸钠含量高于99%,锂0.02-0.04%,镍0.0001-0.0003%,钴0.0002-0.0004%,锰0.0001-0.0003%,外观颜色白,颗粒均匀;步骤g、无水硫酸钠母液根据锂含量决定去向,若锂含量≥7.8 g/l,则开路合成碳酸锂回收锂;若锂含量<7.8 g/l,则返回步骤a用于溶解含锂粗硫酸钠。
6.作为本发明的进一步改进,在步骤a中,若镍、钴、锰中任一组分的含量高于5 mg/l,则加氢氧化钠溶液将ph调至9-10,此时镍、钴、锰以氢氧化物形式分离出去。
7.作为本发明的进一步改进,在步骤g中,若锂含量经过循环富集达到7.8 g/l,则开路合成碳酸锂,合成碳酸锂的方法如下:将无水硫酸钠母液升温并保持在90℃-95℃,加入碳酸钠溶液,反应30
ꢀ‑
60分钟后过滤,过滤得到的碳酸锂固体用纯水进行热水洗涤,得到纯度不低于98.5%的碳酸锂产品,颜色白。
8.作为本发明的进一步改进,在步骤g中,以无水硫酸钠母液中锂含量,按理论量加入碳酸钠溶液。
9.作为本发明的进一步改进,碳酸钠溶液用纯水配制并经过滤除杂,浓度为250-280 g/l。
10.作为本发明的进一步改进,在步骤g中,采用90℃-95℃热水对碳酸锂固体进行洗涤。
11.作为本发明的进一步改进,在步骤g中,洗涤时,碳酸锂固体与纯水的质量比为1:2-3。
12.作为本发明的进一步改进,在步骤g中,洗涤次数至少为两次。
13.作为本发明的进一步改进,在步骤g中,过滤得到的碳酸锂合成母液返回步骤a用于溶解含锂粗硫酸钠。
14.作为本发明的进一步改进,在步骤g中,洗涤碳酸锂渣得到的洗液返回步骤a用于溶解含锂粗硫酸钠。
15.本发明将含锂粗硫酸钠溶解后,先控制溶液中的镍、钴、锰含量均不大于5mg/l,即可保证最后的硫酸钠产品中镍、钴、锰含量均布大于0.001%。滤去杂质后,加硫酸调ph至4-5,是为了避免碳酸根溶解不完全而在蒸发器内产生泡沫,使蒸发过程无法进行,同时也避免硫酸钠溶液中的锂形成碳酸锂,造成无水硫酸钠中锂含量高。再次过滤后,对硫酸钠进行蒸发,在60℃-70℃趁热过滤,是为了避免在过滤过程中因温度降低而导致十水硫酸钠结晶析出,另外,避免锂随着结晶水与硫酸钠一同析出而降低硫酸钠纯度,同时避免十水硫酸钠堵塞管路及精密过滤器。硫酸钠结晶析出后,母液返回步骤a中用于溶解含锂粗硫酸钠,在不断循环的过程中,锂不断富集,当溶液中锂含量达到7.8g/l时,加入碳酸钠合成碳酸锂,为保证碳酸锂的纯度,碳酸钠按照理论量加入即可,不需要使锂完全沉淀,以避免碳酸钠过剩导致碳酸锂晶体包裹碳酸钠而影响碳酸锂质量,剩余的锂可继续溶解含锂粗硫酸钠进行循环富集。碳酸锂固体用热水洗涤,避免碳酸锂溶解损失。为了保证硫酸钠中锂含量小于0.1%,一是控制硫酸钠结晶母液锂含量小于7.8 g/l,二是过滤时温度在60℃-70℃,保证产
品为无水硫酸钠,避免在过滤过程中析出十水硫酸钠结晶而使锂随着结晶水一同析出。
16.本发明的有益效果是:本发明通过合理控制硫酸钠溶液的ph值为4-5,解决了硫酸钠溶液蒸发过程中泡沫多的问题,做到无泡沫,同时也解决了提纯后硫酸钠产品中含锂仍然高的问题。通过控制硫酸钠溶液过滤温度在60℃-70℃,硫酸钠以无水硫酸钠的形式进行回收,锂含量可降至0.02-0.04%,硫酸钠产品外观颜色白,颗粒均匀。锂以碳酸锂进行回收,纯度达98.5%以上,回收过程不需使用多余的氢氟酸或磷酸,回收的产品碳酸锂与镍钴锰酸锂正极材料回收提锂过程的碳酸锂产品一致,产品集中,不存在回收锂后液体含氟或磷问题,更环保。
具体实施方式
17.以下结合具体实施方式对本发明进行进一步详细说明。
18.实施例1、取1.9kg的含锂粗硫酸钠,粗硫酸钠含硫酸钠85.2%、含锂1.6%,含水12%,溶于4l纯水中,搅拌升温至70℃后保温搅拌,待硫酸钠溶解后,检测溶液成分:硫酸钠336 g/l、锂6.15 g/l、镍50 mg/l、钴70 mg/l、锰90 mg/l,加入质量分数为40%的氢氧化钠溶液调ph值到9,反应30 分钟后趁热进行粗过滤,再对硫酸钠粗过滤液进行0.45 微米精度的精密过滤得到硫酸钠溶解液,过滤后检测镍4mg/l、钴3.8 mg/l、锰3.1 mg/l。对硫酸钠溶解液加硫酸调节ph至5,控制温度在60-63℃,反应30 分钟,进行0.45 微米精度的精密过滤,得到净化合格的硫酸钠溶液。对净化合格的硫酸钠溶液进行蒸发,温度控制在95℃,蒸发过程无泡沫产生,蒸发到过饱和,70℃趁热进行抽滤,抽滤到不滴液为止,抽滤出来的固体为无水硫酸钠,其成分如下:硫酸钠99.1%、锂0.02%、镍0.0002%、钴0.00023%、锰0.0003%。外观颜色白,颗粒均匀。
19.无水硫酸钠结晶母液经过循环使用后锂含量达到8.2 g/l,取2l加热到90℃,按理论量加入净化过的浓度为260 g/l的碳酸钠溶液 470ml,反应30分钟,合成得到的碳酸锂过滤后在95℃下按纯水与碳酸锂渣质量比为2:1的比例洗涤2次,过滤烘干得到的碳酸锂主含量98.52%。
20.实施例2、取1.5kg的含锂粗硫酸钠,粗硫酸钠含硫酸钠89.5%、含锂1.1%,含水15%,溶于3.5l纯水中,搅拌升温至60℃后保温搅拌,待硫酸钠溶解后,检测溶液成分:硫酸钠320 g/l、锂3.8 g/l、镍58 mg/l、钴64 mg/l、锰89 mg/l,加入质量分数为40%的氢氧化钠溶液调ph值到10,反应30 分钟后趁热进行粗过滤,再对硫酸钠粗过滤液进行0.45微米精度的精密过滤得到硫酸钠溶解液,对过滤后硫酸钠溶液检测镍3.2mg/l、钴3.1mg/l、锰2.8 mg/l。对硫酸钠溶解液加硫酸调节ph至4,控制温度在68-70℃,反应40分钟,进行0.45微米精度的精密过滤,得到净化合格的硫酸钠溶液。对净化合格的硫酸钠溶液进行蒸发,温度控制在90℃,蒸发过程无泡沫产生,蒸发到过饱和,75℃趁热进行抽滤,抽滤到不滴液为止,抽滤出来的固体为无水硫酸钠,其成分如下:硫酸钠99.4%、锂0.03%、镍0.0003%、钴0.00033%、锰0.0004%。外观颜色白,颗粒均匀。
21.无水硫酸钠结晶母液经过循环使用后锂含量达到8.2g/l,取2l加热到90℃,按理论量加入净化过的浓度为275g/l的碳酸钠溶液 440ml,反应60分钟,合成得到的碳酸锂过滤后在90℃下按纯水与碳酸锂渣质量比为3:1的比例洗涤2次,过滤烘干得到的碳酸锂主含量98.56%。
22.实施例3、配合成碳酸锂母液3升,化验硫酸钠含量126 g/l、锂2 g/l,含锂粗硫酸钠含硫酸钠89.5%、含锂1.1%,含水15%,溶解完粗硫酸钠后液含硫酸钠按300 g/l估算,加入含锂粗硫酸钠约726g,搅拌升温至63℃后保温搅拌,待硫酸钠溶解后,检测溶液成分:硫酸钠299g/l、锂4.09g/l、镍35 mg/l、钴46 mg/l、锰56 mg/l,加入质量分数为40%的氢氧化钠溶液调ph值到9,反应30分钟后趁热进行粗过滤,再对硫酸钠粗过滤液进行0.45微米精度的精密过滤得到硫酸钠溶解液,过滤后检测镍2.8 mg/l、钴3.8 mg/l、锰4 mg/l。对硫酸钠溶解液加硫酸调节ph至4,控制温度在62-65℃,反应60分钟,进行0.45微米精度的精密过滤,得到净化合格的硫酸钠溶液。对净化合格的硫酸钠溶液进行蒸发,温度控制在100℃,蒸发过程无泡沫产生,蒸发到过饱和,73℃趁热进行抽滤,抽滤到不滴液为止,抽滤出来的固体为无水硫酸钠,其成分如下:硫酸钠99.2%、锂0.01%、镍0.00026%、钴0.00038%、锰0.00018%。外观颜色白,颗粒均匀。
23.无水硫酸钠结晶母液含锂4.2 g/l,返回粗硫酸钠溶解使用。
24.实施例4、在反应釜中配纯水2立方,开启搅拌器,开始升温,加含锂粗硫酸钠900公斤,粗硫酸钠含硫酸钠89.5%、含锂1.1%,含水15%,搅拌升温至67℃后保温搅拌,待硫酸钠溶解后,检测溶液成分:硫酸钠342 g/l、锂4.2 g/l、镍50 mg/l、钴58 mg/l、锰90 mg/l,加入质量分数为40%的氢氧化钠溶液调ph值到10,反应30分钟后趁热进行压滤,再对硫酸钠粗过滤液进行0.45微米精度的精密过滤得到硫酸钠溶解液,过滤后检测镍4.2 mg/l、钴3.8 mg/l、锰3.2 mg/l。对硫酸钠溶解液加硫酸调节ph至4,控制温度在65-68℃,反应40分钟,进行0.45微米精度的精密过滤,得到净化合格的硫酸钠溶液。对净化合格ph值为4的硫酸钠溶液进行二效真空蒸发,温度控制在93℃,蒸发过程无泡沫产生,达到过饱和后60℃趁热进行离心分离,离心分离出来的固体为无水硫酸钠,其成分如下:硫酸钠99.2%、锂0.018%、镍0.00028%、钴0.0004%、锰0.0005%。外观颜色白,颗粒均匀。
25.无水硫酸钠结晶母液经过循环使用后7.9 g/l,取1.8立方加热到90℃,按理论量加入净化过的浓度为280g/l的碳酸钠溶液 0.385立方,反应45分钟,合成得到的碳酸锂过滤后在92℃下按纯水与碳酸锂渣质量比为2.5:1的比例洗涤2次,离心分离后得到的碳酸锂主含量98.6%。
26.对比例1、取1.5kg的含锂粗硫酸钠,粗硫酸钠含硫酸钠89.5%、含锂1.1%,含水15%,溶于3.5l纯水中,搅拌升温至70℃后保温搅拌,待硫酸钠溶解后,检测溶液成分:硫酸钠306 g/l、锂3.75 g/l、镍59 mg/l、钴60 mg/l、锰85 mg/l,加入质量分数为40%的氢氧化钠溶液调ph值到9,反应30分钟后趁热进行粗过滤,再对硫酸钠粗过滤液进行0.45微米精度的精密过滤得
到硫酸钠溶解液,过滤后检测镍3.1mg/l、钴3.5 mg/l、锰2.5 mg/l。对硫酸钠溶解液加硫酸调节ph至7,控制温度在66-70℃,反应30分钟,进行0.45微米精度的精密过滤,得到净化合格的硫酸钠溶液。对净化合格ph值为7的硫酸钠溶液进行蒸发,温度控制在95℃,蒸发过程有泡沫产生,控制不合适就会冒出,蒸发困难,达到过饱和后70℃趁热进行抽滤,抽滤到不滴液为止,抽滤出来的固体为无水硫酸钠,其成分如下:硫酸钠99.4%、锂0.2%、镍0.0003%、钴0.00033%、锰0.0004%,由于有泡沫产生,硫酸钠中锂的含量较ph 4-5的蒸发液得到的硫酸钠高出很多。
27.无水硫酸钠结晶母液经过循环使用后7.9 g/l,取2l加热到90℃,按理论量加入净化过的浓度为280g/l的碳酸钠溶液 430ml,加入碳酸钠反应30分钟,合成得到的碳酸锂过滤后在90℃下按纯水与碳酸锂渣质量比为2:1的比例洗涤2次,过滤烘干得到的碳酸锂主含量98.12%。
28.对比例2、在反应釜中配纯水2立方,开启搅拌器,开始升温,加含锂粗硫酸钠900公斤,粗硫酸钠含硫酸钠89.5%、含锂1.1%,含水15%,搅拌升温至69℃后保温搅拌,待硫酸钠溶解后,检测溶液成分:硫酸钠320g/l、锂3.94 g/l、镍46 mg/l、钴60 mg/l、锰78 mg/l,加入质量分数为40%的氢氧化钠溶液调ph值到10,反应30分钟后趁热进行压滤,再对硫酸钠粗压滤液进行0.45微米精度的精密过滤得到硫酸钠溶解液,过滤后检测镍4.2 mg/l、钴3.6 mg/l、锰3.8 mg/l。对硫酸钠溶解液加硫酸调节ph至7,控制温度在60-62℃,反应30分钟,进行0.45微米精度的精密过滤,得到净化合格的硫酸钠溶液。对净化合格ph值为7的硫酸钠溶液进行蒸发,温度控制在90℃,蒸发过程有泡沫产生,蒸发无法进行。
29.对比例3、取1.5kg的含锂粗硫酸钠,粗硫酸钠含硫酸钠89.5%、含锂1.1%,含水15%,溶于3.5l纯水中,搅拌升温至70℃后保温搅拌,待硫酸钠溶解后,检测溶液成分:硫酸钠306 g/l、锂3.75 g/l、镍58 mg/l、钴64 mg/l、锰89 mg/l,对该液体未做去除镍、钴、锰处理,对硫酸钠溶解液加硫酸调节ph至4,控制温度在60-65℃,反应30分钟,进行0.45微米精度的精密过滤,得到净化合格的硫酸钠溶液。对净化合格的硫酸钠溶液进行蒸发,温度控制在95℃,蒸发过程无泡沫产生,蒸发到过饱和,趁热进行抽滤,抽滤到不滴液为止,抽滤出来的固体为无水硫酸钠,其成分如下:硫酸钠98.2%、锂0.028%、镍0.028%、钴0.033%、锰0.05%,颜色蓝,由于硫酸钠溶液中镍钴锰杂质元素未调整ph进行去除,导致硫酸钠中镍钴锰含量超标。
30.对比例4、对实施例3中的无水硫酸钠结晶母液经过多次循环溶解含锂粗硫酸钠,使硫酸钠溶液锂含量达到10 g/l,对净化合格的硫酸钠溶液进行蒸发,温度控制在100℃,蒸发过程无泡沫产生,蒸发到过饱和,69℃趁热进行抽滤,抽滤到不滴液为止,抽滤出来的固体为无水硫酸钠,其成分如下:硫酸钠99.22%、锂0.12%、镍0.00021%、钴0.00033%、锰0.00012%。外观颜色白,颗粒均匀。锂含量高于0.04%,主要是因为无水硫酸钠结晶母液循环次数增加后,锂含量增高达10 g/l所致。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1