一种高倍率耐低温纳米钒酸锂负极材料的制备方法

文档序号:32699279发布日期:2022-12-27 22:05阅读:332来源:国知局
一种高倍率耐低温纳米钒酸锂负极材料的制备方法

1.本发明属于锂离子电池技术领域,具体涉及一种高倍率耐低温纳米钒酸锂负极材料的制备方法。


背景技术:

2.锂离子电池具有能量密度高、循环寿命长、自放电小等优点,被认为是理想的电源。然而,目前锂离子电池面对的一个主要困难是快速充放电的要求。此外,一般的商业锂离子电池在零度以下存在严重的能量和功率损失,这限制了其在极冷、高功率条件下的应用。商业化规模较大的石墨材料的锂化电位接近0v(相对于li
+
/li),在快速充电或低温充电时容易产生锂枝晶,可能导致短路甚至存在安全隐患。钛酸锂li4ti5o
12
具有较高的电压平台(约1.5v),高的锂离子扩散系数,且脱/嵌锂过程几乎零应变,避免锂枝晶产生的同时还具有非常好的倍率性能和循环稳定性。但是其理论比容量只有175mah/g,能量密度难以达到110wh/kg以上,因此,为了满足和平衡能量密度和功率密度的需求,寻找容量大、嵌锂电位合适的负极材料至关重要。
3.低温条件下,电解液粘度变大,锂离子的迁移受到较大影响,因此研究电解液在低温下的特性对于提高电池低温性能具有指导性的作用。目前,众多研究表示电解液中锂离子的溶剂化结构至关重要。一些文献通过加入低凝固点的溶剂共混、低温阻抗较小的锂盐libf4等方法提高电池的低温电化学性能,science(science 356,1351(2017))报道使用液化气作为电解质在-60℃,0.1c倍率下仍容量保持率达60.6%,但是工艺过程复杂难以放大应用。
4.近年来《nature》(nature 585,63-67(2020))首次报道了通过电化学方法将li
+
嵌入到五氧化二钒(v2o5)中形成无序岩盐钒酸锂li
3v2
o5(ω-lvo)负极材料,其平均工作电位为0.6v,容量约250mah/g,均介于石墨和钛酸锂之间,是一种具有前景的石墨替代材料。然而,目前大部分ω-lvo的制备均为电化学方法,即v2o5与锂片组装成半电池后对其电化学嵌锂得到,但这种负极制备方法难以用于实际生产。公开号cn113257583a专利报道了一种用于锂离子混合电容器的li3v2o5-碳纳米管复合材料,采用了化学锂化法,加入碳纳米管以提高电极材料的电导率,但其原料为商业的微米级材料,未从原料处理角度考虑缩短离子传输距离。


技术实现要素:

5.为了克服上述现有技术的缺点,本发明的目的在于提供一种高倍率耐低温纳米钒酸锂负极材料的制备方法。
6.本发明是一种高倍率耐低温纳米钒酸锂负极材料的制备方法,其特征在于包括以下步骤:
7.1)将商业的微米级五氧化二钒加入去离子水中搅拌均匀,油浴加热得到五氧化二钒水溶液;
8.2)向上述五氧化二钒水溶液中逐滴加入双氧水,结束后继续在油浴加热下反应;
9.3)反应结束后溶液倒入表面皿,液氮速冻,冷冻干燥;
10.4)冷冻干燥后的样品放入管式炉,空气中烧结得到纳米尺度五氧化二钒;
11.5)惰性气体保护下,将纳米尺度五氧化二钒加至正丁基锂正己烷溶液中反应,反应结束后用低沸点溶剂清洗两次并真空抽干;
12.6)化学反应后得到的粉末放置管式炉中,氩气保护下高温退火,得到纳米钒酸锂li
3v2
o5负极材料;
13.7)使用混料机将步骤6)的纳米钒酸锂负极材料与导电剂super-p和粘结剂pvdf在1-甲基-2-吡咯烷酮(nmp)中搅拌成均一的电极浆料,用自动涂覆机涂覆于铜箔上,真空烘干后压辊、裁剪电极片;
14.8)采用双三氟甲磺酰亚胺锂(litfsi)盐与1,3-二氧戊环(dol)和添加剂配制电解液;
15.9)步骤7)得到的电极片与商业锂片加入步骤8)的电解液组装成扣式电池。
16.其中,步骤1)所述的商业微米级五氧化二钒与去离子水的质量比为1:4-1:15;油浴加热温度为60-80℃,加热至相应温度后,即可进行下一步反应。
17.步骤2)中所述五氧化二钒与双氧水的质量比为1:15-1:50;过程中保持温度与步骤1)设置油浴温度相同,反应时间为2-8小时。
18.步骤3)中所述冷冻干燥温度为-60℃至-70℃,时间16-24小时。
19.步骤4)中所述烧结温度为300-500℃,烧结时间2-4小时。
20.步骤5)中所述惰性气体为氩气或氮气,纳米尺度五氧化二钒与正丁基锂的摩尔比为1:1-1:1.2,反应时间为1-3小时。
21.步骤5)中所述正丁基锂的正己烷溶液浓度包括1.6m、2.5m,只需控制其正丁基锂的量符合与五氧化二钒的摩尔比。
22.步骤5)中所述低沸点溶剂包括正己烷、乙醇和二氯甲烷。
23.步骤6)中所述高温退火温度为400-800℃,退火时间为3-6小时。
24.步骤7)中所述纳米钒酸锂负极材料与super-p、pvdf的质量比为7:2:1。
25.步骤8)中所述电解液配制的litfsi摩尔浓度为0.7-1.1mol/l,以获得较高电导率及低粘度。
26.步骤8)中所述添加剂为氟代碳酸乙烯酯(fec)或碳酸亚乙烯酯(vc)、三(三甲基硅烷)磷酸酯(tmsp)、三(三甲基硅烷)硼酸酯(tmsb)中的一种或多种,电解液中,litfsi、dol和添加剂的比例为0.7-1.1mol:0.9l-0.98l:0.02l-0.1l,添加剂用于在负极表面形成sei层进行保护作用。
27.通过采用上述技术方案,本发明的有益效果是:
28.本发明制备的高倍率耐低温纳米钒酸锂负极材料,先由双氧水将商业的微米五氧化二钒处理成纳米五氧化二钒片层,直接通过化学法嵌锂制备再高温退火得到。这种工艺不同于文献报道的电化学嵌锂法,制备方法简单,稳定性好,可实现工业规模生产,与合适的电解液配合使用,可进一步实现其大倍率及低温工作的目标。
29.该方法制备的纳米钒酸锂负极材料是一种新型结构,具体优点包括:
30.1)通过双氧水在高温下对五氧化二钒进行了还原处理,反应完全后立即取出速冷
保持了其蓬松的结构,空气烧结氧化得到纳米尺寸的五氧化二钒小片层。
31.2)使用化学合成法,正丁基锂直接与纳米五氧化二钒反应,生成目标产物,得益于五氧化二钒的纳米尺寸,化学反应彻底,无五氧化二钒杂质。
32.3)高温退火后纳米五氧化二钒结晶度提高,具有很高的离子扩散系数,而且其较小的片层尺寸能够很大程度上缩短锂离子扩散路径,实现了其作为负极材料的高倍率及低温性能。
33.4)选择li
+
容易脱溶剂化的溶剂dol,使li
+
能够快速通过电解液-电极的界面进入材料内部,而本发明制备的纳米钒酸锂又具有很高的离子扩散系数,这保证了低温下离子在材料内的快速传输,配合添加剂在负极表面生成sei层起到保护作用,因此电池能够具有出色的倍率性能和低温性能。
附图说明
34.图1为本发明所制备的纳米钒酸锂和微米钒酸锂(对比例1)的xrd图。
35.图2为本发明所制备的纳米钒酸锂的sem图。
36.图3为本发明所制备的纳米钒酸锂电池的倍率性能图。
37.图4为本发明所制备的纳米钒酸锂电池的低温电化学性能图。
具体实施方式
38.为使本发明的上述目的、特征和优点能够更加明显易懂,下面通过结合附图和具体实施例对本发明进行详细阐述说明。
39.此处所称的“一个实施例”或“实施例”是指可包含于本发明至少一个实现方式中的特定特征、结构或特性。在本说明书中不同地方出现的“在一个实施例中”并非均指同一个实施例,也不是单独的或选择性的与其他实施例互相排斥的实施例。另外,需要说明的是,下文中用n-lvo-h代表纳米钒酸锂,n-lvo代表未经高温退火处理。
40.实施例1
41.本实施例纳米钒酸锂的具体制备及电池组装方式如下:
42.称取5g五氧化二钒粉末,加入40ml去离子水中,搅拌均匀,置于70℃油浴中。逐滴加入150ml过氧化氢,直至五氧化二钒粉末完全溶解,然后将上述混合溶液在70℃的油浴中持续搅拌4h,溶液由黄色转变为墨绿色溶液,然后取出溶液用液氮迅速冷冻,并进行冷冻干燥处理,处理条件为-65℃,时间为20小时。最后管式炉中空气氛围下500度烧结2小时得到纳米五氧化二钒。氩气保护下,按摩尔比1:1.05称取1.6m正丁基锂正己烷溶液,加入纳米五氧化二钒,反应1小时,结束后用正己烷清洗两次并在室温下真空抽干。将粉末放置管式炉中,氩气保护下500℃退火3小时,得到n-lvo-h负极材料。
43.将n-lvo-h、super-p和pvdf按质量比7:2:1称量,研钵中研磨均匀加入nmp继续研磨至均一的浆料,用自动涂覆机涂在铜箔上,真空120℃烘干8小时后压辊裁片。配制0.8m litfsi在dol/fec(0.95l,0.05l)的电解液,与电极片和锂片组装成扣式电池,隔膜为celgard 2500。
44.上述方法所制备的n-lvo-h表征图请参阅图1和图2,图1为纳米钒酸锂负极材料的xrd图,图2为sem图。如图1所示n-lvo-h的物相与电化学嵌锂所得的钒酸锂结构一致,且没
有五氧化二钒的物相存在。
45.实施例2
46.本实施例纳米钒酸锂的具体制备及电池组装方式如下:
47.称取5g五氧化二钒粉末,加入40ml去离子水中,搅拌均匀,置于80℃油浴中。缓慢滴加200ml过氧化氢,直至五氧化二钒粉末完全溶解,然后将上述混合溶液在80℃的油浴中持续搅拌3h,溶液由黄色转变为墨绿色溶液,然后取出溶液用液氮迅速冷冻,并进行冷冻干燥处理,处理条件为-65℃,时间为20小时。最后管式炉中空气氛围下400度烧结2小时得到纳米五氧化二钒。氩气保护下,按摩尔比1:1.1称取1.6m正丁基锂正己烷溶液,加入纳米五氧化二钒,反应1小时,结束后用正己烷和乙醇各清洗1次并在室温下真空抽干。将粉末放置管式炉中,氩气保护下500℃退火5小时,得到n-lvo-h负极材料。
48.将n-lvo-h、super-p和pvdf按质量比7:2:1称量,研钵中研磨均匀加入nmp继续研磨至均一的浆料,用自动涂覆机涂在铜箔上,真空120℃烘干8小时后压辊裁片。配制1m litfsi在dol/vc/tmsb(0.95l,0.02l,0.03l)的电解液,与电极片和锂片组装成扣式电池,隔膜为celgard 2500。
49.实施例3
50.本实施例纳米钒酸锂的具体制备及电池组装方式如下:
51.称取5g五氧化二钒粉末,加入30ml去离子水中,搅拌均匀,置于80℃油浴中。缓慢滴加200ml过氧化氢,直至五氧化二钒粉末完全溶解,然后将上述混合溶液在80℃的油浴中持续搅拌4h,溶液由黄色转变为墨绿色溶液,然后取出溶液用液氮迅速冷冻,并进行冷冻干燥处理,处理条件为-65℃,时间为20小时。最后管式炉中空气氛围下500度烧结2小时得到纳米五氧化二钒。氩气保护下,按摩尔比1:1.1称取2.5m正丁基锂正己烷溶液,加入纳米五氧化二钒,反应1小时,结束后用乙醇清洗两次并在室温下真空抽干。将粉末放置管式炉中,氩气保护下700℃退火3小时,得到n-lvo-h负极材料。
52.将n-lvo-h、super-p和pvdf按质量比7:2:1称量,研钵中研磨均匀加入nmp继续研磨至均一的浆料,用自动涂覆机涂在铜箔上,真空120℃烘干8小时后压辊裁片。配制1m litfsi在dol/fec(0.90l,0.10l)的电解液,与电极片和锂片组装成扣式电池,隔膜为celgard 2500。
53.对比实施例1
54.本对比实施例不对原材料即微米五氧化二钒进行纳米化处理,直接用化学法制备钒酸锂材料并且不进行退火处理。具体实验步骤为:氩气保护下,按摩尔比1:1.05称取1.6m正丁基锂正己烷溶液,加入微米级五氧化二钒,反应1小时,结束后用正己烷清洗两次并在室温下真空抽干,得到负极材料微米级lvo。
55.将lvo、super-p和pvdf按质量比7:2:1称量,研钵中研磨均匀加入nmp继续研磨至均一的浆料,用自动涂覆机涂在铜箔上,真空120℃烘干8小时后压辊裁片。配制0.8m litfsi在dol/fec(0.95l,0.05l)的电解液,与电极片和锂片组装成扣式电池,隔膜为celgard 2500。
56.对比实施例1得到的微米级lvo和实施例1得到的n-lvo-h负极材料的xrd谱如图1所示,由于微米级五氧化二钒直径较大,化学法嵌锂时难以与大颗粒完全反应,导致微米级lvo材料中仍存在五氧化二钒杂质,这不仅影响材料的一致性,而且会导致电池的首次库伦
效率下降,并伴随质量比容量降低。因此,本发明提出双氧水先热还原微米级五氧化二钒,再冷冻干燥保持其形貌,氧化处理得到纳米级五氧化二钒的制备工艺,可得到尺寸均一的电极材料。较小的尺寸也有利于下一步的化学法嵌锂,使得化学反应完全进行,保持材料电化学性能的均一性和稳定性。
57.对比实施例2
58.本对比实施例对原材料微米五氧化二钒进行纳米化处理,化学法制备钒酸锂但不进行退火处理。具体实验步骤为:称取5g五氧化二钒粉末,加入40ml去离子水中,搅拌均匀,置于70℃油浴中。缓慢滴加150ml过氧化氢,直至五氧化二钒粉末完全溶解,然后将上述混合溶液在70℃的油浴中持续搅拌4h,溶液由黄色转变为墨绿色溶液,然后取出溶液用液氮迅速冷冻,并进行冷冻干燥处理,处理条件为-65℃,时间为20小时。最后管式炉中空气氛围下500度烧结2小时得到纳米五氧化二钒。氩气保护下,按摩尔比1:1.05称取1.6m正丁基锂正己烷溶液,加入纳米五氧化二钒,反应1小时,结束后用正己烷清洗两次并在室温下真空抽干,粉末命名为n-lvo。
59.将n-lvo、super-p和pvdf按质量比7:2:1称量,研钵中研磨均匀加入nmp继续研磨至均一的浆料,用自动涂覆机涂在铜箔上,真空120℃烘干8小时后压辊裁片。配制0.8m litfsi在dol/fec(0.95l,0.05l)的电解液,与电极片和锂片组装成扣式电池,隔膜为celgard 2500。
60.对比实施例1和对比实施例2所组装的锂离子电池的倍率性能如表1所示,两种材料颗粒尺寸不同,控制化学法嵌锂的反应物比例和反应时间相同,都未进行高温退火处理。
61.表1
[0062][0063]
表2为实施例1(高温退火n-lvo-h)和对比例2(不退火n-lvo)两种电极材料使用同一电解液(0.8m litfsi在dol:fec=95:5)组装纽扣电池的电化学性能对比。退火后的n-lvo-h具有更高的容量及更好的倍率性能,且低温下比未退火的n-lvo具有更高的容量保持率。
[0064]
表2
[0065][0066]
对比实施例3
[0067]
本实施例与实施例1的区别:电极相同的前提下,将电解液换成商业电解液,即1m lipf6溶于ec/dmc/emc(1:1:1,体积比)+1%vc。
[0068]
实施例1和对比实施例3所制备的纳米钒酸锂电池的倍率性能和低温下电化学性能分别如图3、图4所示。实施例1匹配的电解液在低温下能正常工作,而对比例3使用的商业电解液在低温下几乎充不进电,不能正常工作,说明本发明所述的dol基电解液和普通商业电解液相比,能够在低温条件下进一步发挥纳米钒酸锂的容量,本发明的电解液与纳米钒酸锂相匹配能够充分展示其优越的倍率性能和耐低温性能。
[0069]
以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1