一种单晶生长装置的制造方法

文档序号:8765608阅读:242来源:国知局
一种单晶生长装置的制造方法
【技术领域】
[0001]本实用新型属于单晶制备技术领域,特别是涉及一种单晶生长装置。
【背景技术】
[0002]单晶体具有优良的激光物理性能,其广泛应用于固体激光技术领域,如激光测距仪、激光雷达等仪器设备;高精度单晶硅也是半导体元件的基本材料。如何低成本地获得大尺寸、或成分分布均匀的单晶体是本领域技术人员追求的目标。
【实用新型内容】
[0003]本实用新型目的在于寻找一种可以得到成分分布均匀、首尾一致的大尺寸单晶的方法。通过对现有工艺的分析发现:现有的区熔单晶生长方法都是需要同时兼顾熔化固态原料和熔液结晶,因而很受局限。为了解决上述技术问题,本实用新型提供了如下的技术方案:
[0004]一种单晶生长装置,包括加料部、单晶生长部和加热单元,所述加料部和单晶生长部之间设置有对固相原料进行熔化的熔料器,所述熔料器的下部或底部设置有漏液孔,由加料部落入熔料器的固相原料,经加热单元加热熔化后,以熔液的形式滴入或流入单晶生长部的熔区里,作为添加的原料参与单晶生长。
[0005]进一步,所述加热单元包括加热所述单晶生长部和加热熔料器的第一加热器;或者包括加热所述单晶生长部的第一加热器和加热熔料器的第二加热器;或者包括加热所述单晶生长部和加热熔料器的第一加热器和加热熔料器的第二加热器。
[0006]进一步,所述单晶生长部下部设置有顶杆,顶杆带动单晶生长部上下运动;或/和所述第一加热器设置有移动装置,带动加热单元上下运动。
[0007]进一步,所述单晶生长部内还设置有搅拌器,通过搅拌促进熔区组分均匀化。
[0008]进一步,所述漏液孔为熔料器下部或底部开设的通径1-10毫米的一个或多个小孔;或者将底部设置为网状。
[0009]进一步,所述熔料器由高熔点的、相对于所述熔液不发生化学反应的材料制成。
[0010]进一步,所述材料为钼、铱、钨、钥、钽、铌、石英或石墨中的一种。
[0011]进一步,所述加热单元采用的加热方式为感应加热、电阻加热或辐射加热的任一种,或者采用不同加热方式组合加热。
[0012]进一步,生成的所述单晶为纯组分单晶、掺杂的单晶和非同成分生长的单晶。
[0013]进一步,所述单晶为氧化铝、掺杂或不掺杂的钇铝石榴石、化学计量比铌酸锂或单晶娃的一种。
[0014]进一步,所述熔区的上升速度为0.1毫米/小时一20毫米/小时。
[0015]由于采用熔液加料,熔区不用同时兼顾熔化固态原料和熔液结晶、可以根据结晶需要的最佳条件在很大的范围内自由调整,获得更高质量的单晶。同时,由于可以采用较薄的熔区、并且采用搅拌器,有利于改善传质条件;而且加热较薄的熔区需要的加热元件功率可以减小,热效率得到提高,降低了生产中的能耗,节约大量能源;再者,采用较低功率的加热元件,产生能耗少,需要的保温材料等也会减少,有利于设备的小型化。
【附图说明】
[0016]附图用来提供对本实用新型的进一步理解,并且构成说明书的一部分,与本实用新型的实施例共同用于解释本实用新型,并不构成对本实用新型的限制。
[0017]图1是本实用新型单晶生长装置的结构示意图;
[0018]图中:1、加料器;2、搅拌器;3、加热器;4、熔料器;5、熔液滴;6、感应圈;7、坩埚;8、溶区;9、单晶;10、杆晶;11、保温材料。
【具体实施方式】
[0019]以下结合附图对本实用新型的优选实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本实用新型,并不用于限定本实用新型。
[0020]以下各实施例的装置基本相同,在实施例中不再一一详述。
[0021]实施例1:
[0022]如图1所示,本实施例中,单晶生长装置包括加料器1、搅拌器2、加热器3、熔料器4、坩埚7和形成保温腔的保温材料11。加料器I位于装置的上部,加料器I的下部设置有输料器,通过控制装置控制固相原料输出速度。加料器下方设置有熔料器4,加料器I与熔料器4通过输料管连通,坩埚7上方开口,熔料器4搭接在加热器3的上沿;采用电阻加热方式或其他加热方式的时候,熔料器4架在保温材料11形成的保温腔的内腔顶部。坩埚7的外部围有加热器3 ;坩埚7的底部固定有籽晶10 ;装置外表面覆盖有保温材料11,感应圈6设置在保温材料11之外、与加热器3对应的位置上。具体实施时,也可以不用坩埚7,只用籽晶夹持装置。籽晶10、坩埚7或者籽晶夹持装置以及顶杆和顶杆拖动机构,包括籽晶10和原料熔化生成的熔区称为单晶生长部。
[0023]装置中熔料器4由高熔点的、相对于所述熔液不发生化学反应的材料,例如钼、铱、钨、钥、钽、铌、石英或石墨制成。
[0024]单晶生长工艺按以下步骤操作:
[0025]I)钥制坩埚7底部安装Φ5χ30的氧化铝单晶棒作籽晶10,籽晶10上面预加20克粒径10毫米的固相氧化铝原料,通过坩埚顶杆将籽晶10推至加热器3的下沿,本实施例中加热器3采用感应加热方式;加热器3同时加热熔料器4和熔区8 ;
[0026]2)将粒径10毫米的固相氧化铝原料放入加料器I ;
[0027]3)抽真空并通过加热器3加热籽晶10,直至预加的固相氧化铝原料和籽晶10的上端部分熔化,在籽晶顶部形成熔区8 ;
[0028]4)加热器3固定,通过感应圈移动装置(图中未示出)以每小时5毫米的速度向上移动感应圈6,随着单晶生长相对于籽晶10向上移动,使熔区8上移,单晶9开始生长;
[0029]5)钥制熔料器4位于加热器3的中上部,该部位温度较高;熔区8位于熔料器4的下方,该部位温度相对较低,单晶9生长的过程中,通过输料器将加料器中的固相原料按单晶9的生长速度所需,加入熔料器4中;
[0030]6)在熔料器4中,固相原料熔化为熔液,通过熔料器4下部侧壁开设的通径10毫米的小孔流出,形成熔液滴5,滴入或流入熔区8,作为添加的原料参与单晶生长。通过控制输料器的加料速度,使原料熔液添加速度与单晶9生长速度相适配,保持熔液加料速度和单晶9生长速度平衡;
[0031]7)最终生长出直径50毫米、长度200毫米的氧化铝单晶。
[0032]采用上述方法,如图1所示,单晶生长部的熔区8厚度可以保持很薄;同时,熔料器4中的原料也较少;熔化所需要的能量相应地也减少了,热效率得到提高,降低了生产中的能耗,节约大量能源。
[0033]实施例2:
[0034]本实施例中单晶生长装置与实施例1基本相同,区别为装置还设置有搅拌器2,搅拌器2安装在装置的上部,扇叶伸入熔区8中对熔液进行搅拌,为了使传质均匀。搅拌器的扇叶设置位置需要高于结晶面,避免对结晶过程的破坏。
[0035]I)用上口内径100毫米、长度140毫米的铱制坩埚作为坩埚7 ;将Φ 10x30的掺钕l%mol的钇铝石榴石单晶棒作籽晶10安装在坩埚7的底部,籽晶10上方预加掺钕5%mol的钇铝石榴石粉料50克,籽晶10位于加热器3的下沿;加热器3同时熔区8和熔料器4 ;
[0036]2)将掺钕l%mol的钇铝石榴石颗粒状原料预装入加料器I ;
[0037]3)抽真空并通过加热器3加热籽晶10和预加的少量原料,直至所述预加原料和籽晶10上端部分熔化,在籽晶顶部形成熔区8 ;
[0038]4)加热器3固定;通过坩埚下部的顶杆以每小时I毫米的速度向下移动坩埚7,则熔区8随着单晶9生长相对于籽晶10向上移动,单晶9保持生长;
[0039]5)铱制熔料器4为桶状,架在保温材料11内腔的顶部;其底部位于加
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1