本申请案为专利合作条约(PCT)申请案,其要求2014年3月12日申请的美国专利申请案第14/207,062号的优先权,其以全文引用的方式并入本文中。
技术领域
本发明涉及取向聚乙烯膜。
背景技术:
聚烯烃膜用于例如包装的应用中。未取向(浇铸或吹塑)聚乙烯膜作为包装材料时一般具有平庸特性。已使用双轴取向膜获得包装材料中更理想的特性。已发现双轴取向聚乙烯膜的成效和用途比双轴取向聚丙烯膜好得多。
技术实现要素:
本发明的实施例提供改良取向线性低密度聚乙烯(LLDPE)膜、其制备方法以及用于其的树脂组合物。实施例提供改良的双轴取向茂金属线性低密度聚乙烯(mLLDPE)膜、其制备方法以及用于其的树脂组合物。实施例提供具有透明度提高、膜厚度降低以及例如拉伸模数、硬度质量和撕裂强度的物理特性改良的LLDPE膜。
附图说明
为了获得并且可以更详细理解本发明的上文所述和其它特征、优势和目标的方式,在上文简单概括的本发明的更具体描述可以参考图式中描述的其实施例进行。然而,应注意,随附图式仅说明本发明的典型实施例,并且因此不视为限制本发明的范围,本发明可承认其它同等有效实施例。附图并入本说明书中并且构成其一部分。
图1按重量百分比鉴别实验1中所用的树脂组合物。
图2鉴别根据实施例的示范性树脂组合物(标识为样品1和样品2)以及其组成和特性。这两种样品在实验1中使用。
图3鉴别实验2中所用的实施例的示范性树脂组合物,以及熔融流动指数、以摄氏度和华氏度为单位的熔点,和密度。
图4鉴别实验2中所用的示范性组合物的根据实施例的示范性树脂组成、膜规格和膜密度。
图5鉴别根据实施例以及由图4中鉴别的树脂组合物产生的样品的混浊度和拉伸特性。
图6鉴别根据实施例以及从图4中鉴别的树脂组合物产生的样品的密封和热粘性特性。
图7鉴别根据实施例以及由图4中鉴别的树脂组合物产生的样品的穿孔特性。
具体实施方式
以下为随附图式中描绘的本发明的示范性实施例的详细描述。所述实施例为实例并且详细描述以明确传达披露内容。然而,提供的细节的量不打算限制实施例的预期变化;相比之下,意图是涵盖处于如权利要求所定义的本发明和实施例的精神和范围内的全部改良、等效物和替代方案。下文的详细描述设计成使此类实施例对所属领域普通技术人员显而易知。
实施例提供取向LLDPE膜、制造取向LLDPE膜的方法以及用于LLDPE膜的树脂组合物。实施例提供双轴取向LLDPE膜、制造双轴取向LLDPE膜的方法以及用于双轴取向LLDPE膜的树脂组合物。实施例提供双轴取向茂金属LLDPE(m-LLDPE)膜、制造双轴取向m-LLDPE膜的方法以及用于双轴取向m-LLDPE膜的树脂组合物。实施例提供制造改良的双轴取向m-LLDPE膜的方法,例如具有约1到2mil的厚度、例如1%混浊度的降低混浊度、改良的撕裂强度、改良的拉伸模数、改良的硬度质量、改良的防湿特性以及减小的膜厚度。根据实施例制造的m-LLDPE膜可提供具有与较大厚度的膜有关的合意物理特性的厚度减小的膜(“降低规格”)、实现降低的制造成本以及针对最终用途改良的膜产品。
不利的是双轴取向LLDPE膜不适于热密封,并且具有相对高的膜表面结晶以及取向,这可能造成此类热密封不适合性。本文披露的实施例提供取向LLDPE膜,其具有针对热密封改良的能力、特性和适用性、减少的结晶以及改良的膜表面取向。实施例提供可经选择例如使例如熔融干扰的问题降至最低或避免此类问题的树脂组合物。实施例提供例如改良的树脂组合物(“掺合物”)和制造熔融干扰降低的取向LLDPE膜的方法,所述熔融干扰降低与LDPE和LLDPE树脂组合物的使用有关,其中例如从树脂组合物除去或大体上除去LDPE、LLDPE或这两个。
实验1
将参考以下非限制性实例进一步描述实施例。可能时,使用标准ASTM测试测定膜的物理特性。
参看图1,实施例提供改良的挤压LLDPE膜、改良的LLDPE和极低密度聚乙烯(VLDPE)树脂组合物,以及改良的制备挤压LLDPE膜的方法。实施例提供例如改良的挤压LLDPE膜,以及改良的LLDPE树脂组合物,其平均熔融指数(MI)为约1。实施例提供改良的LLDPE树脂组合物以及自其挤压的膜,其平均熔融指数(MI)为约1,并且其可以与高分子量和低分子量次要部分掺合以加宽分子量分布。在一些实施例中,高分子量部分的MI可小于0.5。
可以对拉幅取向线进行实验,取向比设成MDX为3.5和TDX为8到9。模隙设成50-60mil并且产生单层膜。轧铸机设成50-60℃或122-140°F,安装空气帽以及轧铸速度为35FPM。加工方向取向(MDO)设成85-88℃或185-190°F。横向方向取向(TDO)起始条件设成244/237/230°F,预热区的温度不超过260°F。线速度靶向100FPM。膜规格设成1.5mil。测试所产生的膜的混浊度、水蒸气穿透率(WVTR)、氧气透过率(OTR)、拉伸、规格、硬度和撕裂质量。
第一样品(样品1)是树脂掺合物为75%Exceed-1012+20%Exceed-3512+5%Enable-2703的单层膜。第二样品(样品2)制造成单层膜,树脂掺合物为80%Exceed-2018+20%Exceed 3512。(在本发明中,Exceed 3812可用于任何实施例中代替或补充Exceed 3512。)测试这两个样品的上文所列质量,且结果报告于图2中。应理解,EnableTM和ExceedTM产品是茂金属乙烯-己烯共聚物树脂并且可购自德克萨斯州休斯顿的埃克森美孚化学公司(ExxonMobil Chemical Company,Houston,Texas),并且在可使用EnableTM或ExceedTM产品的实施例中,可使用具有相当特性的任何其它适合茂金属乙烯-己烯、乙烯-丁烯或乙烯-辛烯共聚物树脂。
第一实验制造的两种样品(即样品1和2)看起来不容易热密封。不限制本文所披露的任何主题和实施例,因为膜表面的高取向和结晶,两种样品理论上不容易热密封。不限制本文所披露的任何主题和实施例,在其它实施例中,LLDPE树脂组合物可包括塑化剂或其掺合物,例如烃(HC)树脂、ExactTM乙烯α-烯烃共聚物树脂或另一塑化剂或其混合物。应理解ExactTM产品是乙烯类己烯塑性体树脂并且可购自德克萨斯州休斯顿的埃克森美孚化学公司,并且在可使用ExactTM产品的实施例中,可使用具有相当特性的任何其它适合乙烯类己烷、丁烷或辛烯塑性体树脂。
实验2中描述的第二实验生产运作使用水浴基片淬灭进行。
实验2
参看图3,进行第二系列试验产生容易热密封并且适用于包装应用的双轴取向LLDPE膜。具体工艺条件如下:膜为双层A/B共挤压膜结构,其中表层在一侧上,为5%、10%、15%;轧铸机温度设成90°F,水浴为80°F。初始取向比设成MDX=3.5和TDX=8。所用降低的表层模具的模隙为50-60mil。MDO设成85-88℃或187°F。TDO烘箱温度设成246/240/230°F。视树脂的结果而定,轧铸机速度设成32-45FPM。中间线速度靶向100FPM。
图3中说明根据实施例的包括LLDPE的树脂组合物,并且其具体来说用于实验2中。图3还鉴别根据实施例并且用于实验2中的以dg/s为单位的熔融流动指数,以摄氏度和华氏度为单位的熔点以及以g/cm3为单位的树脂组合物的密度。
如图4所示,实验2中制造的样品1使用75%Exceed-1012作为核心层中的主要树脂。如图4中所示,实验2中制造的其余样品使用75%Enable-2010作为核心层中的主要树脂。在此实验中,Exceed-1012可与Enable-2010互换,但其可能具有轻微分子结构差异。EnableTM和ExceedTM产品为茂金属乙烯-己烯共聚物树脂并且可购自德克萨斯州休斯顿的埃克森美孚化学公司。在可使用EnableTM或ExceedTM产品的实施例中,可使用具有相当特性的任何其它适合茂金属乙烯-己烯、乙烯-丁烯或乙烯-辛烯共聚物树脂。
实验2开始第一轮操作时,主挤压机为510°F并且模具为500°F;MDO设成187°F;TDO在246/238/230°F开始;轧铸机设成140°F并且水浴为90°F。
实验2中的第二轮操作以50/50比率的VMX-3980和VMX-6102的表层掺合物开始。VMXTM(VistamaxxTM VMXTM)产品家族为适合市售丙烯类弹性体产品,并且获自埃克森美孚化学公司(休斯顿,德克萨斯州)。应理解,在可使用VistamaxxTM VMXTM产品的实施例中,实验2的这一轮或其它轮中可使用具有相当特性的任何适合丙烯类弹性体。核心层包含75/20/5掺合比的Enable-2010、Exceed-3512和Enable-2305,如图4-7中的样品2所述。可使用Enable-2305、Enable-2703或Enable-2705代替。收集如图4-7中所列的不同表层厚度的样品2和3,其中表层厚度以膜的总厚度的百分比形式测量。
实验2中的第三轮以100%VMX-6102表层开始。如图4-7中所指示,收集样品4。
实验2的下一轮使用50/50掺合比的Exact-3131和Exact-3132,其中向组合物添加1%滑动剂/防结块母料(VMX-3980载剂树脂中5%滑动剂,35%滑石)。
对于样品5、6、7,轧铸机和水浴温度分别重新设成90°F和80°F。表层挤压机每分钟转速设成3种不同速度来控制表层厚度,并且收集样品5、6、7。图4-7中指示各样品和其测试特性。
图4中阐述实例2中的制造预期的核心树脂组合物。实验2的生产运作产生如图4中标示为1-7号的样品。实施例提供如所述的挤压多层膜结构。尽管对双层A/B共挤压多层膜结构进行测试,但其它示例实施例可包括三层A/C/B膜结构,四层A/C/B/D膜结构等,而不脱离本发明和其权利要求。此外,尽管其层可具有不同组成和功能,但在一些实施例中,层A可以是密封剂表层或可密封表层;层C可包括填充材料;层B可包括核心材料或主要组分,包括如下文进一步描述的LLDPE掺合物;且层D可以是另一表层。举例来说,层C的填充材料可包括再循环材料。除了层D为另一表层之外或作为其替代,层D还可以是或包括进一步提高膜特性的材料,例如改良涂布或金属粘着的材料。
应注意,表层树脂的熔融指数应该比核心树脂掺合物中的主要组分高。根据示例实施例,多层膜结构可包括层A,它可以是包括适合低熔融材料的共挤压密封剂表层(或“可密封表层”),并且在生产工艺条件和温度下,熔融粘度略低于层B的核心材料的粘度,层B的核心材料包含一种或多种组分,例如LLDPE。适合低熔融材料可包括例如大体上单一组分或PE塑性体,例如ExactTM树脂(德克萨斯州休斯顿的埃克森美孚化学公司),或PP塑性体,例如VistamaxxTM树脂(德克萨斯州休斯顿的埃克森美孚化学公司)的掺合物。其它适合层A热密封材料可包括乙烯乙酸乙烯酯(EVA)、DuPontTM乙烯丙烯酸甲酯(EMA)、极低密度PE、其它乙烯类聚合物、其它乙烯类聚合物共聚物以及前述的掺合物。层B的单一组分或组分掺合物可提供所要流变学控制特性,例如避免熔融干扰和/或不平坦层分布。在一些实施例中,层A可包括选自由以下组成的群组的单一塑性体或塑性体的掺合物:PP、PE或其组合。掺合物的组分的掺合比可以是总计100%的任何适合比例。此外,视核心层的熔融粘度(或如果根据描述包括不同掺合物,那么不同粘度)而定,表层可包括单一组分塑性体或塑性体掺合物。在其它实施例中,层A可包括选自前述群组的组分掺合物,其可具有不同各别熔融粘度,其中掺合组分的所得(即掺合)熔融粘度可低于层B的核心材料的熔融粘度。在一些所述实施例中,层A可以是包括多种组分的适合掺合物的密封剂表层,其中其第一组分具有理想特性,例如所要热密封特性。在此类实施例中,相同第一组分的熔点可能过低使得第一组件不能单独使用,即作为密封剂表层的单一组分,因为例如此类密封剂表层在处理期间将粘附到热MDO轧辊表面。层A可包括熔点高于MDO轧辊温度的至少一种其它组分(例如第二组分),使得所得掺合物将不粘附到热MDO轧辊表面。在示范性实施例中,层A可包括第一组分VistamaxxTM 3980(德克萨斯州休斯顿的埃克森美孚化学公司),其可提供理想热密封特性,但也具有低熔点,如果单独用作密封剂表层的单一组分,那么可粘附到热MDO轧辊。在相同示范性实施例中,层A可包括第二组分VistamaxxTM 6102(德克萨斯州休斯顿的埃克森美孚化学公司),其具有较高熔点,并且因此将不粘附到热MDO轧辊表面。在此类示范性实施例中,层A可包括适合掺合比的VistamaxxTM 3980和VistamaxxTM 6102,其在处理期间将不粘附到热MDO轧辊表面。
实施例可提供多层膜结构,其中层B可具有可包括LLDPE掺合物的核心材料或主要组分。这些LLDPE掺合物可具有宽分子量分布来改良TD拉伸期间在高温下的熔体弹性。在一个实例中,可选择具有一种低分子量材料、一种中等分子量材料和一种高分子量材料的三组分LLDPE掺合物。低分子量组分可以约5-30%掺合物的比率存在。中等分子量组分可以约40-90%掺合物的比率存在。高分子量组分可以约5-30%掺合物的比率存在。举例来说,适合三组分掺合物可具有约5/90/5低/中等高分子量组分的掺合比。在其它实例中,适合三组分掺合物可具有约10/85/5、约15/80/5或约20/75/5的掺合比。
示例实施例可以进一步包括膜添加剂,例如(但不限于)滑动添加剂、防结块添加剂、颜料、加工助剂和/或其它添加剂。可添加添加剂来控制表面摩擦系数、处理、印刷和其它特性。实例滑动添加剂可包括芥酸酰胺、硬脂酰胺、硅酮油等。实例防结块添加剂可包括聚甲基丙烯酸甲酯、滑石、二氧化硅等。实例颜料可包括二氧化钛或碳酸钙。实例加工助剂可包括氟聚合物等。其它添加剂可包括用顺丁烯二酸酐接枝的聚乙烯类或聚丙烯类树脂、抗静电添加剂、防雾添加剂等。在示例实施例中,添加剂可以约0.01%到约5%多层膜结构的树脂掺合物的量存在。
图5鉴别由图4中鉴别的组合物制造的样品1-7的混浊度和拉伸特性。
图6鉴别由图4中鉴别的组合物制造的样品1-7的密封和热粘性特性。样品显示极低密封起始温度和强密封。
图7鉴别由图4中鉴别的组合物制造的样品1-7的穿孔特性。
实验2制造1.5-2mil双轴取向共挤压m-LLDPE膜,其具有在水浴侧上具有密封剂的A/B结构。
本发明产生和论述的核心树脂掺合物出乎意料地显示基于超过一种具有特定熔融指数的mLLDPE或mLDPE树脂的所选组合的核心树脂掺合物导致具有宽分子量分布的聚合物的掺合物,包括双模态和三模态分布的可能性。与本文的掺合物相比,单位点茂金属催化剂一般产生具有窄分子量分布的聚合物,即Mw/Mn为约2(重量平均分子量除以数目平均分子量,其中Mw和Mn都可以通过凝胶渗透色谱法(GPC)测量)。窄分子量分布传递有限分子链缠结以提供所需熔体弹性。在高温下膜取向或拉伸期间可能需要加强的熔体弹性,以帮助维持膜完整性而不断裂。当Mw/Mn达到约4或>4(即宽分子量分布)时,聚合物熔融物或掺合物可具有加强的聚合物链缠结,并且因此改良的高温下熔体弹性。这一改良的熔体弹性能够改良高温下的TD拉伸,以及减少挤压期间的熔体破裂。如实验中所示,当将三种m-LLDPE树脂掺合在一起使分子量分布>4时,三组分掺合物与窄分子量分布组分和掺合物相比显示大大改良的熔体弹性和拉幅取向产生的膜取向。
尽管已详细描述并且在图式中显示某些示范性实施例、组合物和方法,但应理解此类实施例、组合物和方法仅说明下文阐述的权利要求书并且不限制下文权利要求书的范围。