发明背景
本发明通常涉及一种用于制备二醇的方法,并更加具体地,涉及将糖类主要转化为乙二醇或者丙二醇的连续催化方法。
乙二醇是一种颇有价值的商用化学品,具有广泛的应用,其作为用于其他材料如聚对苯二甲酸乙二醇酯(PET)的基础材料和由于其固有性质如用作防冻剂。目前其通过从来自烃进料的乙烯开始的多步骤方法制备。
从可再生资源制备乙二醇的有成本效益的方式会降低对于非可再生烃进料的依赖性并且对于基于农业的产物产生基本上的新用途。多件专利已证明糖类,最为丰富的可再生资源之一,可转化为乙二醇。
早期的方法已经基于使用用于将糖类转化为乙二醇的某种程度上非选择性氢解。作为实例,U.S.专利号5,210,335描述了一种具有高催化剂负载的反应体系,其制备了20wt.%乙二醇和60wt.%丙二醇以及一系列其他成分。EP2419393“用于糖醇氢解的方法”降低了所需催化剂的浓度,但仍然制备了一系列产物,而乙二醇仅为最终产物的约8-12摩尔%。这些方法为了是成本有效的将需要用于多种副产物的大量反应器后分离操作和市场。
U.S.专利申请2012/0172633(Zhang等)描述的使用低催化剂负载的近期工作已通过取决于进料的选择实现大于50%至高达68%的产率证明对乙二醇高得多的选择性。然而,在仅1%进料溶液下所示范的反应器浓度不具有商业可行性。最近的论文已示范较高选择性的原因在于不同的钨基催化剂机理(Ooms,R.,et al.Conversion of sugars to ethylene glycol with nickel tungsten carbide in a fed-batch reactor:high productivity and reaction network elucidation.Green Chem.,2014,16,695-707)。起初,钨通过逆醛醇机理非常选择性地将己醛醣如葡萄糖转化为乙醇醛和赤藓糖,随后进一步将赤藓糖转化为两种以上的乙醇醛。乙醇醛通过另一种催化剂氢化为乙二醇。Zhang的申请和Ooms的论文中的问题在于作者试图将全部反应顺序在一个方法步骤中实现,这对于催化剂组分和制备方法引入了不必要的复杂性,并同样重要的是产生了更多的杂质。
另外,前述所有方法均为间歇或半间歇的,这对于商业生产方法而言不是成本有效的。另外,所述方法在搅拌反应器中以非常高的搅拌速度操作,这将固体催化剂颗粒快速粉末化。粉末的还原催化剂在工业规模的生产过程中可为非常主要的操作危险。本发明提高了所需二醇产物的选择性,将处理浓度增加至更加商业上可行的水平并且示范了一种用于自糖类成本有效的制备二醇的更加安全的连续方法。
发明概述
本发明方法在两个区域,即催化区和回收区中发生。催化区包含进料罐,其中生物来源的糖类进料与溶剂混合以调节初始糖类的浓度至在溶剂中约5-71wt%糖类。用于该方法的优选糖类进料为糖类聚合物如淀粉、纤维素、或这种聚合物或聚合物混合物的部分水解部分或具有部分水解部分的聚合物混合物;葡萄糖或者,如果需要更高级的丙二醇,可利用果糖作为进料。
溶剂中的糖类混合物进料至反应器,在反应器中其相继地先与逆醛醇催化剂接触并再与还原催化剂接触。氢气在催化剂反应器的初始处进料或者在反应器的交替点(alternate point)进料。产物在反应器出口处移出并处理以回收产物二醇。
为了制备乙二醇,所用催化剂反应器含有多种为了进行不同的化学转化被选择具有不同性质的催化剂。在催化反应器的第一部分,催化剂由对葡萄糖转化为乙醇醛和赤藓糖进行催化的逆醛醇催化剂(retro-aldol catalyst)构成。该相同的催化剂也将催化赤藓糖反应成额外两摩尔的乙醇醛。如果将含大于单糖的糖类的糖类混合物用作糖类进料,在水的存在下,其将部分水解并随着其通过催化剂反应器而最终变成葡萄糖分子。通过反应器的部分途径上,将遇到第二催化剂作为不同的第二催化剂阶段的。出于其使用进入反应器的氢气而将乙醇醛还原为乙二醇的能力,选择第二催化剂。随着进料自始至终通过反应器,还原催化剂的量作为在反应器中遇到的催化剂的分数而增加。
本发明的一个目的是提供一种从糖类进料并且优选的生物源糖类进料连续制备乙二醇的方法,其中进料的糖类浓度为5%-71%。
本发明的另一目的是提供一种连续制备乙二醇的方法,其乙二醇选择性高达至少59%。
本发明的进一步目的是提供一种连续制备乙二醇的方法,其得到具有高达至少4.9%有机物浓度的产物。
本发明的又一目的是提供一种从糖类进料且优选的生物源糖类进料连续制备丙二醇的方法,其丙二醇选择性高达至少24%。
本发明仍然进一步的目的是将至少一部分还原催化剂加入至糖类进料。
附图的简要说明
图1是用于本发明的反应器的示意图。
发明详述
如本文所用,术语“醛醣”指每分子仅含有单个醛基(-CH=O)并具有通用化学式Cn(H2O)n的单糖。醛醣的非限制性实例包括己醛醣(全部六个碳、含醛基糖类,包括葡萄糖、甘露糖和半乳糖)、戊醛醣(全部五个碳、含醛基糖类,包括木糖和树胶醛醣)、丁醛醣(全部四个碳、含醛基糖类,包括赤藓糖)、和丙醛醣(全部三个碳、含醛基糖类,包括甘油醛)。
如本文所用,术语“生物源糖类进料”指包括糖类来源的、衍生自糖类或自糖类合成的产物,其全部或大部分为生物产物或可再生农业材料(包括但不限于植物、动物和海洋物质)或林业材料。
如本文所用,术语“酮醣”指每分子含一个酮基(=O)的单糖。酮醣的非限制性实例包括己酮醣(全部六个碳、含酮的糖,包括果糖)、戊酮醣(全部五个碳、含酮的糖,包括木酮醣和核酮醣)、酮丁醣(全部四个碳、含酮醣的糖,包括赤藓酮醣)、和酮丙醣(全部三个碳、含酮醣的糖,包括二羟基丙酮)。
如本文所用,术语“还原金属催化剂”指有助于羰基还原的催化剂。镍、钯和铂为更广泛使用的还原金属催化剂。镍-铼为优选的还原金属催化剂并可负载于氧化铝-二氧化硅。镍-铱也可使用。我们现已发现以B作为促进剂的Ni-Re催化剂非常适用于本申请。
如本文所用,术语“逆醛醇催化剂”指催化逆醛醇反应(retro-aldol reaction)的催化剂。实践本发明中优选的逆醛醇催化剂包括钨和其氧化物、硫酸盐、磷化物、氮化物、碳化物、卤化物等,其转化为负载于载体之上的催化活性水化的钨类的形式。也包括碳化钨和可溶磷化钨。氧化钨负载于氧化锆、氧化铝和氧化铝-二氧化硅上。可溶钨化合物,如偏钨酸铵,已发现为活性逆醛醇催化剂的可接受前体。也包括其他形式的可溶钨酸盐,如仲钨酸铵和偏钨酸钠。
在本发明优选的实施方案中,糖类进料的初始组成为5%-71%糖类和该限定之间的全部数值,包括,例如,而非限制或无例外,6%、13.43%、31.5%、31.55%、44%、51.01%、63.33%和69.9%。在本发明优选的实施方案中陈述另一种方式,进料的糖类浓度可取“ab.cd”%任意值,其中a选自数字0,1,2,3,4,5,6和7,和b,c和d各自独立地选自数字0,1,2,3,4,5,6,7,8和9,除了如果a为0则b不能小于5且如果a为7则b不能大于1。
当本公开内容中使用范围,仅陈述范围的端点,以避免必须详细列出和描述该范围内包括的每一个数值。可选择所述端点之间的任意适当中间值和范围。举例而言,如果陈述了范围0.1-1.0,则包括全部中间值(例如0.2,0.3.6.3,0.815等)和全部中间范围(例如0.2-0.5,0.54-0.913等)。
该方法包含两个区域——催化区和回收区。催化区包含进料罐,其中生物源进料与溶剂混合以将初始糖类的浓度调节至在溶剂中约5-71wt%糖类。然而如果可以的话,如果进料速度与该方法反应速度相匹配,可使用甚至更高的浓度。为了将大于单糖的糖类水解为葡萄糖,需要以水作为该方法中所用溶剂的至少一部分。溶剂中更理想的额外成分为乙二醇和其可获自反应器出口产物,所述产物为反应产物的混合物,其也可包括再生的逆醛醇催化剂。这意味着可再循环粗反应器出口的一部分并用作反应溶剂。
该方法优选的糖类进料为糖类聚合物如淀粉、纤维素、或该聚合物或该聚合物的混合物的部分水解部分或具有部分水解部分的聚合物的混合物。所需的水解部分之一由葡萄糖组成。因此,可接受的是使葡萄糖或葡萄糖前体作为反应器进料的一部分。同样可接受的是使葡萄糖作为反应器进料的主成分或唯一反应成分。
其他醛醣,含醛基的糖,也可使用。生成酮醣(例如果糖)的糖类将通过该系列催化剂增加丙二醇的选择性。
在该方法中,将在易混溶剂水中的糖类混合物进料入反应器,在反应器中其依次首先与逆醛醇催化剂接触和随后与还原催化剂接触。在该方法中,在催化剂反应器的起始处加入糖类混合物和氢气在反应器初始处进料或在反应器的交替点进料。产物在反应器的出口处移出并处理以回收产物二醇,或用于部分循环至反应器。可使用多种类型的催化剂床设计,其中优选滴流床或鼓泡塔,以有助氢气向还原催化剂表面的扩散。
在一个使用可溶逆醛醇催化剂的实施方案中,反应器可为CSTR,其中悬浮有固相还原催化剂,但其并不占据反应器的全部体积。该安排保护固体催化剂免受因搅拌器带来的机械损坏。该设计也提供了无固相负载催化剂区,其中初始逆醛醇反应可在无固相还原催化剂下被催化并且逆醛醇反应产物随后通过固相催化剂还原。无还原催化剂区域的存在使得逆醛醇反应得以进行并降低了反应中还原为山梨醇的葡萄糖的量。山梨醇是一种不想要的反应副产物。
反应器所用催化剂含有多种催化剂,选择这些催化剂以具有不同性质以进行不同的化学转化。在反应器的第一催化部分——逆醛醇区——催化剂由逆醛醇催化剂组成,如果葡萄糖为原料,则其催化葡萄糖转化为乙醇醛和赤藓糖。该相同催化剂也将催化赤藓糖反应为额外两摩尔的乙醇醛。如果使用淀粉或类似糖类,因所使用的温度,糖类聚合物混合物当进入反应器时在水的存在下部分水解并随着其进入反应器和穿过催化剂反应器而最终成为葡萄糖分子。通过反应器的路径局部,遇到第二催化剂作为不同的第二催化剂或其与逆醛醇催化剂混合。因其能够使用进入反应器的氢气而将乙醇醛还原为乙二醇的能力,选择该第二催化剂。随着糖类反应物移动穿过反应器,自始至终,还原催化剂的量作为在反应器中遇到的催化剂的部分而增加。如果逆醛醇催化剂是被负载的,在催化剂床的末端,还原催化剂的量可近于所述床该部分中催化剂的100%。两个反应可在两个或更多个反应器中实现。
在所附的反应器示意图(图1)中,显示第一区(定义为区域A)几乎均为逆醛醇催化剂。该催化剂区的功能如之前所提及的是使得葡萄糖产生乙醇醛和赤藓糖。该相同催化剂也可将赤藓糖选择性地分解为两摩尔乙醇醛。有必要将所形成的乙醇醛还原为乙二醇,其为所需产物。出于该原因,还原催化剂存在于反应器中。然而,等到全部葡萄糖已分解才开始还原乙醇醛可能不现实。出于该原因,反应器下游路径的局部,还原催化剂可与逆醛醇催化剂混合和部分乙醇醛将转化为乙二醇但仍然允许未反应的葡萄糖和赤藓糖转化为乙醇醛。在两种催化剂混合的情况下,这里被定义为区域B。随着糖类消耗和乙醇醛形成的减少,对逆醛醇催化剂的需求降低和床还原区中还原催化剂的百分数增加直至在接近反应器底部处,还原催化剂包含大部分的催化剂(定义为区域C)。不需要使用区域C但其可带来更高的乙二醇总选择性。如果还原催化剂为固体,则可接受的是使用惰性物质如催化剂所用的载体或可能的玻璃珠等稀释活性负载催化剂。
该方法的催化区域在高温下操作。该床的初始区在170-300℃下操作,更优选在190-270℃的范围,和最优选在190-255℃的范围。该床的较低区域可在较低的温度,90-245℃下操作,优选的反应范围是150-245℃。床温度可经由在沿反应器床的多个进料点添加额外的、更冷的溶剂或使用中间级冷却剂控制。然而对于紧密耦合区(close-coupled zone),最可能的是这些区域将处于可比较的温度下。
可将催化剂区域在物理上分隔成单独的反应器用于改善对床温和体系压力的控制。该优化从投资角度讲是更加昂贵的,而且投资和投资回报之间的权衡将随着进料的成本改变而改变。
反应器压力可为300-2000psig。优选的范围为如此以致其将确保氢气溶解入溶剂相并随着其在还原反应中的消耗而从气相补充。优选使用滴流床或鼓泡塔以提供氢气向液相的混合和当气泡直接接触催化剂表面时直接补充催化剂表面耗尽的氢气。优选的范围是400-1600psig。
填充床中所需的催化剂量取决于糖类进入反应器的流量。进料速度越高,所需的催化剂量越大以提供糖类的高转化率。
用作反应器进料的糖类混合物可在其引入反应器之前预热。该含水溶环境中的加热使得淀粉或纤维素聚合物解聚为更低分子量的低聚物并在引入反应器之前生成葡萄糖或其他4-6个碳的醛醣。糖类也可在引入反应器之前通过其他方式如通过酸或酶或其结合水解以形成葡萄糖或其他4-6个碳的醛醣。
糖类进料可大部分为果糖或将生成酮醣的糖类。如果这为原料并遵循相同的反应顺序,则产物主要为丙二醇。
糖类进料也可为一种将生成醛醣和酮醣的糖类,如蔗糖。如果这为原料并遵循相同的反应顺序,则产物将为一定比例的乙二醇和丙二醇,取决于醛醣与酮醣的比例。
逆醛醇催化剂区域,指定的区域A利用逆醛醇催化剂,其可为钨或其氧化物、硫酸盐、磷化物、氮化物、碳化物、卤化物等形式,其转化为某些负载于载体之上的催化活性钨类形式。在相关的现有技术中,已使用碳化钨及可溶磷钨酸盐。除了使用这些形式的钨,可使用负载于氧化锆、氧化铝或氧化铝二氧化硅上的氧化钨作为逆醛醇催化剂源。在本研究中,可溶钨化合物如偏钨酸铵已发现为活性逆醛醇催化剂的可接受前体。我们已在研究中显示其他形式的可溶钨酸盐运作良好,其为仲钨酸铵和偏钨酸钠。
不希望受限于已知的逆醛醇催化剂,该概念是仅仅在区域A中使用选择性逆醛醇催化剂。虽然所述特定种类本质上为酸性或中性,但可能将发现在该反应器设计中也将起到很好作用的碱性逆醛醇催化剂。
还原催化剂可从广泛的负载过渡金属催化剂中选择。作为主还原金属成分的镍和钌因其还原羰基的能力而被熟知。用于该方法中还原催化剂的一种特别优选的催化剂为负载于氧化铝二氧化硅之上的Ni-Re催化剂。可使用类似形式的Ni/Re或Ni/Ir,其对于所形成的乙醇醛转化为乙二醇具有良好的选择性。
当使用催化剂混合物时催化反应器的中间部分被定义为区域B并且在该区中发现逆醛醇催化剂和还原催化剂。目的为在中间形成的乙醇醛浓度变得高到乙醇醛与其自身或其他中间体开始反应形成大量副产物之前开始将中间形成的乙醇醛转化为乙二醇。当构建催化床时如果使用了区域B,则区域B与两种催化剂良好混合是有帮助的。如果逆醛醇催化剂是未负载的,则区域B将为逆醛醇催化剂开始与还原催化剂混合的区域。
将以床或篮型形式的固体催化剂维持远离任何搅拌器增加了催化剂的机械寿命。催化剂的机械稳定性极大地改善了方法的安全性并降低了致动器(actuator)因颗粒问题的故障可能性。粉状还原金属如Ni,Fe等是很多工业事故的原因,因为当进行维护时,它们暴露于空气中的氧气,导致火灾。
在一个优先选择中,反应器选择为CSTR,其含有悬浮于反应器中的多孔催化剂“篮”。用于搅拌反应器的该催化剂篮(basket)实例可获自Parr Instrument Company。该篮含有固体催化剂并占据反应器液体体积的约2%。当使用还原催化剂颗粒时,固体还原催化剂的密封也改善了操作便捷性和方法安全性。当实施反应时,处于篮外面的反应器液体部分约为反应器液体的98%并被称作区域A。篮中反应器液体体积的2%被称作区域B。实施例5为该操作的描述,并提供反应器的固体还原催化剂与可溶逆醛醇部分的主要部分的分离允许各反应单独进行并提供高乙二醇选择性的很好的证据。在该操作中,将原料以进料先接触无篮区域A使得逆醛醇反应在反应产物接触区域B之前成为主导的这样方式加入反应器。
在第二个优先选择中,反应器选择为管式反应器,其含有负载的Ni-Re还原催化剂。该反应器存在无还原催化剂的一部分,在这里进料和可溶逆醛醇催化剂在约245℃的反应温度下接触。这为本申请前述的区域A。在区域A的下游,反应料流接触负载的还原催化剂,在这里因为某些未反应葡萄糖和赤藓糖以及逆醛醇催化剂的存在,同时发生乙醇醛的还原和进一步的逆醛醇反应。将氢气进料入管式反应器以允许乙醇醛还原为乙二醇。
虽然催化剂床可填装上负载的催化剂,但这绝不意味着建议不可能或不需要再使用可溶逆醛醇催化剂或还原催化剂。如相关文献中提议的,可溶形式的钨如磷钨酸能够进行逆醛醇反应和使用其或类似可溶逆醛醇催化剂的使用与划分区域的催化剂床概念相当。如已提及的,可从本申请推断出仅用逆醛醇催化剂的单独反应器可用以生成乙醇醛,其然后可进料至还原催化剂反应器。然而,很可能分开进行两种反应——逆醛醇和还原——将增加投资。
对在用于制备二醇的该方法中的良好表现重要的是反应顺序的还原部分从开始与反应的逆醛醇部分部分分开。既然这是一个相继反应,初始反应应为逆醛醇,随后是逆醛醇和还原,而最后主要为还原以将剩余的乙醇醛转化为乙二醇。使逆醛醇催化剂与还原催化剂共存并不是问题,但如果进料不先遇到逆醛醇催化剂,将导致较低的选择性。
该方法的催化部分之后,部分产物料流可分离用以循环回方法的前端。取决于分离的形式,该循环料流可含有乙二醇和可溶逆醛醇催化剂等其他成分。剩余反应器流出物可随后减压并冷却以开始回收部分。收集气体用于回收氢气并移除不想要的气体副产物如甲烷和二氧化碳。
冷却后,从床溶解或进料至反应器的催化剂的更难溶部分在降低的温度下移除并且剩余液体转移至该方法的回收部分。
在回收中,低沸点成分如乙醇和甲醇通过蒸馏移除。水也通过蒸馏移除,随后回收丙二醇和乙二醇。在乙二醇生产中通常使用多效蒸发器以最小化乙二醇回收中能量的利用。
从丙二醇或其他接近沸腾二醇分离乙二醇将需要额外的、更复杂的分离技术是可能的。模拟移动床技术是一种可使用的该选择。选择取决于产物所需终端应用所需的产物品质。
实施例1
在该第一实施例中,装备有搅拌器以提供搅拌的催化剂反应器仅填充还原催化剂并在245℃下操作。进料由20wt于水中的葡萄糖组成并在反应器的顶端进料。氢气在1500psig下进料入反应器。未提供逆醛醇催化剂。一旦排出反应器,收集样品且葡萄糖向乙二醇的转化非常低并也形成了适量的丙二醇。所形成的主产物为山梨醇。
实施例2
在该类似于实施例1的实验中,催化剂反应器仅填装逆醛醇催化剂并在245℃下操作。糖类进料组合物为与实施例1中所用的相同并在反应器顶部进料。氢气在1500psig下进料。一旦排出反应器,收集样品并分析。转化为乙二醇的少,生成多种未经确认的产物。
实施例3
在该类似于实施例1的实验中,催化剂反应器填装逆醛醇催化剂和还原催化剂并在245℃下操作。在该构造中引入的进料一进入反应器便遇到还原催化剂和逆醛醇催化剂。进料组合物与实施例1所用相同。氢气在1500psig下进料。一旦排出反应器,收集样品并分析。确认的主产物为乙二醇但也确认了大量的山梨醇。还确认了更高水平的丙二醇。
实施例4
在该类似于实施例1的实验中,催化剂反应器填装悬浮于反应器中篮中的还原催化剂。在反应器的初始部分,在这里先发生与糖类进料的接触,仅存在可溶逆醛醇催化剂。糖类进料组合物与实施例1所用相同并在反应器顶部进料。氢气在1500psig下进料。一旦排出反应器,收集样品并分析。发现的主产物为乙二醇,还有低水平的丙二醇。所形成的山梨醇的量低于实施例1和实施例3。
实施例5
进行分批进料反应以使葡萄糖水溶液反应为乙二醇。向300ml不锈钢Autoclave Engineers搅拌式高压反应器加入145ml脱氧蒸馏水、0.30g偏钨酸铵和2.2克Ni/Re/B含氧化铝二氧化硅催化剂。将之前还原的Ni/Re/B催化剂在氮气氛下小心转移进固定于反应器内部的静态催化剂篮。反应器然后密封并随后经历三次氮气吹洗、随后氢气吹洗以自体系移除任何氧气。最后,反应器用氢气加压至650psi并将内容物加热至245℃。搅拌器以1000rpm操作。当达到目标温度,将压力用氢气调至1550psi和开始进料33%于水中的葡萄糖。葡萄糖注入至反应器无催化剂篮的区域。25克进料以不变的速度经2小时注入至反应器。在进料末期结束反应。终产物重170克并具有4.9%的累积有机浓度。反应器在冰浴中快速冷却并分析内容物样品。GC分析显示59%的乙二醇选择性,乙二醇与丙二醇的比例为15/1。山梨醇选择性为1.4%。
每种成分的产率使用下式计算:
实施例6
进行实验,其中含水果糖进料在均相逆醛醇催化剂和异相还原催化剂的存在下反应以产生乙二醇和丙二醇的混合物。对于该实验,催化剂篮用以保留异相氢化催化剂以致两个反应步骤将在很大程度上分成两个区域。向300ml 316SS搅拌式Autoclave Engineers反应器加入145g脱氧蒸馏水、0.3g偏钨酸铵和2.1g Ni/Re/B含氧化铝二氧化硅催化剂。将之前还原的Ni/Re/B催化剂在氮气氛下小心转移进固定于反应器内部的静态催化剂篮并且催化剂立刻被水覆盖。反应器密封并随后使用氮气吹洗三次、氢气吹洗三次。接下来,反应器用氢气加压至500psi并将内容物加热至245℃。搅拌器以1000rpm操作。当反应器达到其目标温度时,将压力用氢气调至1550psi。25g 33%于水中的果糖以恒定速度经2小时进料至反应器。在进料末期结束实验。终产物重170g并具有4.9%的累积有机浓度。反应器用冰浴快速冷却并分析内容物样品。GC分析显示丙二醇为主产物。丙二醇以24%的选择性制备和乙二醇以10%的选择性制备。LC分析显示丙三醇以约7%的选择性生成。仅检测到1.4%的山梨醇。
总结
发现“相继”催化剂的使用——其中进料遇到的初始催化剂区大部分为逆醛醇催化剂,随后遇到的是催化剂第二区,这里逆醛醇催化剂被固体还原催化剂稀释——提供了高乙二醇选择性和优于在搅拌器反应器中两种类型的催化剂同时遇到反应器进料的催化方法操作模式的更安全更有商业可行性的方式。
该用于将糖类转化为乙二醇的相继催化剂应用的另一表现为还原催化剂可维持于单独的反应器中,这允许独立于用于还原催化剂的最佳条件在更宽范围内选择用于优化逆醛醇反应的反应条件。虽然这种选择将导致潜在的更高投资,但可通过从改善的乙二醇选择性带来的节省抵消较高的投资成本。
前述说明和附图包含本发明的示例性实施方案。本文描述的前述实施方案和方法可基于本领域技术人员的能力、经验和偏好而变化。以一定顺序仅列出该方法的步骤不构成对该方法步骤顺序的任何限制。前述说明和附图仅解释和阐述本发明,而本发明不限于此,除非权利要求如此限制。了解本公开内容的本领域技术人员将能够做出修改和变化而不脱离本发明的范围。