本发明涉及锆的吡啶络合物(pyridine complex of zirconium)。
更特别地,本发明涉及锆的吡啶络合物并且涉及其在用于使共轭二烯(conjugated diene)(共)聚合的催化体系中的用途。
本发明还涉及包含所述锆的吡啶络合物的用于使共轭二烯(共)聚合的催化体系。
另外,本发明涉及用于使共轭二烯(共)聚合的工艺、特别地使1,3-丁二烯聚合的工艺,其特征在于工艺使用所述催化体系。
已知的是,共轭二烯的立体定向(共)聚合(stereospecific(co)polymerization)在用于获得最广泛使用的橡胶中的产品的化学工业中是非常重要的工艺。
所述立体定向(共)聚合可以给出具有不同结构的聚合物,也就是,1,4-反式结构、1,4-顺式结构、1,2结构,以及在不对称共轭二烯(例如,异戊二烯)的情况下,3,4结构。如果沿着聚合物链存在不对称碳原子,如例如在衍生自1,3-戊二烯的聚合的聚合物的情况下,具有1,4-顺式结构和1,4-反式结构的有规立构聚合物还可以是全同立构的或间同立构的。具有1,2结构或3,4结构的有规立构聚合物也可以是全同立构的或间同立构的,并且取决于聚合的共轭二烯的结构,在聚合物侧链中的双键可以具有1,4-反式结构或1,4-顺式结构。
前面提及的有规立构聚合物仅可以通过使用齐格勒-纳塔型的催化体系的立体定向聚合来获得,所述齐格勒-纳塔型的催化体系通常通过使过渡金属或镧系化合物比如例如卤化物、醇化物、羧酸盐、具有各种类型的配体的有机金属化合物,与合适的烷基化剂例如烷基铝[例如,Al(R)3,其中R可以是例如甲基、乙基、正丙基、异丙基、正丁基、异丁基]、或铝氧烷(aluminoxane)[例如,甲基铝氧烷(MAO)]组合来获得。这是因为与其他聚合的方法(例如,自由基聚合、负离子聚合)相比,立体定向聚合以如下为特征:(i)高区域选择性,也就是,其能够提供由单类型的结构(也就是,1,4结构、或1,2结构、或3,4结构)形成的聚合物;(ii)高立体选择性,也就是,如果在共轭二烯中存在空间异构位点(steric isomerism site)(例如,内部双键、不对称碳原子),那么其能够提供具有高构型顺序(configurational order)的聚合物。关于所述立体定向聚合的另外的细节可以在例如以下中被找到:Porri L.等人,“Comprehensive Polymer Science”(1989),Eastmond G.C.等人编辑,Pergamon Press,Oxford,UK,第4卷,第II部分,第53页-第108页;Thiele S.K.H.等人,“Macromolecular Science.Part C:Polymer Reviews”(2003),C43,第581页-第628页;Osakada,K.等人,“Advanced Polymer Science”(2004),第171卷,第137页-第194页;Ricci G.等人,“Advances in Organometallic Chemistry Research”(2007),Yamamoto K.编辑,Nova Science Publisher,Inc.,USA,第1页-第36页;Ricci G.等人,“Coordination Chemistry Reviews”(2010),第254卷,第661页-第676页;Friebe L.等人,“Advanced Polymer Science”(2006),第204卷,第1页-第154页。
还已知的是,前面提及的有规立构聚合物特别是聚丁二烯和聚异戊二烯的特征和应用取决于所述聚合物的微观结构而显著变化。因此,这些在从用于制备用于轮胎生产的掺合物的、其特征是非常低的玻璃化转变温度(Tg)(对于聚丁二烯,约-110℃)的典型的弹性聚合物(即,具有高1,4-顺式含量的聚丁二烯和聚异戊二烯),到主要用于鞋底的生产并且其特征是相对高的熔点(Tm)(对于1,2间同立构的聚丁二烯,约220℃)的结晶聚合物(即,1,2间同立构的聚丁二烯和3,4间同立构的聚异戊二烯)的范围内。
使用基于过渡金属的催化体系,共轭二烯的立体定向聚合开始于1954年,就在丙烯的聚合中获得的第一次结果之后。使用的第一种催化体系通过使四氯化钛(TiCl4)或三氯化钛(TiCl3)与烷基铝组合来获得,也就是先前被用于使乙烯或丙烯聚合的催化体系。
第一种合成的有规立构二烯聚合物是聚异戊二烯,其具有由Horne S.E.等人在“Industrial&Engineering Chemistry”(1956),第48(4)卷,第784页-第791页中描述的、非常类似于天然橡胶的结构的结构(也就是,1,4-顺式结构),随后很快是,具有由Natta G.等人在“Chemical Abstract”(1959),第53卷,第3756页中和在意大利专利申请IT 536631中描述的、类似于古塔波胶的结构的结构(也就是,1,4-反式结构)的聚异戊二烯。
60年代初之前,所有聚丁二烯的立体异构体已经被合成,也就是,1,4-顺式、1,4-反式、1,2-间同立构的和1,2-全同立构的立体异构体。随后,通过使过渡金属[例如,钛(Ti)、钒(V)、铬(Cr)、铁(Fe)、钴(Co)、镍(Ni)]或镧系元素[例如,钕(Nd)、镨(Pr)、钆(Gd)、镧(La)]的化合物(例如,卤化物、醇化物、羧酸盐)与合适的烷基化剂[例如,三乙基铝(AlEt3)、氯化二乙基铝(AlEt2Cl)]组合而获得的各种其他催化体系被提议并且研究。
还已知的是,在从1,3-丁二烯(即,1,4-顺式、1,4-反式、1,2间同立构、1,2全同立构、1,2无规立构、具有可变的1,2单元含量的混合的l,4-顺式/l,2结构)的立体定向聚合可获得的多种聚合物中,仅仅1,4-顺式聚丁二烯和1,2间同立构聚丁二烯在工业上被生产且商业化。
具有高1,4-顺式含量的聚丁二烯是通常具有96%-97%的1,4-顺式单元的含量、约-2℃的熔点(Tm)、约-25℃的结晶点(Tc)和小于-100℃的玻璃化转变温度的合成弹性体,所述合成弹性体的性质非常类似于天然橡胶的性质,并且所述合成弹性体的主要用途是在弹性掺合物,特别是用于汽车和/或卡车的轮胎的生产的弹性掺合物的生产中。特别地,在轮胎生产中,使用具有高的1,4-顺式单元含量的聚丁二烯。通常,1,4-顺式聚丁二烯通过聚合工艺来制备,所述聚合工艺使用基于钛(Ti)、钴(Co)、镍(Ni)、钕(Nd)的多种催化体系。
1,2间同立构聚丁二烯是可溶性差的结晶聚合物,其具有在从200℃至220℃的范围内的熔点,这取决于间同立构规整度的水平而变化(换句话说,取决于包含在其中的间同立构五价基(syndiotactic pentad)的百分比),并且通常被用于生产透明膜、软管,特别地用于生产鞋底。
因此,存在用于1,3-丁二烯的聚合的许多催化体系。
例如,基于钒(V)的催化体系在共轭二烯的聚合领域中已知的是其提供具有1,4-反式结构的聚合物的能力,并且到目前为止是用于制备1,4-反式聚丁二烯的最重要的体系。关于所述催化体系的另外的细节可以在例如以下中被找到:上文引用的Porri L.等人,“Comprehensive Polymer Science”(1989),Eastmond G.C.等人编辑,Pergamon Press,Oxford,UK,第4卷,第II部分,第53页-第108页。
通过使钒的卤化物[例如,三氯化钒(VCl3)、四氯化钒(VCl4)]与烷基铝[例如,三乙基铝(AlEt3)、氯化二乙基铝(AlEt2Cl)]组合获得的非均相催化体系(heterogeneous catalytic system)提供具有约145℃的熔点(Tm)的、高分子量的、结晶1,4-反式聚丁二烯(97%-100%的1,4-反式含量)。关于所述催化体系的另外的细节可以在例如以下中被找到:Natta G.等人,“La Chimica e L’Industria”(1959),第40卷,第362页和“Chemical Abstract”(1959),第53卷,第195页;Natta G.等人,“La Chimica e L’Industria”(1959),第41卷,第116页和“Chemical Abstract”(1959),第53卷,第15619页。
具有高的1,4-反式单元含量但具有较低分子量的聚丁二烯可以使用均相催化体系比如例如氯化钒(III)(三-四氢呋喃(tris-tetrahydrofuran))/氯化二乙基铝(VCl3(THF)3/AlEt2Cl)、乙酰丙酮钒(III)/氯化二乙基铝[V(acac)3/AlEt2Cl]和乙酰丙酮钒(III)/甲基铝氧烷[V(acac)3/MAO]来制备。关于所述催化体系的另外的细节可以在例如以下中被找到:Ricci G.等人,“Polymer Communication”(1991),第32卷,第514页-第517页;Ricci G.等人,“Journal of Polymer Science Part A:Polymer Chemistry”(2007),第45卷,第4635页-第4646页;Natta G.等人,“Atti Accademia Nazionale dei Lincei-Classe di Scienze fisiche,matematiche e naturali”(1961),第31(5)卷,第189页和“Chemical Abstract”(1962),第57卷,第4848页;Porri L.等人,“Die Makromolekulare Chemie”(1963),第61(1)卷,第90页-第103页。
前面提及的均相催化体系中的某些,例如乙酰丙酮钒(III)/三乙基铝[V(acac)3/AlEt3]对于制备1,2-丁二烯受到某些关注,如例如在Natta G.等人,“La Chimica e L’Industria”(1959),第41卷,第526页和“Chemical Abstract”(1960),第54卷,第1258页中所描述的。
通过使钒的环戊二烯基衍生物比如例如氯化双(环戊二烯基)钒(Cp2VCl)和二氯化甲基环戊二烯基钒双三乙基膦[(C5H4Me)VCl2(PEt3)2]组合获得的催化体系能够提供具有主要地1,4-顺式结构的聚丁二烯(约85%的1,4-顺式单元含量)。关于所述催化体系的另外的细节可以在例如以下中被找到:Porri L.等人,“Metalorganic Catalyst for Synthesis and Polymerization”(1999),Kaminsky W.编辑,Springer-Verlag Berlin Heidelberg,第519页-第530页;Porri L.等人,“Metallocene-Based Polyolefins”(2000),Scheirs J.等人编辑,John Wiley&Sons Ltd.,第115页-第141页;Natta G.编辑,“Atti Accademia Nazionale dei Lincei-Classe di Scienze fisiche,matematiche e naturali”(1961),第31(5)卷,第189页和“Chemical Abstract”(1962),第57卷,第4848页;Porri L.等人,“Die Makromolekulare Chemie”(1963),第61(1)卷,第90页-第103页。
基于铬的催化体系在使共轭二烯聚合的领域中起重要作用,其已经是能够提供具有1,2结构的聚丁二烯的首要的催化体系之一。例如,通过使可溶性铬化合物比如例如乙酰丙酮铬(III)[Cr(acac)3]或五羰基吡啶铬[Cr(CO)5吡啶]与烷基铝[例如三乙基铝(AlEt3)]组合获得的催化体系已经使得获得具有全同立构或间同立构的结构的1,2聚丁二烯是可能的,取决于使用的Al/Cr摩尔比:在低Al/Cr比率下为间同立构的,即在从2至6的范围内的比率;在高Al/Cr比率下为全同立构的,即在从6至10的范围内的比率,如例如在Natta G.等人,“La Chimica e L’Industria”(1959),第41卷,第1163页中所描述的。明显的并且确证其重要性的是,使用基于铬的催化体系之前不是仅获得全同立构的1,2聚丁二烯。
最近这些年,新的、更有活性的且立体专一性的催化体系已经通过使铬(II)[Cr(II)]和二齿次膦酸配体(bidentate phosphinic ligand)的各种络合物与甲基铝氧烷(MAO)组合来开发,如例如在:Ricci G.等人,“Chromium:Environmental,Medical and Material Studies”(2011),Salden M.P.编辑,Nova Science Publishers Inc.,USA,第121页-第140页;Ricci G.等人,“Macromolecules”(2001),第34卷,第5766页-第5769页;Ricci G.等人,“Polymer Bullettin”(2002),第48卷,第25页-第31页;Ricci G.等人,“Organometallics”(2004),第23(15)卷,第3727页-第3732页;Ricci G.等人,“Journal of Molecular Catalysis A:Chemical”(2007),第267卷,第102页-第107页;Ricci G.等人,“Macromolecular Symposia”(2004),第260(1)卷,第172页-第178页中所描述的。所述催化体系已经使得获得具有多达95%的1,2单元含量,具有不同的立构规整度也就是全同立构规整度或间同立构规整度(取决于与铬原子配位的膦的类型)的聚丁二烯是可能的。特别地,主要地全同立构聚合物已经使用较小空间位阻的膦[例如双(二甲基膦)甲烷(dmpm)、双(二苯基膦)甲烷(dppm)]获得,同时使用较大空间位阻的膦[例如1,2-双(二甲基膦)乙烷(dmpe)、1,2-双(二乙基膦)乙烷(depe)、双(二苯基膦)胺(dppa)、1,2-双(二苯基膦)乙烷(dppe)]已经使得合成高度间同立构的1,2聚丁二烯是可能的。
同时,通过与其他过渡金属例如钛(Ti)、钒(V)、铬(Cr)、钴(Co)和镍(Ni)相比,基于铁(Fe)的催化体系一直相对少地被研究。然而,已经获得极其有活性的催化体系,即使它们不具有高立体专一性的特征。例如,对于基于二氯化铁或二乙基铁与芳族胺(例如,菲咯啉、联吡啶)和烷基铝[例如,三异丁基铝(Al(iBu)3)、三乙基铝(AlEt3)、甲基铝氧烷(MAO)]的络合物的催化体系就是这种情况,所述催化体系通过使1,3-丁二烯聚合,在非常短的时间内在单体(1,3-丁二烯)的完全转化下提供主要地1,2聚丁二烯(~70%;其余单元是1,4-顺式类型)。关于所述催化体系的另外的细节可以在例如以下中被找到:Bazzini C.等人,“Macromolecular Rapid Communications”(2002),第23(15)卷,第922页-第927页;Ricci G.等人,“Journal of Molecular Catalysis A:Chemical”(2003),第204卷-第205卷,第287页-第293页;Bazzini C.等人,“Polymer”(2004),第45卷,第2871页-第2875页;Ricci G.等人,“Ferrocenes:Compounds,Properties and Applications”(2011),Phillips E.S.编辑,Nova Science Publishers Inc.,USA,第273-314页。
基于钴的催化体系可能是用于使共轭二烯聚合的、基于过渡金属的各种催化体系中最通用的催化体系,由于在其催化配方(catalytic formulation)中合适的变形的情况下,它们能够提供,在呈现高活性和立体专一性下,全部可能是1,3-丁二烯的立体异构体:1,4-顺式聚丁二烯、1,2聚丁二烯、具有混合的1,4-顺式/1,2结构的聚丁二烯、1,4反式聚丁二烯。关于所述立体定向聚合的另外的细节可以在例如以下中被找到:Porri L.等人,“Comprehensive Polymer Science”(1989),Eastmond G.C.等人编辑,Pergamon Press,Oxford,UK,第4卷,第II部分,第53页-第108页;Thiele S.K.H.等人,“Macromolecular Science.Part C:Polymer Reviews”(2003),C43,第581页-第628页;Osakada,K.等人,“Advanced Polymer Science”(2004),第171卷,第137页-第194页;Ricci G.等,“Advances in Organometallic Chemistry Research”(2007),Yamamoto K.编辑,Nova Science Publisher,Inc.,USA,第1页-第36页;以及Ricci G.等人,“Coordination Chemistry Reviews”(2010),第254卷,第661页-第676页;上文所列出的;以及Ricci G.等人,“Cobalt:Characteristics,Compounds,and Applications”(2011),Lucas J.Vidmar编辑,Nova Science Publisher,Inc.,USA,第39页-第81页。
乙酰丙酮钴(II)/氯化二乙基铝/水[Co(acac)2/AlEt2Cl/H2O]和乙酰丙酮钴(III)/氯化三乙基铝/水/二硫化碳[Co(acac)3/AlEt3/H2O/CS2]催化体系仍旧分别被用于1,4-顺式聚丁二烯和间同立构的1,2聚丁二烯的工业生产。
在最近这些年,新的催化体系已经通过使二氯化钴(CoCl2)络合物与膦配体组合来获得,如例如在:Ricci G.等人,“Journal of Molecular Catalysis A:Chemical”(2005),第226卷,第235页-第241页;Ricci G.等人,“Macromolecules”(2005),第38卷,第1064页-第1070页;Ricci G.等人,“Journal of Organometallic Chemistry”(2005),第690卷,第1845页-第1854页;Takeuchi M.等人,“Polymer International”(1992),第29卷,第209页-第212页;Takeuchi M.等人,“Polymer International”(1995),第36卷,第41页-第45页;Takeuchi M.等人,“Macromolecular Chemistry and Physics”(1996),第197卷,第729页-第743页中所描述的。
前面提及的新的催化体系的特性是,它们使得通过改变与钴配位的配体的类型获得具有受控制的微结构(1,4-顺式结构、1,2结构、混合的1,4-顺式/1,2结构)的聚丁二烯是可能的。例如,具有高的1,4-顺式单元含量的聚丁二烯已经在受阻脂肪族膦(hindered aliphatic phosphine)[例如三叔丁基膦(PtBu3)、三异丙基膦(PiPr3)]的情况下获得,同时具有混合的1,4-顺式/1,2结构的聚丁二烯已经使用具有较小空间位阻的脂肪族膦[例如三乙基膦(PEt3)、三正丙基膦(PnPr3)]获得,如例如在Ricci G.等人,“Cobalt:Characteristics,Compounds,and Applications”(2011),Lucas J.Vidmar编辑,Nova Science Publishers,Inc.,USA,第39页-第81页;Ricci G.等人,“Journal of Molecular Catalysis A:Chemical”(2005),第226卷,第235页-第241页;上文所引用的中所描述的。
同时,使用基于具有芳族膦的络合物的催化体系已经导致形成主要地1,2聚丁二烯,随膦的空间位阻增大,其具有的间同立构规整度的水平增大。
多年以来,多种基于镍的催化体系一直被用于1,3-丁二烯的聚合,例如环烷酸镍(II)/氯化二乙基铝/水[Ni(环烷酸盐)2/AlEt2Cl/H2O]、环戊二烯基镍(II)/甲基铝氧烷[NiCp2/MAO]、乙酰丙酮镍(II)/甲基铝氧烷[Ni(acac)2/MAO],如例如在:Porri L.等人,“Comprehensive Polymer Science”(1989),Eastmond G.C.等人编辑,Pergamon Press,Oxford,UK,第4卷,第II部分,第53页-第108页;Thiele S.K.H.等人,“Macromolecular Science.Part C:Polymer Reviews”(2003),C43,第581页-第628页;Osakada K.等人,“Advanced Polymer Science”(2004),第171卷,第137页-194页;上文所引用的;以及在:Oliva P.等人,“Die Makromolekulare Chemie,Rapid Communications”(1990),第11(11)卷,第519页-第524页;Sato H.等人,“Bulletin of the Chemical Society of Japan”(1992),第65卷,第5期,第1299页-第1306页;Longo P.等人,“Macromolecular Rapid Communications”(1998),第19(1)卷,第31页-第34页中所描述的。
相比于基于钴的催化体系的那些,前面提及的基于镍的催化体系中的某些具有活性和立体专一性,并且具有工业兴趣。特别地,三乙基铝/辛酸镍(II)/三氟化硼二乙醚[Al/Et3/Ni(辛酸盐)2/BF3·OEt2]催化体系当前被用于具有高1,4-顺式含量(即,96%-97%的1,4-顺式单元含量)的工业生产,如例如在德国专利DE 2,113,527和在Throckmorton M.C.等人,“Rubber Chemistry and Technology”(1972),第45卷,第268页-第277页;Saltman W.等人,“Rubber Chemistry and Technology”(1973),第46卷,第1055页-第1067页中所描述的。
另外,对于基于镧的催化体系还已知的是其不仅在1,3-丁二烯而且在许多其他被取代的丁二烯的1,4-顺式聚合中的高专一性,如例如在以下中所描述的:Porri L.等人,“Comprehensive Polymer Science”(1989),Eastmond G.C.等人编辑,Pergamon Press,Oxford,UK,第4卷,第II部分,第53页-第108页;Osakada,K.等人,“Advanced Polymer Science”(2004),第171卷,第137页-第194页;Ricci G.等人,“Advances in Organometallic Chemistry Research”(2007),Yamamoto K.编辑,Nova Science Publisher,Inc.,USA,第1页-第36页;Ricci G.等人,“Coordination Chemistry Reviews”(2010),第254卷,第661页-第676页;Friebe L.等人,“Advanced Polymer Science”(2006),第204卷,第1页-第154页;上文所引用的。
基于钕(Nd)、钆(Gd)和镨(Pr)的催化体系由中国研究者在60年代早期被研究,如例如在Hsieh L.等人,“Rubber Chemistry and Technology”(1972),第45卷,第268页中所描述的,并且立刻就发现相对于被用于1,4-顺式聚丁二烯的合成的其他催化体系具有某些优点。特别地,所述催化体系提供具有比使用基于钴(Co)、镍(Ni)和钛(Ti)的催化体系获得的那些更线型(linear)的1,4-顺式结构的聚丁二烯,并且因此更适于轮胎生产,其是目前为止1,4-顺式聚丁二烯的最重要的实际应用。
包含基于钕的化合物的常规催化体系通过使钕化合物比如例如乙酰丙酮钕(III)[Nd(acac)3]、2-乙基己酸钕(III)[Nd(OCOC7H15)3]与氯供体比如例如氯化二乙基铝(AlEt2Cl)、乙基-倍半氯化铝(ethyl-aluminium sesquichloride)(Al2Et3Cl3)、叔丁基氯并且与烷基铝例如三异丁基铝(AliBu3)、二异丁基氢化铝(AliBu2H)反应来获得。所述催化体系当前被用于具有非常高1,4-顺式含量,即98%的1,4-顺式单元含量的聚丁二烯的工业生产。关于所述催化体系的另外的细节可以在例如以下中被找到:上文引用的Friebe L.等人,“Advanced Polymer Science”(2006),第204卷,第1页-第154页;Cabassi F.等人,“Transition Metal Catalyzed Polymerizations”(1988),Quirk R.P.编辑,Cambridge University Press,MA,USA,第655页;Ricci G.等人,“Polymer Communication”(1987),第28卷,第223页;Wilson D.J.等人,“Polymer Bulletin”(1992),第27卷,第407页-第411页;Porri L.等人,“Macromolecular Symposia”(1998),第128(1)卷,第53页-第61页;Porri L.等人,“ACS Symposium Sereies”(2000),第749页,第15页-第30页。
氯化钛(IV)/三烷基铝催化体系(TiCl4/Al(R)3,其中R可以是例如甲基、乙基、异丁基、环己基)是被用于使1,3-丁二烯聚合的第一种催化剂,如例如在以下中所描述的:Porri L.等人,“Comprehensive Polymer Science”(1989),Eastmond G.C.等人编辑,Pergamon Press,Oxford,UK,第4卷,第II部分,第53-108页;Horne S.E.等人,“Industrial Engineering Chemistry”(1956),第48卷,第784-791页;上文所引用的。取决于Al/Ti摩尔比,可以获得主要具有1,4-顺式结构的聚丁二烯(即,65%-70%的1,4-顺式单元含量)或具有混合的1,4-顺式/1,4-反式结构的聚丁二烯。
具有约92%-95%的较高的1,4-顺式单元含量的聚丁二烯已经通过使多种类型的铝的烷基化合物比如例如式Al(R)3的化合物,其中R可以是例如甲基、乙基、异丁基、环己基,优选地三异丁基铝[Al(iBu)3],与包含碘的基于钛的催化体系(例如碘化钛(IV)(TiI4)、二碘二氯化钛(TiCl2I2)、三氯碘化钛(TiCl3I))组合来获得,如例如在以下中所描述的:Porri L.等人,“Comprehensive Polymer Science”(1989),Eastmond G.C.等人编辑,Pergamon Press,Oxford,UK,第4卷,第II部分,第53页-第108页,上文所引用的;Cooper W.等人,“The Stereo Rubbers”(1997),W.M.Saltman编辑,Wiley,New York,第21页;Marconi W.等人,“La Chimica e l’Industria”(1963),第45卷,第522页-第528页;Marconi W.等人,“Journal of Polymer Science Part A:General Papers”(1965),第3(2)卷,第735页-第752页。
基于钛的催化体系是被用于合成具有高的1,4-顺式单元含量的聚丁二烯的第一种催化体系,并且在欧洲和美国两者,充当用于开发工业上用于所述合成的工艺的基础。当今,更多有活性和立体专一性的催化体系是可用的,其基于其他金属比如例如钴(Co)、镍(Ni)和钕(Nd)。
然而,在催化配方的合适的变形下,基于钛的催化体系也能够提供具有1,2结构和1,4-反式结构的聚丁二烯。例如,α-三氯化钛/三乙基铝(α-TiCl3/AlEt3)催化体系是被用于制备1,4-反式聚丁二烯的第一种催化剂,如例如在以下中所描述的:Porri L.等人,“Comprehensive Polymer Science”(1989),Eastmond G.C.等人编辑,Pergamon Press,Oxford,UK,第4卷,第II部分,第53页-第108页;Natta G.等人在“Chemical Abstract”(1959),第53卷,第3756页和在意大利专利申请IT 536631;上文所引用的。
通过与基于钛的催化体系相比,基于锆的催化体系一直被研究非常少,可能是因为基于锆的催化体系被认为对于使共轭二烯聚合的有效性差。然而,最近,能够提供具有高的1,4-顺式单元含量(即,1,4-顺式单元含量≥99.9%)的聚丁二烯的、基于锆的吡啶络合物的新的催化剂已经被描述:关于所述催化剂的进一步的细节可以在Annunziata L.等人,“Macromolecules”(2011),第44卷,第1934页-第1941页中被找到。
由于具有高的1,4-反式单元含量的共轭二烯的(共)聚合物,特别地聚丁二烯,可以有利地被用于生产轮胎,特别地具有良好的耐磨性的轮胎的胎面,以及鞋类工业(例如,鞋底的生产)中,所以能够提供所述(共)聚合物的新的催化体系的研究仍旧具有很大的兴趣。
本申请人已经为自己设定以下任务:找到可以被用于催化体系的新颖的锆的络合物,该催化体系能够提供具有高的1,4-反式单元含量,即1,4-反式单元含量≥94%的共轭二烯的(共)聚合物例如比如直链的或支链的聚丁二烯。
现在,本申请人已经找到具有如下文定义的通式(I)的新颖的锆的吡啶络合物,其能够提供具有高的1,4-反式单元含量,即1,4-反式单元含量≥94%的共轭二烯的(共)聚合物比如例如直链的或支链的聚丁二烯。
因此,本发明涉及具有通式(I)的锆的吡啶络合物:
其中:
-相同或不同的R1和R2代表氢原子;或选自直链的或支链的、任选地被卤化的C1-C20、优选地C1-C15烷基,任选地被取代的环烷基,任选地被取代的芳基;
-相同或不同的R3、R4、R5和R6代表氢原子;或选自直链的或支链的、任选地被卤化的C1-C20、优选地C1-C15烷基,任选地被取代的环烷基,任选地被取代的芳基,硝基,羟基,氨基;
-相同或不同的X1、X2和X3代表卤素原子例如比如氯、溴、碘、优选地氯;或选自直链的或支链的C1-C20、优选地C1-C15烷基,-OCOR7基团或-OR7基团,其中R7选自直链的或支链的C1-C20、优选地C1-C15烷基;或X1、X2和X3中的一个代表具有通式(II)的基团:
其中R1、R2、R3、R4、R5和R6具有上文描述的相同的含义。
为了本说明书和以下的权利要求的目的,除非另有陈述,否则数值范围的定义总是包括端点。
为了本说明书和以下的权利要求的目的,术语“包含(comprising)”还包括术语“大体上由...组成”或“由...组成”。
术语“C1-C20烷基”指的是具有从1个到20个碳原子的直链的或支链的烷基。C1-C20烷基的特定的实例是:甲基、乙基、正丙基、异丙基、正丁基、仲丁基、异丁基、叔丁基、戊基、己基、庚基、辛基、正壬基、正癸基、2-丁基辛基、5-甲基己基、4-乙基己基、2-乙基庚基、2-乙基己基。
术语“任选地被卤化的C1-C20烷基”指的是饱和或不饱和的、具有从1个到20个碳原子的直链的或支链的烷基,其中至少一个氢原子被卤素原子比如例如氟、氯、溴(优选地氟、氯)取代。任选地被卤化的C1-C20烷基的特定的实例是:氟甲基、二氟甲基、三氟甲基、三氯甲基、2,2,2-三氟乙基、2,2,2-三氯乙基、2,2,3,3-四氟丙基、2,2,3,3,3-五氟丙基、全氟戊基、全氟辛基、全氟癸基。
术语“环烷基”指的是具有从3个到30个碳原子的环烷基。所述环烷基可以任选地被选自以下的相同或不同的一个或更多个基团取代:卤素原子、羟基、C1-C12烷基、C1-C12烷氧基、氰基、氨基、硝基。环烷基的特定的实例是:环丙基、2,2-二氟环丙基、环丁基、环戊基、环己基、六甲基环己基、五甲基环戊基、2-环辛基乙基、甲基环己基、甲氧基环已基、氟环己基、苯基环己基。
术语“芳基”指的是芳香族碳环基团。所述芳香族碳环基团可以任选地被选自以下的相同或不同的一个或更多个基团取代:卤素原子,比如例如氟、氯、溴;羟基;C1-C12烷基;C1-C12烷氧基;氰基;胺基;硝基。芳基的特定的实例是:苯基、甲基苯基、三甲基苯基、甲氧基苯基、羟基苯基、苯氧基苯基、氟苯基、五氟苯基、氯苯基、溴苯基、硝基苯基、二甲基氨基苯基、萘基、苯基萘基、菲、蒽。
在本发明的优选的实施方案中,在所述具有通式(I)的锆的吡啶络合物中:
-相同或不同的R1和R2代表氢原子;或选自C1-C20烷基,优选地是甲基、任选地被取代的芳基,优选地是苯基、或被一个或更多个甲基、异丙基、叔丁基取代的苯基;优选地R1是氢原子或甲基并且R2是苯基、或被一个或更多个甲基、异丙基、叔丁基取代的苯基;
-彼此相同的R3、R4、R5和R6代表氢原子;
-相同或不同的X1、X2和X3代表卤素原子,比如例如氯、溴、碘,优选地氯;或X1、X2和X3中的一个代表具有通式(II)的基团:
其中R1、R2、R3、R4、R5和R6具有上文描述的相同的含义。
根据本发明,具有通式(I)的锆的吡啶络合物应被认为是呈任何物理形式,比如例如分离和纯化的固体的形式,被合适的溶剂溶剂化的形式,或被负载在合适的有机固体或无机固体上的形式,优选地具有颗粒或粉末的物理形式。
具有通式(I)的锆的吡啶络合物从具有通式(III)的配体来制备:
其中R1、R2、R3、R4、R5和R6具有上文描述的相同的含义。
可用于本发明的目的的配体的特定的实例是具有以下式(L1)-(L7)的那些:
所述具有式(L1)-(L7)的配体可以通过本领域已知的工艺来制备。例如,所述具有式(L1)-(L7)的配体可以通过包括以下的工艺来制备:(1)在合适的苯胺和2-吡啶甲醛(2-pyridincarboxyaldehyde)或2-乙酰基吡啶之间的缩合反应,形成对应的亚胺,如例如在Wu J.等人,“Journal of American Chemistry Society”(2009),第131(36)卷,第12915页-第12917页;Laine V.T.等人,“European Journal of Inorganic Chemistry”(1999),第6卷,第959页-第964页;Bianchini C.等人,“New Journal of Chemistry”(2002),第26(4)卷,第387页-第397页;Lai Yi-C.等人,“Tetrahedron”(2005),第61(40)卷,第9484页-第9489页中所描述的;(2)合成的亚胺转化成对应的胺,如例如在:Nienkemper K.等人,“Journal of Organometallic Chemistry”(2008),第693(8-9)卷,第1572页-第1589页;Lin Y.等人,“Dalton Transactions”(2012),第41(22)卷,第6661页-第6670页中所描述的。
具有通式(I)的锆的吡啶络合物可以通过本领域已知的工艺来制备。例如,所述锆的吡啶络合物可以通过在原样的或与醚[例如,二乙醚、四氢呋喃(THF)、二甲氧基乙烷]络合的、具有通式Zr(X)4的锆化合物(其中X是卤素原子比如例如氯、溴、碘,优选地氯),与具有如上文陈述的式(L1)-(L7)的配体(所述配体以化学计量的量来使用)之间,优选地在至少一种溶剂的存在下,在从25℃至110℃的范围内的温度、优选地在溶剂的回流温度下操作的反应来制备,所述至少一种溶剂可以选自例如:氯化溶剂(例如,二氯甲烷)、醚溶剂[例如,四氢呋喃(THF)]、烃溶剂(例如,甲苯)、或其混合物。另外,如果X1、X2和X3中的一个代表具有通式(II)的基团
其中R1、R2、R3、R4、R5和R6具有上文描述的相同的含义,那么在与前面提及的锆化合物反应之前,使所述配体与烷基锂比如例如正丁基锂(n-BuLi)反应,以获得所述配体的盐,所述配体的盐随后与前面提及的锆化合物在如上文描述操作下反应。如此获得的锆的吡啶络合物可以随后通过本领域已知的方法来回收,比如例如使用非溶剂(例如,戊烷)的沉淀、随后通过过滤或倾析的分离和任选的随后的溶解于合适的溶剂中、随后低温结晶。
为了本说明书和以下的权利要求书的目的,措辞“室温”指的是在从20℃到25℃的范围内的温度。
如先前陈述的,本发明还涉及包含所述具有通式(I)的锆的吡啶络合物的用于使共轭二烯(共)聚合的催化体系。
因此,本发明还涉及用于使共轭二烯(共)聚合的催化体系,所述催化体系包含:
(a)至少一种具有通式(I)的锆的吡啶络合物;
(b)至少一种助催化剂,所述至少一种助催化剂选自不同于碳的元素M'的有机化合物,所述元素M'选自属于元素周期表的第2族、第12族、第13族或第14族的元素,优选地选自:硼、铝、锌、镁、镓、锡,还更优选地选自铝、硼。
通常,包含具有通式(I)的锆的吡啶络合物和助催化剂(b)的催化体系的形成优选地在惰性液体介质中、更优选地在烃溶剂中进行。对具有通式(I)的锆的吡啶络合物和助催化剂(b)以及使用的特定方法的选择可以取决于分子结构和期望的结果而变化,如在用于其他的过渡金属与亚胺配体的络合物的在本领域技术人员可用的有关文献中类似地报告的,如例如由L.K.Johnson等在“Journal of the American Chemical Society”(1995),第117卷,第6414页-第6415页中和G.van Koten等在“Advances in Organometallic Chemistry”(1982),第21卷,第151页-第239页中报告的。
在本发明的另外的优选的实施方案中,所述助催化剂(b)可以选自具有通式(IV)的烷基铝(b1):
Al(X')n(R8)3-n(IV)
其中X'代表卤素原子比如例如氯、溴、碘、氟;R8选自直链的或支链的C1-C20烷基、环烷基、芳基,所述基团任选地被一个或更多个硅原子或锗原子取代;并且n是在从0到2的范围内的整数。
在本发明的另外的优选的实施方案中,所述助催化剂(b)可以选自属于元素周期表的第13族或第14族的不同于碳的元素M'的有机氧化化合物(organo-oxygenated compound)(b2),优选地铝、镓、锡的有机氧化化合物。所述有机氧化化合物(b2)可以被定义为M'的有机化合物,其中此M'被结合到至少一个氧原子并且被结合到由具有从1个到6个碳原子的烷基、优选地甲基形成的至少一个有机基团。
在本发明的另外的优选的实施方案中,所述助催化剂(b)可以选自不同于碳的元素M'的有机金属化合物或有机金属化合物的混合物(b3),所述有机金属化合物或有机金属化合物的混合物(b3)能够与具有通式(I)的锆的吡啶络合物反应,从具有通式(I)的锆的吡啶络合物中选取(extract)σ-连接的取代基X1、X2或X3,以在一方面形成至少一种中性化合物,且在另一方面形成由包含被配体配位的金属(Zr)的阳离子和包含金属M'的非配位的有机阴离子组成的离子化合物,离子化合物的负电荷被离域在多中心结构上。
应当注意到的是,为了本发明和以下权利要求的目的,术语“元素周期表”指的是在以下互联网网址可用的日期为2007年6月22日的版本的“IUPAC元素周期表”:www.iupac.org/fileadmin/user_upload/news/IUPAC_Periodic_Table-1Jun12.pdf。
对本发明的目的特别有用的具有通式(IV)的烷基铝的特定的实例是:三甲基铝、三(2,3,3-三甲基-丁基)-铝、三(2,3-二甲基-己基)-铝、三(2,3-二甲基-丁基)-铝、三(2,3-二甲基-戊基)-铝、三(2,3-二甲基-庚基)-铝、三(2-甲基-3-乙基-戊基)-铝、三(2-甲基-3-乙基-己基)-铝、三(2-甲基-3-乙基-庚基)-铝、三(2-甲基-3-丙基-己基)-铝、三乙基铝、三(2-乙基-3-甲基-丁基)-铝、三(2-乙基-3-甲基-戊基)-铝、三(2,3-二乙基-戊基)-铝、三正丙基铝、三异丙基铝、三(2-丙基-3-甲基-丁基)-铝、三(2-异丙基-3-甲基-丁基)-铝、三正丁基铝、三异丁基铝(TIBA)、三叔丁基铝、三(2-异丁基-3-甲基-戊基)-铝、三(2,3,3-三甲基-戊基)-铝、三(2,3,3-三甲基-己基)-铝、三(2-乙基-3,3-二甲基-丁基)-铝、三(2-乙基-3,3-二甲基-戊基)-铝、三(2-异丙基-3,3-二甲基-丁基)-铝、三(2-三甲基甲硅烷基-丙基)-铝、三(2-甲基-3-苯基-丁基)-铝、三(2-乙基-3-苯基-丁基)-铝、三(2,3-二甲基-3-苯基-丁基)-铝、三(2-苯基-丙基)-铝、三[2-(4-氟-苯基)-丙基]-铝、三[2-(4-氯-苯基)-丙基]-铝、三-[2-(3-异丙基-苯基)-三(2-苯基-丁基)]-铝、三(3-甲基-2-苯基-丁基)-铝、三(2-苯基-戊基)-铝、三[2-(五氟-苯基)-丙基]-铝、三(2,2-二苯基-乙基]-铝、三(2-苯基-甲基-丙基]-铝、三戊基铝、三己基铝、三环己基铝、三辛基铝、氢化二乙基铝、氢化二正丙基铝、氢化二正丁基铝、氢化二异丁基铝(DIBAH)、氢化二己基铝、氢化二异己基铝、氢化二辛基铝、氢化二异辛基铝、二氢化乙基铝、二氢化正丙基铝、二氢化异丁基铝、氯化二乙基铝(DEAC)、二氯化单乙基铝(EADC)、氯化二甲基铝、氯化二异丁基铝、二氯化异丁基铝、倍半氯化乙基铝(EASC)、以及其中烃取代基中的一个被氢原子取代的相应的化合物以及其中烃取代基中的一个或两个被异丁基取代的那些。三乙基铝、三异丁基铝(TIBA)、氢化二异丁基铝(DIBAH)是特别地优选的。
优选地,当被用于形成根据本发明的(共)聚合催化体系时,可以以使得在具有通式(I)的锆的吡啶络合物中存在的锆与在具有通式(IV)的烷基铝中存在的铝之间的摩尔比可以在从5到5000的范围内、优选地从10到1000的范围内的比例,将具有通式(IV)的烷基铝放置成与具有通式(I)的锆的吡啶络合物接触。具有通式(I)的锆的吡啶络合物和具有通式(IV)的烷基铝被放置成彼此进行接触的顺序不是特别关键的。
关于具有通式(IV)的烷基铝的另外的细节可以在国际专利申请WO 2011/061151中找到。
在特别优选的实施方案中,所述有机氧化化合物(b2)可以选自具有通式(V)的铝氧烷:
(R9)2-Al-O-[-Al(R10)-O-]p-Al-(R11)2(V)
其中相同或不同的R9、R10和R11代表氢原子、卤素原子比如例如氯、溴、碘、氟;或选自直链的或支链的C1-C20烷基、环烷基、芳基,所述基团任选地被一个或更多个硅原子或锗原子取代;并且p是在从0到1000的范围内的整数。
如已知的,铝氧烷是通过本领域已知的工艺可获得的、具有可变的O/Al比率的、包含Al-O-Al键的化合物,所述已知的工艺比如例如通过使烷基铝或烷基铝卤化物与水或与包含预先确定的量的可用的水的其他化合物在受控条件中反应,比如例如在三甲基铝与硫酸铝六水合物、硫酸铜五水合物或硫酸铁五水合物反应时。
所述铝氧烷并且特别地甲基铝氧烷(MAO)是通过有机金属化学中的已知工艺,比如例如通过将三甲基铝添加到硫酸铝水合物在己烷中的悬浮液,可获得的化合物。
优选地,当被用于形成根据本发明的(共)聚合催化体系时,可以以使得在具有通式(V)的铝氧烷中存在的铝(Al)与在具有通式(I)的锆的吡啶络合物中存在的锆之间的摩尔比在从10到10000的范围内、优选地从100到5000的范围内的比例,将具有通式(V)的铝氧烷放置成与具有通式(I)的锆的吡啶络合物接触。具有通式(I)的锆的吡啶络合物和具有通式(V)的铝氧烷被放置成彼此进行接触的顺序不是特别关键的。
连同前面提及的优选的具有通式(V)的铝氧烷,根据本发明的化合物(b2)的定义还包括镓氧烷(galloxane),其中镓替代通式(V)中的铝;和锡氧烷(stannoxane),其中锡替代通式(V)中的铝,镓氧烷和锡氧烷作为在金属茂络合物的存在下烯烃的聚合助催化剂的用途是已知的。关于所述镓氧烷和锡氧烷的另外的细节可以例如在美国专利US 5,128,295和US 5,258,475中找到。
对本发明的目的特别有用的具有通式(V)的铝氧烷的特定的实例是:甲基铝氧烷(MAO)、乙基铝氧烷、正丁基铝氧烷、四异丁基铝氧烷(TIBAO)、叔丁基铝氧烷、四(2,4,4-三甲基-戊基)-铝氧烷(TIOAO)、四(2,3-二甲基-丁基)-铝氧烷(TDMBAO)、四(2,3,3-三甲基-丁基)-铝氧烷(TTMBAO)。原样的甲基铝氧烷(MAO)或呈干燥形式的甲基铝氧烷(MAO-干)是特别地优选的。
关于具有通式(V)的铝氧烷的另外的细节可以在国际专利申请WO 2011/061151中找到。
在本发明的优选的实施方案中,所述化合物或化合物的混合物(b3)可以选自铝的有机化合物和特别地硼的有机化合物,比如例如由以下通式代表的那些:
[(RC)WH4-W]·[B(RD)4]-;B(RD)3;Al(RD)3;B(RD)3P;[Ph3C]+·[B(RD)4]-;[(RC)3PH]+·[B(RD)4]-;
[Li]+·[B(RD)4]-;[Li]+·[Al(RD)4]-
其中w是在从0到3的范围内的整数,每个RC基团独立地代表具有从1个到10个碳原子的烷基或芳基,且每个RD基团独立地代表具有从6个到20个碳原子的被部分地或全部地氟化、优选地被全部地氟化的芳基,P代表任选地被取代的吡咯基。
优选地,当被用于形成根据本发明的(共)聚合催化体系时,可以以使得在化合物或化合物的混合物(b3)中存在的金属(M')与在具有通式(I)的锆的吡啶络合物中存在的锆(Zr)之间的摩尔比在从0.1到15的范围内、优选地从0.5到10的范围内、更优选地从1到6的范围内的比例,将化合物或化合物的混合物(b3)放置成与具有通式(I)的锆的吡啶络合物接触。具有通式(I)的锆的吡啶络合物和化合物或化合物的混合物(b3)被放置成彼此进行接触的顺序不是特别关键的。
所述化合物或化合物的混合物(b3)(特别地如果具有通式(I)的锆的吡啶络合物中的X1、X2和X3不同于烷基),必须以与具有通式(V)的铝氧烷比如例如甲基铝氧烷(MAO)或优选地与具有通式(IV)的烷基铝、更优选地与在每个烷基残基中具有从1个到8个碳原子的三烷基铝比如例如三甲基铝、三乙基铝、三异丁基铝(TIBA)的组合来使用。
如果使用化合物或化合物的混合物(b3),那么通常被用于提供根据本发明的(共)聚合催化体系的方法的实例在以下的清单中被定性地概述,然而所述清单不以任何方式限制本发明的总体范围:
(m1)使具有通式(I)的锆的吡啶络合物(其中X1、X2和X3中至少一个是烷基)与至少一种化合物或化合物的混合物(b3)(其阳离子能够与所述烷基反应以形成中性化合物,且其阴离子为体积大的(bulky)、非配位的并且能够使负电荷离域)接触;
(m2)使具有通式(I)的锆的吡啶络合物与以从10/1到300/1的摩尔过量使用的至少一种具有通式(IV)的烷基铝、优选地三烷基铝反应,随后与以相对于锆(Zr)的几乎化学计量的量或稍微过量的强路易斯酸比如三(五氟苯基)硼[化合物(b3)]反应;
(m3)使具有通式(I)的锆的吡啶络合物与从10/1到1000/1、优选地从100/1到500/1的摩尔过量的至少一种可以由式AlR”'mZ3-m代表的三烷基铝或烷基铝卤化物接触并且反应,其中R”'是直链或支链的C1-C8烷基或其混合物,Z是卤素、优选地氯或溴,且m是在从1到3的范围内的小数(decimal number);随后向如此获得的组合物以使得所述化合物或化合物的混合物(b3)或所述化合物或化合物的混合物(b3)的铝与具有通式(I)的锆的吡啶络合物的锆之间的比率在从0.1到15的范围内、优选地从1到6的范围内的量添加至少一种化合物或化合物的混合物(b3)。
能够用于与根据本发明的具有通式(I)的锆的吡啶络合物反应产生离子催化体系的化合物或化合物的混合物(b3)的实例在以下的出版物中被描述,虽然是关于离子金属茂络合物的形成,其内容通过引用并入本文:-W.Beck等,"Chemical Reviews"(1988),第88卷,第1405页-第1421页;-S.H.Stares,"Chemical Reviews"(1993),第93卷,第927页-第942页;-欧洲专利申请EP 277003、EP 495375、EP 520732、EP 427697、EP 421659、EP 418044;
-公布的国际专利申请WO 92/00333、WO 92/05208。
对本发明的目的特别有用的化合物或化合物的混合物(b3)的特定的实例是:三丁基铵-四-五氟苯基-硼酸盐、三丁基铵-四-五氟苯基-铝酸盐、三丁基铵-四-[(3,5-二-(三氟苯基)]-硼酸盐、三丁基铵-四-(4-氟苯基)]-硼酸盐、N,N-二甲基苄基铵-四-五氟苯基-硼酸盐、N,N-二甲基-己基铵-四-五氟苯基-硼酸盐、N,N-二甲基苯铵-四(五氟苯基)-硼酸盐、N,N-二甲基苯铵-四(五氟苯基)-铝酸盐、二(丙基)铵-四(五氟苯基)-硼酸盐、二(环己基)铵-四(五氟苯基)硼酸盐、三苯基碳正离子-四(五氟苯基)-硼酸盐、三苯基碳正离子-四(五氟苯基)-铝酸盐、三(五氟苯基)硼、三(五氟苯基)-铝、或其混合物。四-五氟苯基-硼酸盐是优选的。
为了本说明书和以下的权利要求的目的,关于由分子组成的化合物并且关于原子和离子两者使用术语“摩尔”和“摩尔比”,对于原子和离子,省略术语克原子或原子比(即使这些术语在科学上更正确)。
为了本发明的目的,其他的添加剂或组分可以任选地被添加到前面提及的催化体系以便调节其以在实践中满足特定的要求。因此,如此获得的催化体系应当被认为被包括在本发明的范围中。可以被添加到根据本发明的催化体系的制剂(preparation)和/或制剂(formulation)的添加剂和/或组分是例如:惰性溶剂,比如例如脂肪族和/或芳香族烃、脂肪族和/或芳香族醚;弱配位的添加剂(例如,路易斯碱),其选自例如非可聚合的烯烃、空间位阻的或缺电子的醚;卤代剂,比如例如硅卤化物、卤代烃,优选地氯代烃;或其混合物。
所述催化体系如先前陈述的,可以通过本领域已知的方法来制备。
例如,所述催化体系可以被单独地制备(预形成)并且随后被引入到(共)聚合环境中。为了此目的,所述催化体系可以通过使至少一种具有通式(I)的锆的吡啶络合物(a)与至少一种助催化剂(b)、任选地在选自上文列出的那些的其他的添加剂或组分的存在下、在溶剂比如例如甲苯、庚烷的存在下、在从20℃到60℃的范围内的温度下反应持续在从10秒到10小时的范围内、优选地从30秒到5小时的范围内的时间来制备。关于制备所述催化体系的更多的细节可以在下文报告的实施例中找到。
可选择地,所述催化体系可以在原位(in situ)即直接在(共)聚合环境中制备。为了此目的,所述催化体系可以通过分别引入具有通式(I)的锆的吡啶络合物(a)、助催化剂(b)和待被(共)聚合的预选的共轭二烯,在进行(共)聚合的条件下操作来制备。
为了本发明的目的,前面提及的催化体系还可以被负载在优选地由硅氧化物和/或铝氧化物比如例如二氧化硅、氧化铝或硅铝酸盐形成的惰性固体上。已知的负载方法可以被用于负载所述催化体系,所述负载方法通常包括在合适的惰性液体介质中在任选地通过加热到高于200℃的温度活化的载体与催化体系即本发明的目标的组分(a)和(b)中的一种或两种之间的接触。为了本发明的目的,对于组分中的两种都被负载是不必要的,也可能的是对于仅具有通式(I)的锆的吡啶络合物(a)或助催化剂(b)在载体的表面上存在。在后者的情况下,当期望形成用于聚合的活性催化剂的时刻,表面中不存在的组分随后被放置成与负载的组分接触。
已经通过使所述固体官能化并且形成在固体和具有通式(I)的锆的吡啶络合物之间的共价键而被负载在固体上的具有通式(I)的锆的吡啶络合物和基于其的催化体系,也被包括在本发明的范围中。
另外,本发明涉及使共轭二烯(共)聚合的工艺,其特征是使用所述催化体系。
可以被用于使共轭二烯(共)聚合的具有通式(I)的锆的吡啶络合物(a)和助催化剂(b)的量取决于期望实施的(共)聚合工艺而变化。然而,所述量使得获得在上文陈述的值的范围内的在具有通式(I)的锆的吡啶络合物中存在的锆(Zr)与在助催化剂(b)中存在的金属(例如,铝,如果助催化剂(b)选自烷基铝(b1)或铝氧烷(b2);硼,如果助催化剂(b)选自具有通式(III)的化合物或化合物的混合物(b3))之间的摩尔比。
可以使用根据本发明的催化体系(共)聚合的共轭二烯的特定的实例是:1,3-丁二烯、2-甲基-1,3-丁二烯(异戊二烯)、2,3-二甲基-1,3-丁二烯、1,3-戊二烯、1,3-己二烯、环-1,3-己二烯(cyclo-1,3-hexadiene)。1,3-丁二烯是优选的。前面提及的可(共)聚合的共轭二烯可以单独使用,或以两种或更多种二烯的混合物使用。在后者的情况下.当使用两种或更多种二烯的混合物时,将获得共聚物。
在特别优选的实施方案中,本发明涉及用于使1,3-丁二烯聚合的工艺,其特征是使用所述催化体系。
通常来说,所述(共)聚合可以在聚合溶剂(polymerization solvent)的存在下进行,所述聚合溶剂通常选自惰性有机溶剂比如例如:饱和的脂肪族烃,比如例如丁烷、戊烷、己烷、庚烷或其混合物;饱和的脂环族烃,比如例如环戊烷、环己烷、环己烷或其混合物;单烯烃,比如例如1-丁烯、2-丁烯或其混合物;芳香族烃,比如例如苯、甲苯、二甲苯或其混合物;卤代烃,比如例如二氯甲烷、氯仿、四氯化碳、三氯乙烯、全氯乙烯、1,2-二氯乙烷、氯苯、溴苯、氯甲苯或其混合物。优选地,(共)聚合溶剂选自饱和的脂肪族烃。
可选择地,所述(共)聚合可以使用与(共)聚合溶剂相同的待被(共)聚合的共轭二烯在被称为本体工艺(bulk process)的工艺中来进行。
通常来说,待被(共)聚合的共轭二烯在所述(共)聚合溶剂中的浓度在相对于共轭二烯和惰性有机溶剂的混合物的总重量的从按重量计5%到按重量计50%的范围内、优选地从按重量计10%到按重量计20%的范围内。
通常来说,所述(共)聚合工艺可以在从-70℃到+100℃的范围内、优选地从-20℃到+80℃的范围内的温度下进行。
就压力而言,在待被(共)聚合的混合物的组分的压力下操作是优选的。
所述(共)聚合可以连续地或分批地进行。
如上文所陈述的,所述工艺使得获得具有高的1,4-反式单元含量,即,1,4-反式单元含量≥94%的共轭二烯的(共)聚合物例如直链或支链的聚丁二烯是可能的。
为了更好地理解本发明的目的并且为了将其实施,在下文给出某些说明性、非限制性实例。
实施例
试剂和材料
以下清单陈述在本发明的以下实施例中使用的试剂和材料、其任何任选的预处理和其制造商:
-2,6-二异丙基苯胺(Aldrich):按原样使用;
-2-叔丁基苯胺(Aldrich):按原样使用;
-2,6-苯甲酰基吡啶(Aldrich):按原样使用;
-苯胺(Aldrich):在减压下蒸馏并且保持在惰性气氛中;
-2,4,6-三甲基苯胺(Aldrich):按原样使用;
-2-吡啶甲醛(Aldrich):按原样使用;
-2-乙酰基吡啶(Aldrich):按原样使用;
-二氯甲烷(Carlo Erba,RPE):按原样使用;
-甲醇(Carlo Erba,RPE):按原样使用,或任选地通过经镁(Mg)蒸馏而被脱水(anhydrify);
-硼氢化钠(Aldrich):按原样使用;
-乙酸乙酯(Aldrich):按原样使用;
-己烷(Aldrich):纯的,≥99%,在惰性气氛下经钠(Na)蒸馏;
-乙醚(Aldrich):按原样使用;
-甲酸(Aldrich):按原样使用;
-庚烷(Aldrich):纯的,≥99%,在惰性气氛下经钠(Na)蒸馏;
-硫酸钠(Aldrich):按原样使用;
-氯仿(Aldrich):按原样使用;
-甲苯(Aldrich):纯的,≥99.5%,在惰性气氛下经钠(Na)蒸馏;
-四氯化锆(ZrCl4)(Stream Chemicals):按原样使用;
-四氯化锆:四氢呋喃络合物(1:2)[ZrCl4(THF)2](Aldrich):按原样使用;
-四氢呋喃(THF)(Carlo Erba,RPE):经钾/二苯甲酮被保持在回流下,且然后在氮气下蒸馏;
-正丁基锂(Aldrich):按原样使用;
-1,3-丁二烯(Air Liquide):纯的,≥99,5%,在任何生产前从容器中蒸发,通过经过用分子筛填塞的柱干燥并且在已被预冷却到-20℃的反应器之内冷凝;
-甲基铝氧烷(MAO)(在按重量计10%下的甲苯溶液)(Aldrich):按原样使用,或呈通过在真空下除去游离的三甲基铝连同来自甲苯溶液的溶剂并且仍旧在真空下将获得的残余物干燥获得的干燥形式(MAO-干);
-以37%的在水溶液中的盐酸(Aldrich):按原样使用。
-三异丁基铝(TIBA)(Aldrich):按原样使用;
-氘代四氯乙烯(C2D2Cl4)(Acros):按原样使用;
-氘代氯仿(CDCl3)(Acros):按原样使用。
使用以下分析和表征方法。
元素分析
a)锆的确定
为了确定在被用于本发明的目的的锆的吡啶络合物中按重量计锆(Zr)的量,在氮气流下在干燥箱中操作下,将精确地称重的约30mg-50mg的样品的等分部分连同1ml的40%氢氟酸(HF)、0.25ml的96%硫酸(H2SO4)和1ml的70%硝酸(HNO3)的混合物放置于约30ml的铂坩埚中。随后,坩埚在板上被加热,增加温度直到出现白色硫磺烟雾(约200℃)。如此获得的混合物被冷却到室温(20℃-25℃),1ml的70%硝酸(HNO3)被添加且使其回到烟雾出现的点(point)。在重复该序列另外两次之后,获得澄清的且几乎无色的溶液。随后,在冷却时,添加1ml的硝酸(HNO3)和约15ml的水,同时加热到80℃持续约30分钟。将如此制备的样品用Milli-Q-纯度的水稀释直到精确地称重的约50g的重量,以获得溶液,使用Thermo Optek IRIS Advantage Duo ICP-OES(光学发射等离子体(optical emission plasma))分光计,通过与已知浓度的溶液比较,对所述溶液进行仪器分析测定。为了此目的,对于每种分析物,在0ppm-10ppm的范围内,通过测量通过按重量稀释认证的溶液(certified solution)获得的已知滴定度的溶液来制备校准曲线。
在进行分光光度检测之前,如上文制备的样品的溶液被进一步按重量稀释以便获得接近参考浓度的浓度。所有样品被一式两份地制备。如果一式两份测试的单独的数据相对于其平均值相差不超过2%,那么结果被认为是可接受的。
b)氯的确定
为了此目的,在干燥箱中在氮气流下,将约30mg-50mg的被用于本发明的目的的锆的吡啶络合物的样品在100ml的玻璃烧杯中精确地称重。添加2g的碳酸钠(Na2CO3)并且在干燥箱之外添加50ml的Mili-Q水。在板上在磁力搅拌下使此达到沸腾持续约30分钟。将其留下冷却,添加1/5稀硫酸(H2SO4)直到酸性反应,并且用电位滴定仪、使用硝酸银(AgNO3)0.1N进行滴定。
c)碳、氢和氮的确定
使用自动Carlo Erba 1106分析仪,确定在被用于本发明的目的的锆的吡啶络合物以及被用于本发明的目的的配体中的碳、氢和氮。
13C-HMR和1H-HMR光谱
使用Bruker Avance 400核磁共振分光计,在103℃下使用氘代四氯乙烯(C2D2Cl4)和作为内标的六甲基二硅氧烷(HDMS),或在25℃下使用氘代氯仿(CDCl3)和作为内标的四甲基硅烷(TMS)记录13C-HMR和1H-HMR光谱。为了此目的,使用具有相对于聚合物溶液的总重的按重量计10%的浓度的聚合物溶液。
通过基于在由Mochel,V.D,在“Journal of Polymer Science Part A-1:Polymer Chemistry”(1972),第10卷,第4期,第1009页-第1018页的文献中报告的分析前面提及的光谱,确定聚合物的微结构[即,1,4-反式单元含量(%)]。
FTIR-ATR光谱
使用装配有Thermo Spectra-Tech水平ATR接头(connection)的Bruker IFS 48分光光度计记录FTIR-ATR光谱。其中待被分析的样品所放置于的部分是Fresnel ATR配件(Shelton,CT,USA),所述Fresnel ATR配件使用在水平方向上以45°的入射角的硒化锆晶体(ZnSe)。
在本发明中使用的锆的吡啶络合物的FTIR-TR光谱通过将待被分析的锆的吡啶络合物的样品插入到所述部分中来获得。
FT-IR光谱
FT-IR光谱使用Thermo Nicolet Nexus 670和Bruker IFS 48分光光度计来记录。
聚合物的FT-IR光谱从溴化钾(KBr)片上的聚合物膜获得,所述膜通过沉积待被分析的聚合物在热的邻二氯苯中的溶液获得。分析的聚合物溶液的浓度是相对于聚合物溶液的总重量的按重量计10%。
热分析(DSC)
为了确定获得的聚合物的熔点(Tm)和结晶温度(Tc)的目的,使用Perkin Elmer Pyris差示扫描量热计进行DSC(“差示扫描量热法”)热分析。为了此目的,在惰性氮气气氛下,以在从1℃/min到20℃/min的范围内的扫描速率分析5mg的聚合物。
分子量的测定
获得的聚合物的分子量(MW)通过GPC(“凝胶渗透色谱法”)在以下条件下操作进行:
-Agilent 1100泵;
-Agilent 1100I.R.检测器;
-Mixed-A PL柱;
-溶剂/洗脱剂:四氢呋喃(THF);
-流速:1ml/min;
-温度:25℃
-分子量的计算:通用校准方法(Universal Calibration method)。
给出重均分子量(Mw)和对应于比率Mw/Mn(Mn=数均分子量)的“多分散性指数”(PDI)。
气相色谱-质谱法(GC-MS)
使用Thermo ISQ单-四级杆质谱分光计进行气相色谱-质谱法(GC-MS)。为了此目的,使待被分析的配体的样品在二氯甲烷(CH2Cl2)中以0.1mg/ml的浓度溶解,并且使用在以下条件下操作的所述分光计分析:
-离子化手段:电子电离(EI);
-GC升温速率(GC ramp):50℃每2min;以10℃/min的速率加热直到300℃;
-注射器温度:300℃;
-注射体积:1.30μl;
-“转移线”温度(“transfer line”temperature):280℃;
-离子源温度250℃;
-四级杆扫描参数:在0.2s的扫描时间下的35amu–500amu。
实施例1
具有式(L1)的配体的合成
1.1具有式(L1a)的化合物的合成
在设置有用于共沸水除去的迪安-斯达克分水器的500ml烧瓶中,向2,6-二异丙基苯胺(27.93g,157.5mmol)在二氯甲烷(300ml)中的溶液添加2-吡啶甲醛(16.86g,157.5mmol)。获得的混合物在回流下被加热持续20小时,并且随后在真空下干燥,以获得对应于具有式(L1a)的化合物的41.7g的黄色固体(收率=99%)。
元素分析[实测的(计算的)]:C:81.14%(81.16%);H:8.33%(8.32%);N:10.6%(10.52%)。
1H-NMR(CDCl3,δppm):8.72(d,1H,PyH),8.32(s,1H CH=N),8.27(d,1H PyH),7.86(t,1H PyH),7.39(m,1H PyH),7.11-7.20(m,3H ArH),3.00(sept,2H CHMe2),1.18(d,12H C(CH3)2)。
1.2具有式(L1)的配体的合成
向设置有搅拌器的2升反应器中,装载28g(105.1mmol)的如上文描述获得的具有式(L1a)的化合物和1800ml的无水甲醇:使整体冷却到0℃并且随后以小份的方式添加硼氢化钠(70g,1850mmol)。将获得的混合物留在室温下在搅拌下过夜,并且随后用盐水猝灭并且使用乙酸乙酯萃取。随后,溶剂通过在减压下蒸馏来除去,并且获得的残余物通过在硅胶色谱柱中洗脱[洗脱剂:以9/1比率(v/v)的己烷/乙酸乙酯混合物]来纯化,并且随后用冷的乙醚处理,以获得对应于具有式(L1)的配体的16.9g的白色结晶固体(收率=60%)。
GC-MS:M+=m/z 268;[M-C3H7]+=m/z 225;[M-C6H6N]+=m/z 176;m/z 93C6H7N。
1H-NMR(CDCl3,δppm):8.61(d,1H,o-PyH),7.66(td,1H,PyH),7.30(d,1H,PyH),7.21(m,1H,PyH),7.04-7.12(m,3H,ArH),4.20(s,2H,CH2),4.10(s,1H,NH),3.47(m,2H,-CH(CH3)2),1.42(d,12H,-CH(CH3)2)。
实施例2
具有式(L2)的配体的合成
2.1具有式(L2a)的化合物的合成
在500ml烧瓶中,向2,6-二异丙基苯胺(13.3g,75mmol)在甲醇(300ml)中的溶液添加2-乙酰基吡啶(9.1g,75mmol):将获得的混合物留在室温下在搅拌下持续48小时。将获得的沉淀物过滤,并且随后在真空下干燥,以获得对应于具有式(L2a)的化合物的14g的黄色结晶粉末(收率=67%)。
元素分析[实测的(计算的)]:C:81.37%(81.38%);H:8.64%(8.63%);N:10.01%(9.99%)。
1H-NMR(CDCl3,δppm)8.69(d,1H,PyH),8.38(d,1H,PyH),7.82(t,1H,PyH),7.39(m,1H,PyH),7.11-7.20(m,3H,ArH),2.75(m,2H,CHMe2),2.21(s,3H,N=CH-Me),1.15(d,12H,CH(CH3)2)。
2.2具有式(L2)的配体的合成
向设置有搅拌器的2升反应器中,装载24g(85mmol)的如上文描述获得的具有式(L2a)的化合物和900ml的无水甲醇:使整体冷却到0℃并且随后以小份的方式添加硼氢化钠(48.6g,1285mmol)。将获得的混合物留在室温下在搅拌下过夜,并且随后用盐水猝灭并且使用乙酸乙酯萃取。随后,溶剂通过在减压下蒸馏来除去,并且获得的残余物通过在硅胶色谱柱中洗脱[洗脱剂:以9/1比率(v/v)的己烷/乙酸乙酯混合物]来纯化,并且随后用冷的乙醚处理,以获得对应于具有式(L2)的配体的11g的白色结晶固体(收率=46%)。
元素分析[实测的(计算的)]:C:81.03%(80.80%);H:9.42%(9.28%);N:10.01%(9.92%)。
GC-MS:M+=m/z 282;[M-C3H7]+=m/z 239;[M-C7H8N]+=m/z 176;[M-C12H18N]+=m/z 106。
1H-NMR(CDCl3,δppm):8.64(d,1H,HPy),7.53(dt,1H,HPy),7.2(d,1H,HPy),7.00-7.12(m,1H,HPy;m,3H,ArH),4,0-4,2(m,1H,NCH(CH3);m,1H,NH),3.30(sept,2H,-CH(CH3)2),1.55(d,3H,-NCH(CH3)),1.10(s,12H,-CH(CH3)2)。
实施例3
具有式(L3)的配体的合成
3.1具有式(L3a)的化合物的合成
在500ml烧瓶中,向2-叔丁基苯胺(15.89g,106.5mmol)在甲醇(300ml)中的溶液添加2-乙酰基吡啶(12.9g,106.5mmol):将获得的混合物留在室温下在搅拌下持续48小时。随后,溶剂通过蒸发除去并且使用甲醇使获得的残余物结晶,以获得对应于具有式(L3a)的化合物的20g的黄色结晶粉末(收率=75%)。
元素分析[实测的(计算的)]:C:81.17%(80.91%);H:8.14%(7.99%);N:10.91%(11.10%)。
3.2具有式(L3)的配体的合成
向设置有搅拌器的2升反应器中,装载28g(111mmol)的如上文描述获得的具有式(L3a)的化合物和800ml的无水甲醇:使整体冷却到0℃并且随后以小份的方式添加硼氢化钠(38g,1004mmol)。将获得的混合物留在室温下在搅拌下过夜,并且随后用盐水猝灭并且使用乙酸乙酯萃取。随后,溶剂通过在减压下蒸馏来除去,并且获得的残余物通过在硅胶色谱柱中洗脱[洗脱剂:以9/1比率(v/v)的己烷/乙酸乙酯混合物]来纯化,并且随后用冷的乙醚处理,以获得对应于具有式(L3)的配体的11g的白色结晶固体(收率=39%)。
元素分析[实测的(计算的)]:C:80.00%(80.27%);H:9.12%(8.72%);N:11.31%(11.01%)。
GC-MS:M+=m/z 254;[M-CH3]+=m/z 239;[M-C4H9]+=m/z 197;m/z=183;m/z 132C7H10N2;[M-C10H14N]+=m/z 106;[M-C12H18N]+=m/z 78。
1H-NMR(CDCl3,δppm):8.64(d,1H,HPy),7.7(td,1H,PyH),7.36(d,1H,HPy),7.25(d,1H,ArH),7.18(td,1H,PyH),6.98(td,1H,PyH),6.98(td,1H,PyH),6.48(d,1H,PyH),5.0(宽的单峰,1H,NH),4.7(q,1H,NCH(CH3)),1.57(d,3H,-NCH(CH3)),1.5(s,9H,-C(CH3)3)。
实施例4
具有式(L4)的配体的合成
4.1具有式(L4a)的化合物的合成
在500ml烧瓶中,向2-苯甲酰基吡啶(20g,109mmol)在甲醇(200ml)中的溶液添加苯胺(11.2g,120mmol)和若干滴甲酸:将获得的混合物留在室温下在搅拌下持续48小时。随后,获得的混合物在减压下干燥,并且获得的残余物通过在硅胶色谱柱中洗脱[洗脱剂:以99/1比率(v/v)的庚烷/乙酸乙酯混合物]来纯化,以获得对应于具有式(L4a)的化合物的14.4g的黄色的油(收率=51%)。
元素分析[实测的(计算的)]:C:84.00%(83.69%);H:5.83%(5.46%);N:11.52%(10.84%)。
GC-MS:M+=m/z 258;m/z 180,155,77,51。
4.2具有式(L4)的配体的合成
向设置有搅拌器的2升反应器中,装载14g(85mmol)的如上文描述获得的具有式(L4a)的化合物和900ml的无水甲醇:使整体冷却到0℃并且随后以小份的方式添加硼氢化钠(31g,819mmol)。将获得的混合物留在室温下在搅拌下过夜,并且随后用盐水猝灭并且使用乙酸乙酯萃取。随后,溶剂通过在减压下蒸馏来除去,并且获得的残余物通过在硅胶色谱柱中洗脱[洗脱剂:以9/1比率(v/v)的己烷/乙酸乙酯混合物]来纯化,并且随后用冷的乙醚处理,以获得对应于具有式(L4)的配体的12.5g的白色结晶固体(收率=56.5%)。
元素分析[实测的(计算的)]:C:83.30%(83.04%);H:6.87%(6.19%);N:11.01%(10.76%)。
GC-MS:M+=m/z 260;m/z 182,168,104,77 51。
1H-NMR(CDCl3,δppm):8.6(m 1H,PyH),7.62-7.69(m 1H,PyH),7.45-7.50(m 2H,ArH),7.30-7.38(m,1H,HPy;m 2H,ArH),7.23-7.27(m,1H,ArH),7.18-7.21(m,1H,PyH),7.05-7.13(m,2H,NH-ArH),6.60-6.65(m,3H,NH-ArH),5.55(s,1H,NH),5.50(s,1H,-NCH)。
实施例5
具有式(L5)的配体的合成
5.1具有式(L5a)的化合物的合成
在500ml烧瓶中,向苯胺(26.1g,280mmol)在甲醇(250ml)中的溶液添加2-吡啶甲醛(30g,280mmol)和若干滴甲酸:将获得的混合物留在室温下在搅拌下持续48小时。随后,获得的混合物通过在减压下干燥,并且获得的残余物通过在硅胶色谱柱中洗脱[洗脱剂:以99/1比率(v/v)的庚烷/乙酸乙酯混合物]来纯化,以获得对应于具有式(L5a)的化合物的38g的黄色固体(收率=74.5%)。
元素分析[实测的(计算的)]:C:80.00%(79.10%);H:5.83%(5.53%);N:15.71%(15.37%)。
1H-NMR(CDCl3,δppm)8.70(d,1H,HPy),8.59(s,1H CH=N),8.19(d,1H,HPy),7.77(dt,1H,HPy),7.23-7.42(m,1H,HPy;m,5H,Ar)。
5.2具有式(L5)的配体的合成
向设置有搅拌器的2升反应器中,装载13g(71.3mmol)的如上文描述获得的具有式(L5a)的化合物和700ml的无水甲醇:使整体冷却到0℃并且随后以小份的方式添加硼氢化钠(40g,1057mmol)。将获得的混合物留在室温下在搅拌下过夜,并且随后用盐水猝灭并且使用乙酸乙酯萃取。随后,溶剂通过在减压下蒸馏来除去,并且获得的残余物通过在硅胶色谱柱中洗脱[洗脱剂:以9/1比率(v/v)的己烷/乙酸乙酯混合物]来纯化,并且随后用冷的乙醚处理,以获得对应于具有式(L5)的配体的9.12g的白色结晶固体(收率=69.5%)。
GC-MS:M+=m/z 184;[M-C6H6N]+=m/z 106;[M-C7H7N2]+=m/z 77。
1H-NMR(CDCl3,δppm):8.60(dd,1H,PyH),7.64(m,1H,PyH),7.35(d,1H,PyH),7.22-7.17(m,1H,Py,2H,ArH),6.75(dt,1H,ArH),6.69(d,2H,ArH),4.8(s,1H,NH),4.48(s,2H,Py-CH2N)。
实施例6
具有式(L6)的配体的合成
6.1具有式(L6a)的化合物的合成
在500ml烧瓶中,向2,6-二甲基苯胺(31g,250mmol)在甲醇(250ml)中的溶液添加2-吡啶甲醛(26.8g,250mmol)和若干滴甲酸:将获得的混合物留在室温下在搅拌下持续24小时。随后,将获得的混合物经硫酸钠干燥并且过滤,并且将溶剂通过在真空下的蒸发除去:将获得的残余物用冷的甲醇洗涤,以获得对应于具有式(L6a)的化合物的47g的橙色固体(收率=89%)。
元素分析[实测的(计算的)]:C:80.00%(79.97%);H:6.81%(6.71%);N:13.71%(13.37%)。
1H-NMR(CDCl3,δppm)8.70(d,1H,HPy),8.33(s,1H,CH=N),8.23(d,1H,HPy),7.82(dt,1H,HPy),7.38(ddd,1H,HPy),6.91-7.15(m,5H,Ar),2.16(s,6H,Ar-CH3)。
6.2具有式(L6)的配体的合成
向设置有搅拌器的2升反应器中,装载18g(85.6mmol)的如上文描述获得的具有式(L6a)的化合物和800ml的无水甲醇:使整体冷却到0℃并且随后以小份的方式添加硼氢化钠(24g,634mmol)。将获得的混合物留在室温下在搅拌下过夜,并且随后用盐水猝灭并且使用乙酸乙酯萃取。随后,溶剂通过在减压下蒸馏来除去,并且获得的残余物通过在硅胶色谱柱中洗脱[洗脱剂:以9/1比率(v/v)的己烷/乙酸乙酯混合物]来纯化,并且随后用冷的乙醚处理,以获得对应于具有式(L6)的配体的9.15g的白色结晶固体(收率=50.4%)。
GC-MS:M+=m/z 212;[M-C6H6N]+=m/z 120。
1H-NMR(CDCl3,δppm):8.63(d,1H,PyH),7.65(dt,1H,PyH),7.27(d,1H,PyH),7.20(dd,1H,PyH),7.02(d,2H,ArH),6.85(m,1H,ArH),4.4(宽的单峰,1H,NH),4.31(s,2H,Py-CH2N),2.35(s,6H,ArCH3)。
实施例7
具有式(L7)的配体的合成
7.1具有式(L7a)的化合物的合成
在500ml烧瓶中,向2,4,6-三甲基苯胺(12.6g,93mmol)在甲醇(250ml)中的溶液添加2-吡啶甲醛(10g,93mmol)和若干滴甲酸:将获得的混合物留在室温下在搅拌下持续48小时。随后,溶剂通过在真空下的蒸发除去,并且获得的油状残余物通过在硅胶色谱柱中洗脱[洗脱剂:以99/1比率(v/v)的庚烷/乙酸乙酯混合物]来纯化,以获得对应于具有式(L7a)的化合物的17g的淡黄色固体(收率=81%)。
元素分析[实测的(计算的)]:C:80.56%(80.32%);H:7.22%(7.19%);N:13.11%(12.49%)。
GC-MS:M+=m/z 224;[M-CH3]+=m/z 209;[M-C5H4N]+=m/z 146。
1H-NMR(CDCl3,δppm)8.70(m,1H,HPy),8.35(s,1H CH=N),8.29(d,1H,HPy),7.84(tdd,1H,HPy),7.41(m,1H,HPy),6.91(s,2H ArH),2.31(s,3H Ar(CH3)),2.10(s,6H Ar(CH3)2)。
7.2具有式(L7)的配体的合成
向设置有搅拌器的2升反应器中,装载13g(58mmol)的如上文描述获得的具有式(L7a)的化合物、80ml的无水甲醇、80ml的氯仿、和以小份方式的硼氢化钠(2.2g,58mmol)。将获得的混合物留在室温下在搅拌下过夜。随后,将溶剂通过在减压下的蒸馏除去,并且使用乙酸乙酯(50ml)和水(50ml)的混合物萃取获得的残余物。使用水洗涤获得的有机萃取物直到中性,经硫酸钠脱水,过滤,并且经历在减压下的蒸馏以除去剩余的溶剂,以获得油状黄色残余物。向所述油状残余物添加25ml的冷的庚烷,以获得对应于具有式(L7)的配体的5.15g的白色结晶固体(收率=39%)。
GC-MS:M+=m/z 226;[M-C6H6N]+=m/z 134。
1H-NMR(CDCl3,δppm):8.59(d,1H,PyH),7.65(dt,1H,PyH),7.27(d,1H,PyH),7.20(m,1H,PyH),6.8(d,2H,ArH),4.2(s,2H,Py-CH2N),4.1(宽的单峰,1H,NH),2.28(s,6H,ArCH3),2.2(s,3H,Ar-CH3)。
实施例8
ZrCl3(L1)[样品BM2-199]的合成
将四氯化锆(ZrCl4)(0.500g;2.14mmol)连同如在实施例1中描述获得的具有式(L1)的配体(0.599g;2.22mmol;L1/Zr摩尔比=1.03)在甲苯(15ml)中的溶液引入到100ml的长颈烧瓶中。将获得的混合物留在室温下在搅拌下持续30分钟,并且随后在回流下加热持续2小时。将形成固体通过过滤回收,用庚烷(2×2ml)洗涤并且在减压下在室温下干燥,以获得对应于ZrCl3(L1)络合物的0.66g(收率=66%)的澄清的黄色微晶固体产物。
元素分析[实测的(计算的)]:C:45.87%(46.49%);H:4.65%(4.98%);N:5.45%(6.02%);Zr:18.72%(19.62%);Cl:21.65%(22.87%)。
图1示出获得的ZrCl3(L1)络合物的FTIR-ATR光谱。
图2示出获得的ZrCl3(L1)络合物的1H-NMR光谱。
实施例9
ZrCl3(L2)[样品BM2-207]的合成
将四氯化锆(ZrCl4)(0.398g;1.71mmol)连同如在实施例2中描述获得的具有式(L2)的配体(0.507g;1.80mmol;L2/Zr摩尔比=1.05)在甲苯(10ml)中的溶液引入到100ml的长颈烧瓶中。将获得的混合物留在室温下在搅拌下持续30分钟,并且随后在回流下加热持续2小时。将形成的固体通过过滤回收,用庚烷(2×2ml)洗涤并且在减压下在室温下干燥,以获得对应于ZrCl3(L2)络合物的0.71g(收率=86%)的澄清的黄色微晶固体产物。
元素分析[实测的(计算的)]:C:46.87%(47.64%);H:4.85%(5.26%);N:5.21%(5.84%);Zr:19.87%(19.04%);Cl:21.89%(22.20%)。
图3示出获得的ZrCl3(L2)络合物的FTIR-ATR光谱。
图4示出获得的ZrCl3(L2)络合物的1H-NMR光谱。
实施例10
ZrCl3(L3)[样品MT-2]的合成
将四氯化锆(ZrCl4)(0.525g;2.25mmol)连同如在实施例3中描述获得的具有式(L3)的配体(0.570g;2.24mmol;L3/Zr摩尔比=1)在甲苯(10ml)中的溶液引入到100ml的长颈烧瓶中。将获得的混合物留在室温下在搅拌下持续30分钟,并且随后在回流下加热持续2小时。将形成的固体通过过滤回收,用庚烷(2×2ml)洗涤并且在减压下在室温下干燥,以获得对应于ZrCl3(L3)络合物的0.81g(收率=80%)的澄清的黄色微晶固体产物。
元素分析[实测的(计算的)]:C:44.82%(45.28%);H:4.05%(4.69%);N:5.95%(6.21%);Zr:19.99%(20.23%);Cl:23.00%(23.58%)。
实施例11
ZrCl3(L5)[样品MT-4]的合成
将四氯化锆(ZrCl4)(0.368g;1.58mmol)连同如在实施例5中描述获得的具有式(L5)的配体(0.289g;1.58mmol;L5/Zr摩尔比=1)在甲苯(10ml)中的溶液引入到100ml的长颈烧瓶中。将获得的混合物留在室温下在搅拌下持续30分钟,并且随后在回流下加热持续2小时。将形成的固体通过过滤回收,用庚烷(2×2ml)洗涤并且在减压下在室温下干燥,以获得对应于ZrCl3(L5)络合物的0.26g(收率=43%)的澄清的黄色微晶固体产物。
元素分析[实测的(计算的)]:C:36.87%(37.85%);H:2.65%(2.91%);N:6.95%(7.36%);Zr:22.98%(23.95%);Cl:27.42%(27.93%)。
图5示出获得的ZrCl3(L5)络合物的FTIR-ATR光谱。
实施例12
ZrCl3(L6)[样品MT-30]的合成
将四氯化锆(ZrCl4)(0.317g;1.36mmol)连同如在实施例6中描述获得的具有式(L6)的配体(0.289g;1.36mmol;L6/Zr摩尔比=1)在甲苯(10ml)中的溶液引入到100ml的长颈烧瓶中。将获得的混合物留在室温下在搅拌下持续30分钟,并且随后在回流下加热持续2小时。将形成的固体通过过滤回收,用庚烷(2×2ml)洗涤并且在减压下在室温下干燥,以获得对应于ZrCl3(L6)络合物的0.50g(收率=90%)的澄清的黄色微晶固体产物。
元素分析[实测的(计算的)]:C:41.52%(41.12%);H:3.15%(3.70%);N:6.15%(6.85%);Zr:21.95%(22.31%);Cl:25.75%(26.01%)。
实施例13
ZrCl3(L7)[样品MT-52]的合成
将四氯化锆(ZrCl4)(0.351g;1.51mmol)连同如在实施例7中描述获得的具有式(L7)的配体(0.341g;1.51mmol;L7/Zr摩尔比=1)在甲苯(10ml)中的溶液引入到100ml的长颈烧瓶中。将获得的混合物留在室温下在搅拌下持续30分钟,并且随后在回流下加热持续2小时。将形成的固体通过过滤回收,用庚烷(2×2ml)洗涤并且在减压下在室温下干燥,以获得对应于ZrCl3(L7)络合物的0.50g(收率=78%)的澄清的黄色微晶固体产物。
元素分析[实测的(计算的)]:C:42.00%(42.60%);H:3.75%(4.05%);N:6.01%(6.62%);Zr:20.87%(21.57%);Cl:24.98%(25.15%)。
实施例14
ZrCl3(L4)[样品MT-56]的合成
将四氯化锆(ZrCl4)(0.212g;0.910mmol)连同如在实施例4中描述获得的具有式(L4)的配体(0.236g;0.910mmol;L4/Zr摩尔比=1)在甲苯(10ml)中的溶液引入到100ml的长颈烧瓶中。将获得的混合物留在室温下在搅拌下持续30分钟,并且随后在回流下加热持续2小时。将形成的固体通过过滤回收,用庚烷(2×2ml)洗涤并且在减压下在室温下干燥,以获得对应于ZrCl3(L4)络合物的0.245g(收率=62%)的澄清的黄色微晶固体产物。
元素分析[实测的(计算的)]:C:46.88%(47.32%);H:3.01%(3.30%);N:5.76%(6.13%);Zr:29.44%(19.96%);Cl:24.01%(23.27%)。
实施例15
ZrCl2(L5)[样品MT-81]的合成
向100ml长颈烧瓶中引入如在实施例5中描述获得的具有式(L5)的配体(0.38g;2.08mmol)在四氢呋喃(10ml)中的溶液:使整体冷却到-70℃并且随后逐滴地添加正丁基锂(0.87ml,2.17mmol)在己烷中的溶液,以获得黄-橙色悬浮液。将获得的悬浮液加热到室温,并且留在此温度下在搅拌下持续3小时。随后,逐滴地添加四氯化锆四氢呋喃(1:2)[ZrCl4(THF)2](0.391g;1.04mmol;L5/Zr摩尔比=2)在四氢呋喃(30ml)中的溶液:在添加第一个10ml之后,获得橙色溶液,而在添加结束时,获得黄色溶液,将所述黄色溶液留在室温下在搅拌下持续一夜。随后,将溶剂通过在减压下在室温下的蒸馏除去,以获得黄色残余物,所述残余物用二氯甲烷(15ml)处理。将获得的悬浮液过滤,并且将滤液浓缩到一半体积,用己烷(20ml)处理,并且保持在-30℃下持续一夜。随后,将获得的残余物通过过滤回收,用庚烷(2×1ml)洗涤并且在真空下在室温下干燥,以获得对应于ZrCl2(L5)2络合物的0.27g(收率=35%)的棕色微晶固体产物。
元素分析[实测的(计算的)]:C.53.79%(53.54%);H:3.89%(4.19%);N:10.99%(10.60%);Zr:18.01%(17.26%);Cl:12.98%(13.41%)。
实施例16(GL957)
向50ml试管中,在冷却时(-20℃),冷凝等于约1.4g的2ml的1,3-丁二烯。随后,添加4.65ml的甲苯并且使如此获得的溶液的温度达到20℃。随后,添加在甲苯溶液中的甲基铝氧烷(MAO)(15.75ml;2.5×10-2mol,等于约1.45g),随后是如在实施例8中描述获得的ZrCl3(L1)络合物[样品BM2-199](以5mg/ml的浓度的4.6ml的甲苯溶液;5×10-5mol,等于约23mg)。整体被保持在20℃下磁力搅拌持续6小时。随后,聚合通过添加包含若干滴盐酸的2ml甲醇被猝灭。随后,获得的聚合物通过添加包含4%的1076抗氧化剂(Ciba)的40ml甲醇溶液被凝结,以获得具有96%的1,4-反式单元含量的0.97g的聚丁二烯:工艺和获得的聚丁二烯的另外的特征在表1中被示出。
图6(a)示出获得的聚丁二烯的FT-IR光谱。
实施例17(GL959)
向50ml试管中,在零下温度(-20℃),冷凝等于约1.4g的2ml的1,3-丁二烯。随后,添加4.45ml的甲苯并且使如此获得的溶液的温度达到20℃。随后,添加在甲苯溶液中的甲基铝氧烷(MAO)(15.75ml;2.5×10-2mol,等于约1.45g),随后是如在实施例9中描述获得的ZrCl3(L2)络合物[样品BM2-207](以5mg/ml的浓度的4.8ml的甲苯溶液;5×10-5mol,等于约24mg)。整体被保持在20℃下磁力搅拌持续7小时。随后,聚合通过添加包含若干滴盐酸的2ml甲醇被猝灭。随后,获得的聚合物通过添加包含4%的1076抗氧化剂(Ciba)的40ml甲醇溶液被凝结,以获得具有等于95%的1,4-反式单元含量的0.63g的聚丁二烯:工艺和获得的聚丁二烯的另外的特征在表1中被示出。
图6(b)示出获得的聚丁二烯的FT-IR光谱。
图7示出获得的聚丁二烯的13C-NMR光谱。
图12示出获得的聚丁二烯的GPC曲线图。
实施例18(MM20)
向第一个50ml试管中,在冷却时(-20℃),冷凝等于约1.4g的2ml的1,3-丁二烯。随后,添加10.1ml的甲苯并且使如此获得的溶液的温度达到20℃。随后,添加在甲苯溶液中的干甲基铝氧烷(MAO干)(10ml;3×10-2mol,等于约1.74g)。向第二个10ml试管中引入如在实施例9中描述获得的ZrCl3(L2)络合物[样品BM2-207](以5mg/ml的浓度的2.9ml的甲苯溶液;3×10-5mol,等于约14.4mg)和三乙基铝(以0.052mg/ml的浓度的2ml的甲苯溶液;9×104mol,等于约104mg):将整体保持在室温下在搅拌下持续10分钟,并且将获得的溶液完全添加到所述第一个试管。整体被保持在20℃下磁力搅拌持续2小时。随后,聚合通过添加包含若干滴盐酸的2ml甲醇被猝灭。随后,获得的聚合物通过添加包含4%的1076抗氧化剂(Ciba)的40ml甲醇溶液被凝结,以获得具有等于99%的1,4-反式单元含量的1.24g的聚丁二烯:工艺和获得的聚丁二烯的另外的特征在表1中被示出。
图6(c)示出获得的聚丁二烯的FT-IR光谱。
图8示出获得的聚丁二烯的1H-NMR光谱。
图9示出获得的聚丁二烯的13C-NMR光谱。
图13示出获得的聚丁二烯的GPC曲线图。
图18示出获得的聚丁二烯的DSC曲线图。
实施例19(G1125)
向第一个25ml试管中,在冷却时(-20℃),冷凝等于约1.4g的2ml的1,3-丁二烯。随后,添加9.3ml的甲苯并且使如此获得的溶液的温度达到20℃。随后,添加在甲苯溶液中的干甲基铝氧烷(MAO干)(10ml;3×10-2mol,等于约1.74g)。向第二个10ml试管中引入如在实施例10中描述获得的ZrCl3(L3)络合物[样品MT-2](以5mg/ml的浓度的2.7ml的甲苯溶液;3×10-5mol,等于约13.4mg)和氢化二异丁基铝(DIBAH)(以0.040mg/ml的浓度的3ml的甲苯溶液;8.4×10-4mol,等于约120mg):将整体保持在室温下在搅拌下持续10分钟,并且将获得的溶液完全添加到所述第一个试管。整体被保持在20℃下磁力搅拌持续4小时。随后,聚合通过添加包含若干滴盐酸的2ml甲醇被猝灭。随后,获得的聚合物通过添加包含4%的1076抗氧化剂(Ciba)的40ml甲醇溶液被凝结,以获得具有等于99%的1,4-反式单元含量的1.24g的聚丁二烯:工艺和获得的聚丁二烯的另外的特征在表1中被示出。
图6(d)示出获得的聚丁二烯的FT-IR光谱。
实施例20(G1112)
向25ml试管中,在冷却时(-20℃),冷凝等于约1.4g的2ml的1,3-丁二烯。随后,添加5.15ml的甲苯并且使如此获得的溶液的温度达到20℃。随后,添加在甲苯溶液中的甲基铝氧烷(MAO)(15.75ml;2.5×10-2mol,等于约1.45g),随后是如在实施例12中描述获得的ZrCl3(L6)络合物[样品MT-30](以5mg/ml的浓度的4.1ml的甲苯溶液;3×10-5mol,等于约20.5mg)。整体被保持在20℃下磁力搅拌持续7小时。随后,聚合通过添加包含若干滴盐酸的2ml甲醇被猝灭。随后,获得的聚合物通过添加包含4%的1076抗氧化剂(Ciba)的40ml甲醇溶液被凝结,以获得具有等于95%的1,4-反式单元含量的0.68g的聚丁二烯:工艺和获得的聚丁二烯的另外的特征在表1中被示出。
图10示出获得的聚丁二烯的1H-NMR光谱。
图11示出获得的聚丁二烯的13C-NMR光谱。
实施例21(MM21)
向第一个25ml试管中,在冷却时(-20℃),冷凝等于约1.4g的2ml的1,3-丁二烯。随后,添加9.54ml的甲苯并且使如此获得的溶液的温度达到20℃。随后,添加在甲苯溶液中的干甲基铝氧烷(MAO干)(10ml;3×10-2mol,等于约1.74g)。向第二个10ml试管中引入如在实施例12中描述获得的ZrCl3(L6)络合物[样品MT-30](以5mg/ml的浓度的2.7ml的甲苯溶液;3×10-5mol,等于约13.44mg)和三异丁基铝(TIBA)(以0.056mg/ml的浓度的3ml的甲苯溶液;8.4×10-4mol,等于约167mg):将整体保持在室温下在搅拌下持续10分钟,并且将获得的溶液完全添加到所述第一个试管。整体被保持在20℃下磁力搅拌持续4小时。随后,聚合通过添加包含若干滴盐酸的2ml甲醇被猝灭。随后,获得的聚合物通过添加包含4%的1076抗氧化剂(Ciba)的40ml甲醇溶液被凝结,以获得具有等于99%的1,4-反式单元含量的1.15g的聚丁二烯:工艺和获得的聚丁二烯的另外的特征在表1中被示出。
图6(e)示出获得的聚丁二烯的FT-IR光谱。
图14示出获得的聚丁二烯的GPC曲线图。
实施例22(G1120)
向25ml试管中,在冷却时(-20℃),冷凝等于约1.4g的2ml的1,3-丁二烯。随后,添加4.65ml的甲苯并且使如此获得的溶液的温度达到20℃。随后,添加在甲苯溶液中的甲基铝氧烷(MAO)(15.75ml;2.5×10-2mol,等于约1.45g),随后是如在实施例14中描述获得的ZrCl3(L4)络合物[样品MT-56](以5mg/ml的浓度的4.6ml的甲苯溶液;5×10-5mol,等于约23mg)。整体被保持在20℃下磁力搅拌持续6小时。随后,聚合通过添加包含若干滴盐酸的2ml甲醇被猝灭。随后,获得的聚合物通过添加包含4%的1076抗氧化剂(Ciba)的40ml甲醇溶液被凝结,以获得具有等于95%的1,4-反式单元含量的0.55g的聚丁二烯:工艺和获得的聚丁二烯的另外的特征在表1中被示出。
图15示出获得的聚丁二烯的GPC曲线图。
实施例23(G1121)
向25ml试管中,在冷却时(-20℃),冷凝等于约1.4g的2ml的1,3-丁二烯。随后,添加2.15ml的甲苯并且使如此获得的溶液的温度达到20℃。随后,添加在甲苯溶液中的甲基铝氧烷(MAO)(15.75ml;2.5×10-2mol,等于约1.45g),随后是如在实施例15中描述获得的ZrCl2(L5)2络合物[样品MT-81](以5mg/ml的浓度的5.3ml的甲苯溶液;5×10-5mol,等于约26.4mg)。整体被保持在20℃下磁力搅拌持续5小时。随后,聚合通过添加包含若干滴盐酸的2ml甲醇被猝灭。随后,获得的聚合物通过添加包含4%的1076抗氧化剂(Ciba)的40ml甲醇溶液被凝结,以获得具有等于94%的1,4-反式单元含量的1.36g的聚丁二烯:工艺和获得的聚丁二烯的另外的特征在表1中被示出。
图16示出获得的聚丁二烯的GPC曲线图。
图17示出获得的聚丁二烯的DSC曲线图。
表1
使用包含锆的络合物的催化体系使1,3-丁二烯聚合
(a):熔点;
(b):结晶温度。