由膨胀的珠粒泡沫制得的纤维增强的模制品的制作方法

文档序号:11779623阅读:181来源:国知局
由膨胀的珠粒泡沫制得的纤维增强的模制品的制作方法与工艺
本发明涉及由膨胀的珠粒泡沫制得的模制品,其中至少一根纤维(f)部分存在于模制品内,即被膨胀的珠粒泡沫包围。因此,未被膨胀的珠粒泡沫包围的各个纤维(f)的两端各自从相应的模制品的一侧突出。本发明还提供一种面板(panel),其包含至少一个这种模制品和至少一个其他层(s1)。本发明还提供由膨胀的珠粒泡沫制备本发明的模制品或本发明的面板的方法,及其用途,例如作为风力涡轮机中的转子叶片的用途。wo2006/125561涉及制备增强的多孔材料的方法,其中在第一工艺步骤中,在多孔材料中产生至少一个从多孔材料的第一表面延伸到第二表面的孔。在多孔材料的第二表面的另一侧,提供至少一个纤维束,所述纤维束用针穿过该孔至多孔材料的第一侧。但是,在针抓住纤维束之前,首先将针拉过来自多孔材料的第一侧的特定孔。此外,根据wo2006/125561方法所得的纤维束部分地位于多孔材料中,因为其填充了相应的孔,且相应的纤维束在各自侧从多孔材料的第一表面和第二表面部分地突出。通过在wo2006/125561中所记载的方法,可以制备包含所述多孔材料的芯和至少一种纤维束的夹层状部件。可将树脂层和纤维增强的树脂层施用至该芯的表面,以制备真实的夹层状部件。用于形成夹层状部件的芯的多孔材料可例如为聚氯乙烯或聚氨酯。有用的纤维束的实例包括碳纤维、尼龙纤维、玻璃纤维或聚酯纤维。然而,wo2006/125561并没有公开模塑泡沫还可以用作制备夹层状部件中的芯的多孔材料。wo2006/125561中的夹层状部件适用于航空器结构。wo2011/012587涉及制备用于由复合材料制得的面板的具有整合(integrated)的桥接纤维的芯的另一方法。所述芯通过借助针部分地或完全地拉动所谓的由轻质材料制备的“饼”的表面上提供的桥接纤维穿过所述“饼”来制备。所述“饼”可由聚氨酯泡沫、聚酯泡沫、聚对苯二甲酸乙二醇酯泡沫、聚氯乙烯泡沫或酚醛泡沫,特别是由聚氨酯泡沫形成。所用的纤维原则上可为任何种类的单根或多根细线和其他纱线。由此制备的芯转而可为由复合材料制得的面板的一部分,其中在夹层状结构中,所述芯的一侧或两侧被树脂基体以及树脂基体和纤维的结合物包围。然而,wo2011/012587并没有公开模塑泡沫可用于制备相应的芯材料。wo2012/138445涉及使用大量的低密度的多孔材料的纵向条带(trips)来制备复合的芯面板的方法。将双层纤维垫引入各条带之间,并使用树脂使得各条带结合,以形成复合的芯面板。根据wo2012/138445,形成纵向条带的低密度的多孔材料选自轻木、弹性泡沫和纤维增强的复合泡沫。以双层形式引入各条之间的纤维垫可例如为多孔玻璃纤维垫。用作粘合剂的树脂可例如为聚酯、环氧树脂或酚醛树脂,或热活化的热塑性树脂,例如聚丙烯或pet。然而,wo2012/138445并没有公开还可以使用模塑泡沫作为用于细长条带的多孔材料。其也没有公开各个纤维或纤维束可被纳入多孔材料中用于增强。根据wo2012/138445,仅仅在通过树脂将各个条带粘结以获得芯材料的情况下,另外还构成粘合元件的纤维垫才用于此目的。gb-a2455044公开了制备多层复合制品的方法,其中在第一工艺步骤中,提供大量的热塑性材料的珠粒和发泡剂。所述热塑性材料为聚苯乙烯(ps)和聚苯醚(ppo)的混合物,其包含至少20重量%至70重量%的ppo。在第二工艺步骤中,使所述珠粒膨胀,并在第三工艺步骤中,将它们在模具中熔接(welded)以形成热塑性材料的闭孔泡沫,得到模制品,所述闭孔泡沫具有模具的形状。在接下来的工艺步骤中,将纤维增强的材料层施用至闭孔泡沫的表面,使用环氧树脂进行各表面的粘结。然而,gb-a2455044并没有公开纤维材料可被引入多层复合制品的芯中。类似的方法和类似的多层复合制品(类似于gb-a2455044中那些)还公开于wo2009/047483中。这些多层复合制品适于作为例如,转子叶片(风力涡轮机中)或船舶的船体。us-b7,201,625公开了制备泡沫产品的方法以及泡沫产品本身,所述泡沫产品可例如在体育领域用作冲浪板。泡沫产品的芯由模塑泡沫形成,所述模塑泡沫例如基于聚苯乙烯泡沫。该模塑泡沫在特定的模具中制备,同时外层塑料皮包围模塑泡沫。所述外层塑料皮可例如为聚乙烯膜。然而,us-b7,201,625也没有公开用于增强材料的纤维可存在于模塑泡沫中。us-b6,767,623公开了具有模塑聚丙烯泡沫芯层的夹层面板,所述聚丙烯泡沫基于粒径在2至8mm范围内且堆密度(bulkdensity)在10至100g/l范围内的颗粒。此外,所述夹层面板包括两个纤维增强的聚丙烯外层,各外层围绕芯布置以形成夹层结构。而其他的层也可任选存在于夹层面板中用于装饰的目的。所述外层可包括玻璃纤维或其他聚合物纤维。ep-a2420531公开了基于聚合物例如聚苯乙烯的挤出泡沫,其中存在至少一种粒径≤10μm的无机填料和至少一种成核剂。这些挤出的泡沫以其改进的刚度著称。另外记载的是用于制备这种基于聚苯乙烯的挤出泡沫的相应的挤出方法。所述挤出的泡沫可具有闭孔。wo2005/056653涉及由包含填料的可膨胀的聚酯珠粒形成的模塑泡沫。所述模塑泡沫可通过熔接由包含填料的可膨胀的热塑性聚合物珠粒形成的预发泡的泡沫珠粒获得,所述模塑泡沫的密度在8至300g/l范围内。所述热塑性聚合物珠粒特别地包含苯乙烯聚合物。所用的填料可为粉状无机物、金属、白垩、氢氧化铝、碳酸钙或氧化铝,或珠粒或纤维形式的无机物,例如玻璃珠粒、玻璃纤维或碳纤维。us3,030,256涉及层压面板,其通过使用纤维以增强已由泡沫或膨胀的聚合物制得的芯来制备。所记载的用于芯的材料为膨胀的和挤出的聚苯乙烯,以及酚类、环氧化物和聚氨酯。为了引入纤维,使用针从芯的第一侧至芯的第二侧来产生孔,且使用相同的针将纤维束从第二侧至第一侧拉动穿过孔,使得纤维束部分地存在于芯中,部分地从第一侧和第二侧突出。使得该纤维材料以相对于芯的厚度方向呈0°的角度引入芯中。本发明的目的在于提供新的纤维增强的模制品或面板。根据本发明,该目的通过一种由膨胀的珠粒泡沫制得的模制品来实现,其中至少一根纤维(f)在模制品内以纤维区(fb2)存在并且被膨胀的珠粒泡沫包围,同时纤维(f)的纤维区(fb1)从模制品的第一侧突出,而纤维(f)的纤维区(fb3)从模制品的第二侧突出,其中纤维(f)已经以相对于模制品的厚度方向(d)成10°至70°的α角被引入膨胀的珠粒泡沫中。本发明还提供由膨胀的珠粒泡沫制得的模制品,其中至少一根纤维(f)在模制品内以纤维区(fb2)存在并且被膨胀的珠粒泡沫包围,同时纤维(f)的纤维区(fb1)从模制品的第一侧突出,而纤维(f)的纤维区(fb3)从模制品的第二侧突出。以下细节和优选适用于由膨胀的珠粒泡沫制得的本发明的全部两个实施方案。本发明的模制品的有利特征是,由于使用膨胀的珠粒泡沫,发现了低树脂吸收同时具有良好的界面结合。该效果是重要的,尤其是当将本发明的模制品进一步处理以得到本发明的面板时。根据本发明,通过在本发明的模制品中或由其制得的面板中的膨胀的珠粒泡沫的纤维增强,能够进一步改进结合以及同时降低树脂吸收。根据本发明,所述纤维(单独的或优选以纤维束的形式)可有利地首先以干的形式和/或通过机械方法引入膨胀的珠粒泡沫中。纤维或纤维束没有平齐地铺在各模塑泡沫表面上,而是超出,因此能够改进结合或直接连接至本发明面板的相应外层。特别是当根据本发明施用至本发明的模制品的外板层是形成面板的至少一个其他(s1)时尤其如此。优选施用两个层(s1),其可以是相同或不同的。更优选地,将两层相同的层(s1),特别是两层相同的纤维增强的树脂层施用至本发明的模制品的相反侧,以形成本发明的面板。这种面板还称为“夹层材料”,在这种情况下本发明的模制品还可称为“芯材料”。因此,本发明的面板以低树脂吸收和同时具有良好的剥离强度而著称。此外,通过选择纤维类型及其比例和设置,可以以受控方式建立高强度和刚度性质。低树脂吸收的作用是重要的,因为在使用这种面板(夹层材料)的常见目的是应以最小的重量提高结构性能。在使用纤维增强的外板层的情况下,例如除了实际的外板层和夹层芯外,芯材料的树脂吸收也对总重量作出贡献。然而,本发明的模制品或本发明的面板可以降低树脂吸收,这可以减少重量和成本。本发明的模制品或面板的另一优点被认为是,使用模塑泡沫和相关的产品使得向模制品的表面引入整合结构例如槽和孔以及进一步处理模制品变得相对简单。在使用这种模制品(芯材料)的情况下,通常将这种结构引入例如曲面结构(深槽)中用于悬挂(draping),用于改进液体树脂工艺例如真空灌入(孔)的可加工性,以及用于加速上述加工操作(浅槽)。其他可以实现的改进/优势是将纤维以相对于膨胀的珠粒泡沫的厚度方向(d)成10°至70°,更优选30°至50°范围的α角引入膨胀的珠粒泡沫中。通常,将纤维以0°至<90°的角度引入在工业上是可实现的。当将纤维不仅以平行的方式引入膨胀的珠粒泡沫中,而是其他的纤维还以相对彼此成β角(优选在>0至180°范围内)引入时,可达到额外的改进/优势。这还实现了本发明的模制品的机械性能的改进。同样有利的是,通过液体注入法或液体灌入法施用本发明的面板中的(外部)树脂层,其中纤维可在加工的过程中用树脂浸渍,并且机械性能得到改进。此外,可以节省成本。在本发明的上下文中,术语“封闭的表面”理解为以下含义:封闭的表面由光学显微镜图像或电子显微镜图像来评估。通过图像分析,评估敞开的泡沫孔相对于总的表面积的面积比。具有封闭的表面的泡沫被定义为:(1-敞开的泡沫孔的面积比)/总的表面积>30%,优选>50%,更优选>80%,特别是>95%。下文进一步详述本发明。根据本发明,所述模制品包含膨胀的珠粒泡沫和至少一根纤维(f)。膨胀的珠粒泡沫本身是本领域技术人员已知的。合适的膨胀的珠粒泡沫例如,基于至少一种选自以下的聚合物:聚苯乙烯、聚苯醚、由苯醚制备的共聚物、由苯乙烯制备的共聚物、聚砜、聚醚砜、聚丙烯、聚乙烯、聚酰胺、聚碳酸酯、聚丙烯酸酯、聚乳酸、聚酰亚胺、聚偏二氟乙烯或它们的混合物。所述聚合物优选选自聚苯乙烯、聚苯醚、聚苯乙烯和聚苯醚的混合物、由苯乙烯制备的共聚物、由苯乙烯制备的共聚物的混合物,或聚碳酸酯与其他聚合物的混合物。还适合作为膨胀的珠粒泡沫的是热塑性弹性体。热塑性弹性体本身为本领域技术人员所已知。聚苯醚优选为聚(2,6-二甲基亚苯基醚)(poly(2,6-dimethylphenyleneether)),其还被称为聚(2,6-二甲基苯醚)(poly(2,6-dimethylphenyleneoxide))。合适的由聚苯醚制备的共聚物是本领域技术人员已知的。合适的聚苯醚的共聚单体也是本领域技术人员已知的。由苯乙烯制备的共聚物优选具有选自以下的单体作为苯乙烯的共聚单体:α-甲基苯乙烯、环卤化的苯乙烯、环烷基化的苯乙烯、丙烯腈、丙烯酸酯、甲基丙烯酸酯、n-乙烯基化合物、马来酸酐、丁二烯、二乙烯基苯和二丙烯酸丁二醇酯。膨胀的珠粒泡沫所基于的聚合物更优选为聚苯乙烯、聚苯乙烯和聚(2,6-二甲基苯醚)的混合物或苯乙烯-马来酸酐聚合物(sma)。模制品的膨胀的珠粒泡沫可通过本领域技术人员已知的任何方法来制备。在一个优选的实施方案中,模制品的膨胀的珠粒泡沫通过包括以下步骤i)至vi)的方法来制备:i)在发泡剂的存在下,在升高的温度下由相应的聚合物优选以聚合物熔体的形式和/或通过挤出来制备可膨胀的聚合物珠粒,ii)任选地使载有发泡剂的可膨胀的聚合物珠粒冷却和/或膨胀,任选地使聚合物珠粒膨胀成预发泡的部分膨胀的聚合物珠粒,iii)任选地进行可膨胀的聚合物珠粒的制粒,优选水下制粒,iv)在95至150℃,优选100至140℃,且更优选105至130℃的升高的温度下,和/或在1至5bar,优选1.1至3.6bar,且更优选1.3至2.8bar的低压下,在蒸汽或蒸汽/空气混合物的存在下,任选地预发泡可膨胀的聚合物珠粒和/或任选地部分膨胀的聚合物珠粒,以获得膨胀的珠粒,v)将来自步骤ii)的部分膨胀的聚合物珠粒和/或来自步骤iii)的粒化的珠粒和/或来自步骤iv)的膨胀的珠粒引入成型模具中,vi)在1至25bar,优选1.1至8bar且更优选1.5至4bar的升高的压力下,和/或在100至220℃,优选102至170℃且更优选110至140℃的升高的温度下,在成型模具中将来自步骤ii)的部分膨胀的聚合物珠粒和/或来自步骤iii)的粒化的珠粒和/或来自步骤iv)的膨胀的珠粒与蒸汽接触,以获得由膨胀的珠粒泡沫制得的模制品。在步骤vi)中与蒸汽的接触可以例如通过串蒸(cross-steaming)和/或通过高压汽蒸来完成。步骤i)中合适的发泡剂原则上为本领域技术人员已知的任何发泡剂。例如,发泡剂可选自烷烃类例如戊烷或丁烷、醇类例如乙醇、二氧化碳、氮气、水及其组合。在另一优选的实施方案中,用于制备模制品的膨胀的珠粒泡沫的珠粒由悬浮法、熔融浸渍法(meltimpregnationprocess)、熔融膨胀法(meltexpansionprocess)或罐膨胀法(tankexpansionprocess)来制备。这些方法本身是本领域技术人员已知的。例如,悬浮法包括以下步骤:i1)在发泡剂的存在下,在压力罐中,在升高的温度下由相应的聚合物或聚合物混合物制备可膨胀的聚合物珠粒,所述制备在相应的聚合物或聚合物混合物的聚合过程中完成,ii1)使载有发泡剂的可膨胀的聚合物珠粒冷却和/或膨胀,任选地使聚合物珠粒膨胀成部分膨胀的聚合物珠粒,iii1)在升高的温度下和/或在低压下,在蒸汽的存在下预发泡可膨胀的聚合物珠粒和/或任选地部分膨胀的聚合物珠粒,以获得膨胀的珠粒,iv1)将来自步骤iii1)的膨胀的珠粒引入成型模具中,v1)在升高的压力下和/或升高的温度下,在成型模具中将来自步骤iii1)的膨胀的珠粒与蒸汽接触,以获得由膨胀的珠粒泡沫制得的模制品。在方法步骤i1)中,在相应的聚合物或聚合物混合物的聚合过程中的制备可以在本领域技术人员已知的所有聚合过程中完成。例如,所述制备可以在聚合物或聚合物的混合物的如下聚合过程中完成:在溶剂中由不溶于溶剂的单体进行,和/或在不含溶剂的情况下由相应的聚合物或聚合物混合物中的悬浮形式的单体进行,并使所述聚合物或聚合物混合物溶胀,然后将其聚合。方法步骤i1)中的温度优选在50℃至400℃范围内,更优选在100℃至200℃范围内,特别优选在100℃至150℃范围内,和/或方法步骤i1)中的压力优选在5至500bar范围内,更优选在50至300bar范围内,特别优选在100至200bar范围内。关于在方法步骤v1)中的温度和压力,上文对于方法步骤vi)所述的细节和优选是适用的。熔融浸渍法包括以下步骤,例如:i2)通过在聚合物熔体中的至少一种发泡剂的存在下,在挤出方法过程中,在高压和高温下由相应的载有发泡剂的聚合物熔体制备可膨胀的聚合物珠粒,ii2)在80至300bar,优选130至200bar的熔体模头压力下进行制粒,优选在15℃至80℃,更优选30℃至60℃且特别优选40℃至50℃的流动水介质的温度下以及在1至25bar,优选5至20bar,特别优选8至15bar的流动水介质的压力下进行可膨胀的聚合物珠粒的水下制粒,任选地使聚合物珠粒膨胀以得到部分膨胀的聚合物珠粒,iii2)在蒸汽的存在下,在升高的温度和/或低压下,预发泡可膨胀的聚合物珠粒和/或任选地部分膨胀的聚合物珠粒,以获得膨胀的珠粒,iv2)将来自步骤iii2)的膨胀的珠粒引入成型模具中,v2)在升高的压力和/或升高的温度下,在成型模具中将来自步骤iii2)的膨胀的珠粒与蒸汽接触,以获得由膨胀的珠粒泡沫制得的模制品。方法步骤i2)可在挤出机中、静态熔体混合器中、动态熔体混合器中、热交换器中或它们的组合中进行。方法步骤i2)过程中的温度优选在100至450℃范围内,更优选在150至300℃范围内,特别优选在150至280℃范围内,和/或方法步骤i2)中的压力优选在40至300bar范围内,更优选在75至250bar范围内且特别优选在80至200bar范围内。关于方法步骤v2)中的温度和压力,上文对于方法步骤vi)所述的细节和优选是适用的。熔融膨胀法通常包括以下步骤:i3)通过在聚合物熔体中的至少一种发泡剂的存在下,在挤出方法过程中,在高温和高压下由载有发泡剂的聚合物熔体制备可膨胀的聚合物珠粒,ii3)使载有发泡剂的聚合物熔体膨胀,任选地在之前的冷却后使聚合物熔体膨胀,任选地通过从大气压下的模具的出口膨胀或在用于水下制粒的制粒室中膨胀,制粒室中流动水介质的压力在1至25bar范围内,优选在5至20bar范围内,特别优选在8至15bar范围内,且流动水介质的温度在15至80℃范围内,更优选在30至60℃范围内,特别优选在40至50℃范围内,iii3)任选地在制粒室中对膨胀的聚合物熔体进行制粒,以得到膨胀的珠粒,iv3)将来自步骤iii3)的膨胀的珠粒引入成型模具中,v3)在升高的压力和/或升高的温度下,在成型模具中将来自步骤iii3)的粒化的珠粒与蒸汽接触,以获得由膨胀的珠粒泡沫制得的模制品。方法步骤i3)可在挤出机中、静态熔体混合器中、动态熔体混合器中、热交换器中或它们的组合中进行。方法步骤i3)的过程中的温度优选在100至450℃范围内,更优选在150至300℃范围内,特别优选在150至280℃范围内,和/或方法步骤i3)中的压力优选在40至300bar范围内,更优选在75至250bar范围内,且特别优选在80至200bar范围内。关于方法步骤v3)中的温度和压力,上文对于方法步骤vi)所述的细节和优选是适用的。在一个实施方案中,罐膨胀法包括以下步骤:i4)在发泡剂的存在下,在升高的温度下,在压力罐中,由相应的聚合物制备可膨胀的聚合物珠粒,所述相应的聚合物为预发泡的珠粒的形式,待聚合的块(mass)的形式或已聚合的块的形式,ii4)使载有发泡剂的可膨胀的聚合物珠粒冷却和/或膨胀,任选地使聚合物珠粒膨胀成部分膨胀的聚合物珠粒,iii4)将来自步骤ii4)的部分膨胀的聚合物珠粒引入成型模具中,iv4)在升高的压力和/或升高的温度下,在成型模具中将来自步骤ii4)的部分膨胀的聚合物珠粒与蒸汽接触,以获得由膨胀的珠粒泡沫制得的模制品。方法步骤i4)的过程中的温度优选在50至400℃范围内,更优选在100至250℃范围内,特别优选在140℃至200℃范围内,和/或方法步骤i4)中的压力优选在5至400bar范围内,更优选在40至200bar范围内且特别优选在60至150bar范围内。关于方法步骤iv4)中的温度和压力,上文对于方法步骤vi)所述的细节和优选是适用的。在本发明的一个实施方案中,膨胀的珠粒泡沫的密度在10至250g/l范围内,优选在25至150g/l范围内,且特别优选在30至100g/l范围内。存在于模制品中的纤维(f)为单根纤维或纤维束,优选为纤维束。合适的纤维(f)为本领域技术人员已知的可形成纤维的所有材料。例如,纤维(f)为有机纤维、无机纤维、金属纤维或陶瓷纤维或它们的组合,优选聚合物纤维、玄武岩纤维、玻璃纤维、碳纤维或天然纤维,特别优选聚芳族酰胺纤维、玻璃纤维、玄武岩纤维或碳纤维;聚合物纤维优选为聚酯纤维、聚酰胺纤维、聚芳族酰胺纤维、聚乙烯纤维、聚氨酯纤维、聚氯乙烯纤维、聚酰亚胺纤维和/或聚酰胺酰亚胺纤维;天然纤维优选为剑麻纤维、大麻纤维、亚麻纤维、竹纤维、椰子纤维和/或黄麻纤维。在一个优选的实施方案中,使用纤维束。纤维束由若干单根纤维(长丝)组成。每束纤维束的单根纤维的数目在玻璃纤维的情况下为至少10,优选100至100000且更优选300至10000,而在碳纤维的情况下为1000至50000,且特别优选在玻璃纤维的情况下为500至5000,而在碳纤维的情况下为2000至20000。根据本发明,所述至少一根纤维(f)在模制品内以纤维区(fb2)存在,并被膨胀的珠粒泡沫包围,同时纤维(f)的纤维区(fb1)从模制品的第一侧突出,而纤维(f)的纤维区(fb3)从模制品的第二侧突出。纤维区(fb1)、纤维区(fb2)和纤维区(fb3)可各自占纤维(f)总长度的任意所需比例。在一个实施方案中,纤维区(fb1)和纤维区(fb3)各自独立地占纤维(f)总长度的1%至45%,优选2%至40%且更优选5%至30%,而纤维区(fb2)占纤维(f)总长度的10%至98%,优选20%至96%且更优选40%至90%。在另一优选的实施方案中,纤维(f)的纤维区(fb1)突出的模制品的第一侧与纤维(f)的纤维区(fb3)突出的模制品的第二侧相反。将纤维(f)以相对于模制品的厚度方向(d)或相对于模制品的第一侧(2)的(表面的)垂直方向成10°至70°的α角引入模制品中。优选地,将纤维(f)以相对于模制品的厚度方向(d)成30°至60°,优选30°至50°,甚至更优选30°至45°且特别是45°的α角引入膨胀的珠粒泡沫中。在本发明的另一实施方案中,α角可为0°至90°的任意所需的数值。例如,在该情况下,将纤维(f)以相对于模制品的厚度方向(d)成0°至60°,优选0°至50°,更优选0°至15°或30°至50°,甚至更优选30°至45°且特别是45°的α角引入膨胀的珠粒泡沫中。在另一实施方案中,至少两根纤维(f)以两个不同的角度α——α1和α2引入,其中角度α1优选在0°至15°范围内且第二角度α2优选在30至50°范围内;特别优选地,α1在0°至5°范围内且α2在40至50°范围内。优选地,将所有的纤维(f)均以相对于模制品的厚度方向(d)成10°至70°,优选30°至60°,特别优选30°至50°,甚至更优选30°至45°且最优选45°的α角引入膨胀的珠粒泡沫。还优选的是,除了所述至少一根纤维(f)之外,没有其他纤维引入膨胀的珠粒泡沫中。优选地,本发明的模制品包含大量的纤维(f),优选以纤维束的形式,和/或包含超过10根纤维(f)或纤维束/m2,优选超过1000/m2,更优选4000至40000/m2。优选地,本发明的模制品中的纤维(f)具有相同的α角或至少接近相同的角度(相差不超过+/-5°,优选+/-2°,更优选+/-1°)。所有的纤维(f)可彼此平行地存在于模制品中。根据本发明,两根或更多根纤维(f)还可以或优选地以相对彼此成β角存在于模制品中。在本发明的上下文中β角理解为意指第一纤维(f1)在模制品的第一侧的表面上的正交投影和第二纤维(f2)在模制品表面上的正交投影之间的角度,两种纤维均已引入模制品中。β角优选在β=360°/n范围内,其中n为整数。优选地,n在2至6范围内,更优选在2至4范围内。例如,β角为90°、120°或180°。在另一实施方案中,β角在80°至100°、110°至130°或170°至190°范围内。在另一实施方案中,超过两根纤维(f)以相对彼此成β角引入,例如三根或四根纤维(f)。这些三根或四根纤维(f)可各自具有与两根相邻的纤维(f)不同的两个β角——β1和β2。优选地,所有的纤维(f)均具有与两个相邻的纤维(f)相同的角β=β1=β2。例如,β角为90°,在这种情况下在第一纤维(f1)和第二纤维(f2)之间的β1角为90°,在第二纤维(f2)和第三纤维(f3)之间的β2角为90°,在第三纤维和第四纤维(f4)之间的β3角为90°,且在第四纤维(f4)和第一纤维(f1)之间的β4角也为90°。然后,在第一纤维(f1)(参照)和第二纤维(f2)、第三纤维(f3)和第四纤维(f4)之间的β角以顺时针方向为90°、180°和270°。类似的考虑适用于其他可能的角度。在该情况下第一纤维(f1)具有第一方向,而与第一纤维(f1)成β角设置的第二纤维(f2)具有第二方向。优选地,在第一方向和第二方向存在类似数目的纤维。在本发明的上下文中,“类似”理解为意指在各方向上的纤维的数目相对于另一方向的纤维的数目之间的差值<30%,更优选<10%且特别优选<2%。可以以不规则或规则图案的方式引入纤维或纤维束。优选以规则图案的方式引入纤维或纤维束。在本发明的上下文中,“规则图案”理解为意指所有的纤维彼此平行地排列,且至少一根纤维或纤维束与所有直接相邻的纤维或纤维束具有相同的距离(a)。特别优选地,所有的纤维或纤维束与所有直接相邻的纤维或纤维束具有相同的距离。在另一优选的实施方案中,纤维或纤维束这样被引入:基于正交坐标系,其中厚度方向(d)对应于z方向,它们在x方向上各自与彼此具有相同的距离(ax)并且在y方向上各自与彼此具有相同的距离(ay)。特别优选地,它们在x方向和y方向上具有相同的距离(a),其中a=ax=ay。如果两根或多根纤维(f)彼此成β角,则彼此平行的第一纤维(f1)优选具有规则图案(具有第一距离(a1)),且彼此平行的且与第一纤维(f1)成β角的第二纤维(f2)优选具有规则图案(具有第二距离(a2))。在一个优选的实施方案中,第一纤维(f1)和第二纤维(f2)各自均具有规则图案(具有距离(a))。在该情况下,a=a1=a2。如果纤维或纤维束以相对彼此成β角引入膨胀的珠粒泡沫中,则纤维或纤维束优选在各个方向均符合规则图案。在本发明的模制品的一个优选实施方案中,i)模制品至少一侧的表面具有至少一个凹部,所述凹部优选为槽或孔,且至少一个凹部更优选在进行用于由膨胀的珠粒泡沫制备模制品的本发明的方法的步骤vi)后,在模制品的至少一侧的表面上产生,和/或ii)本发明的模制品的总的表面积接近大于30%,优选大于50%,更优选大于80%,特别是大于95%。图1以透视图示出了,由膨胀的珠粒泡沫(1)制得的本发明的模制品的一个优选实施方案的示意图。(2)代表了模制品的第一侧(的表面),而(3)代表了相应模制品的第二侧。从图1中进一步明显看出,模制品的第一侧(2)与该模制品的第二侧(3)相反。(4)代表了纤维(f)。该纤维的一端(4a)以及因此的纤维区(fb1)从模制品的第一侧(2)突出,而纤维的另一端(4b)——其构成了纤维区(fb3)——从模制品的第二侧(3)突出。中间的纤维区(fb2)在模制品内,因此被膨胀的珠粒泡沫包围。在图1中,纤维(4),其为例如单根纤维或纤维束(优选纤维束)相对于模制品的厚度方向(d)或相对于模制品的第一侧(2)的(表面的)垂直方向成α角。α角为10°至70°,优选30°至60°,更优选30°至50°,甚至更优选30°至45°,特别是45°。为了清楚起见,图1仅示出单根纤维(f)。图3通过举例的方式示出了不同角度的示意图。在图3中示出的由膨胀的珠粒泡沫(1)制得的模制品包括第一纤维(41)和第二纤维(42)。在图3中,为了更清楚,仅仅示出了两根纤维(41)和(42)从模制品的第一侧(2)突出的纤维区(fb1)。第一纤维(41)形成了相对于模制品的第一侧(2)的表面的垂直方向(o)的第一角度α(α1)。第二纤维形成了相对于第一侧(2)的表面的垂直方向(o)的第二角度α(α2)。第一纤维(41)在模制品的第一侧(2)上的正交投影(41p)与第二纤维(42)在模制品的第一侧上的正交投影(42p)形成β角。本发明还提供包括至少一种本发明的模制品和至少一层(s1)的面板。在一些情况下,“面板”在专家中还可称为“夹层”、“夹层材料”、“层压材料”和/或“复合制品”。在面板的一个优选实施方案中,所述面板具有两层(s1),且所述两层(s1)各自安装在与模制品中相应的另一层相反的模制品的一侧。在本发明的面板的一个实施方案中,层(s1)包含至少一种树脂,所述树脂优选为反应性热固性树脂或热塑性树脂,所述树脂更优选基于环氧化物、丙烯酸酯、聚氨酯、聚酰胺、聚酯、不饱和的聚酯、乙烯基酯或它们的混合物,且所述树脂特别地为胺固化的环氧树脂、潜在地固化的环氧树脂、酸酐固化的环氧树脂或由异氰酸酯和多元醇形成的聚氨酯。该类树脂体系为本领域技术人员已知的,例如已知于penczek等人(advancesinpolymerscience,184,第1-95页,2005)、pham等人(ullmann'sencyclopediaofindustrialchemistry,第13卷,2012)、fahnler(polyamide,kunststoffhandbuch3/4,1998)和younes(wo12134878a2)。根据本发明还优选以下面板,其中i)纤维(f)的纤维区(fb1)与第一层(s1)部分或完全接触,优选完全接触,和/或ii)纤维(f)的纤维区(fb3)与第二层(s1)部分或完全接触,优选完全接触,和/或iii)所述面板在模制品的至少一侧和至少一层(s1)之间具有至少一层(s2),层(s2)优选由二维纤维材料或聚合物膜组成,更优选由网、平纹织(scrim)物或编织物形式的玻璃纤维或碳纤维组成。在面板的另一个本发明的实施方案中,所述至少一层(s1)还包含至少一种纤维材料,其中i)所述纤维材料包含以一层或多层短切纤维、网、平纹织物、针织物和/或编织物形式的纤维,更优选每平纹织物或编织物基重为150至2500g/m2的平纹织物或编织物形式的纤维,和/或ii)所述纤维材料包含有机纤维、无机纤维、金属纤维或陶瓷纤维,优选聚合物纤维、玄武岩纤维、玻璃纤维、碳纤维或天然纤维,更优选玻璃纤维或碳纤维。上述细节适用于天然纤维和聚合物纤维。还包含至少一种纤维材料的层(s1)还被称为纤维增强层,如果层(s1)包含树脂,则其还特别地被称为纤维增强的树脂层。图2示出了本发明的另一优选的实施方案。示出了本发明的面板(7)的二维侧视图,其包括如上所述的例如,在图1的实施方案的情况中的本发明的模制品(1)。除非另有说明,否则在图1和图2中的其他缩写的情况下,附图标记具有相同的含义。在图2的实施方案中,本发明的面板包括由(5)和(6)代表的两个层(s1)。因此两个层(5)和(6)各自位于模制品(1)相反的侧面。层(5)和(6)优选为树脂层或纤维增强的树脂层。从图2中进一步看出,纤维(4)的两端被各自的层(5)和(6)包围。任选地,在模制品(1)和第一层(5)之间和/或在模制品(1)和第二层(6)之间可以存在一个或多个其他层。如上图1所述,为清楚起见,图2也示出了单根纤维(f)(4)。关于纤维或纤维束的数目,在实践中,类似的叙述适用于上文图1详述的那些。本发明还提供了制备本发明的模制品的方法,其中将至少一根纤维(f)部分地引入膨胀的珠粒泡沫中,结果纤维(f)在模制品内以纤维区(fb2)存在,并被膨胀的珠粒泡沫包围,同时纤维(f)的纤维区(fb1)从模制品的第一侧突出,而纤维(f)的纤维区(fb3)从模制品的第二侧突出。本发明还提供制备本发明的模制品的方法,其中将至少一根纤维(f)部分地引入膨胀的珠粒泡沫中,结果纤维(f)在模制品内以纤维区(fb2)存在并被膨胀的珠粒泡沫包围,同时纤维(f)的纤维区(fb1)从模制品的第一侧突出,而纤维(f)的纤维区(fb3)从模制品的第二侧突出,结果将纤维(f)以相对于模制品的厚度方向(d)成10°至70°的α角引入膨胀的珠粒泡沫中。原则上,合适的引入纤维(f)和/或纤维束的方法均为本领域技术人员所已知。合适的方法记载于例如,wo2006/125561或wo2011/012587中。在本发明方法的一个实施方案中,通过使用针缝制将所述至少一根纤维(f)部分地引入膨胀的珠粒泡沫中。所述部分地引入优选通过以下a)至f)步骤来进行:a)任选地将至少一层(s2)施用至膨胀的珠粒泡沫的至少一侧,b)在膨胀的珠粒泡沫和任意层(s2)中的每根纤维(f)产生一个孔,所述孔从膨胀的珠粒泡沫的第一侧延伸至第二侧,并通过任意层(s2),c)在膨胀的珠粒泡沫的第二侧上提供至少一根纤维(f),d)使针从膨胀的珠粒泡沫的第一侧穿过孔至膨胀的珠粒泡沫的第二侧,并使针穿过任意层(s2),e)将至少一根纤维(f)固定在膨胀的珠粒泡沫的第二侧上的针上,以及f)将针和纤维(f)一起通过孔返回,使得纤维(f)在模制品内以纤维区(fb2)存在并被膨胀的珠粒泡沫包围,同时纤维(f)的纤维区(fb1)从模制品的第一侧或从任意层(s2)突出,而纤维(f)的纤维区(fb3)从模制品的第二侧突出,更优选地同时进行步骤b)和d)。在一个特别优选的实施方案中,步骤b)和d)同时进行。在该实施方案中,通过使针穿过膨胀的珠粒泡沫的第一侧至膨胀的珠粒泡沫的第二侧来产生从膨胀的珠粒泡沫的第一侧至第二侧的孔。在该实施方案中,所述至少一根纤维(f)的引入可包括例如以下步骤:a)任选地将层(s2)施用至膨胀的珠粒泡沫的至少一侧,b)在膨胀的珠粒泡沫的第二侧提供至少一根纤维(f),c)在膨胀的珠粒泡沫和任意层(s2)中的每根纤维(f)产生一个孔,所述孔从膨胀的珠粒泡沫的第一侧延伸至第二侧,并穿过任意层(s2),并且所述孔通过将针穿过膨胀的珠粒泡沫并穿过任意层(s2)来产生,d)将至少一根纤维(f)固定在膨胀的珠粒泡沫的第二侧上的针上,e)将针和纤维(f)一起通过孔返回,使得纤维(f)在模制品内以纤维区(fb2)存在并被膨胀的珠粒泡沫包围,同时纤维(f)的纤维区(fb1)从模制品的第一侧或从任意层(s2)突出,而纤维区(fb3)从模制品的第二侧突出,f)任选地在第二侧上切断纤维(f),以及g)任选地切开在针上形成的纤维(f)环。在一个优选的实施方案中,所用的针为钩针,且在步骤d)中将至少一根纤维(f)钩入钩针中。在另一优选的实施方案中,根据上述步骤,将大量的纤维(f)同时引入膨胀的珠粒泡沫中。本发明还提供制备本发明的面板的方法,其中将所述至少一层反应性粘性树脂形式的层(s1)施用于本发明的模制品并固化,优选通过液体浸渍法,更优选通过压力或真空辅助浸渍法,特别优选通过真空灌入或压力辅助注入法,最优选通过真空灌入法。液体浸渍法本身是本领域技术人员已知的,并详细记载于例如,wileyencyclopediaofcomposites(第2版,wiley,2012)、parnas等人(liquidcompositemoulding,hanser,2000)和williams等人(compositesparta,27,第517-524页,1997)中。可使用各种辅助材料制备本发明的面板。适用于通过真空灌入制备的辅助材料为例如,真空膜,优选由尼龙制得;真空密封带、流动助剂,优选由尼龙制得;隔离膜,优选由聚烯烃制得;分离织物(tearofffabric),优选由聚酯制得;以及半透膜,优选薄膜(membranefilm),更优选ptfe薄膜;和吸收绒(absorptionfleece),优选由聚酯制得。合适的辅助材料的选择受待制备的部件、所选择的方法和所用的材料,特别是树脂体系来决定。在施用基于环氧化物和聚氨酯的树脂体系的情况下,优选使用由尼龙制得的流动助剂,由聚烯烃制得的隔离膜,由聚酯制得的分离织物和ptfe薄膜形式的半透膜,以及由聚酯制得的吸收绒。这些辅助材料可以在制备本发明的面板的方法中以各种形式来使用。面板更优选地由模制品通过借助真空灌入法施用纤维增强的外板层来制备。在典型的结构中,为了制备本发明的面板,将纤维材料和任选地其他层施用在模制品的上侧和下侧。接着,放置分离织物和隔离膜。在液体树脂体系的灌入中,可以使用流动助剂和/或薄膜一起进行。特别优选以下变型:i)只在结构的一侧使用流动助剂和/或ii)在结构的两侧均使用流动助剂和/或iii)具有半透膜的结构(vap结构),所述半透膜优选覆盖在模制品的整个区域上,在其一侧或两侧使用流动助剂、隔离膜和分离织物,且半透膜相对于模具表面借助真空密封带密封,并且将吸收绒嵌入远离模制品的半透膜的一侧,结果空气沿着整个区域向上抽空,和/或iv)使用由薄膜制得的真空袋,其被优选放置于模制品的相反的开口侧(gateside),通过其将空气从与该开口的相反侧抽空。随后该结构配备上用于树脂体系的开口和用于抽空的开口。最后,将真空膜施用在整个结构上,并用密封带密封,将整个结构抽空。在灌入树脂体系后,在保持真空下进行树脂体系的反应。本发明还提供本发明的模制品或本发明的面板用于风力涡轮机中的转子叶片、用于交通领域、建筑领域、汽车制造、造船业、轨道车辆结构、用于集装箱结构、卫生设备和/或航空航天的用途。下面通过实施例说明本发明。实施例1(对比实施例,由不含增强纤维的膨胀的珠粒泡沫制得的模制品)对于实施例1的所有实验,使用基于ppe和ps的共混物(ppe/ps母料,norylc6850,sabic和ps158k,basf)的珠粒泡沫。可膨胀的聚合物珠粒通过熔融浸渍法,以及随后加压的水下制粒来制备。a)可膨胀的聚合物珠粒的制备通过计量添加,向双螺杆挤出机(螺杆直径为43mm,长径比为44)中装入59.5重量份的ppe/ps共混物(组成:50%ppe、50%ps)(购自sabic(norylc6850))、40重量份的ps(购自basfse(ps158kq4)和0.5重量份的滑石(购自mondominerals(microtalcitextra))。上述热塑性聚合物在双螺杆挤出机的熔融区融化并与滑石混合。待热塑性聚合物融化和滑石混入后,加入作为发泡剂的4重量份(基于固体(聚合物和滑石)的量计)的正戊烷和异戊烷的混合物(80重量%的正戊烷和20重量%的异戊烷,基于戊烷的总量计)和0.3重量份(基于固体(聚合物和滑石)的量计)的氮气。在流过剩余的挤出机长度的过程中,发泡剂和聚合物熔体彼此混合,从而形成均匀的混合物。包含聚合物、滑石和发泡剂的挤出机的总吞吐量为70kg/h。在实施例中,设置以下工艺参数:挤出机的速度设定为140rpm。在熔融区中挤出机的温度和在滑石混入聚合物的过程中的温度为230℃至240℃。注射位点的挤出机外壳处的温度降低至230℃至220℃,以及所有后续的外壳以及挤出机端部的温度降低至220℃至210℃。熔体泵以及起动阀保持在210℃,其下游外壳为215℃。借助熔体泵,在挤出机端部建立85bar的压力。油加热的多孔板的温度加热至290℃的目标温度。对于所有的实施例来说,聚合物、滑石和发泡剂的混合物被强制通过具有59个孔(直径为0.85mm)的多孔板并被10个固定在下游制粒室的叶片环上的旋转叶片切断,其中有水流通过制粒室。这产生平均尺寸为约1.25mm,重量为约1.1mg的珠粒。制粒室中的压力为12bar。温度受控的介质保持恒定在50℃。随后在旋转干燥器中分离工艺介质和产生的小球/珠粒。b)由膨胀的珠粒泡沫制备模制品随后,进一步处理可膨胀的聚合物珠粒得到由膨胀的珠粒泡沫制得的模制品。在1.2bar的压力下,在200秒的过程中,在60rpm的搅拌速度下预发泡颗粒。这得到49kg/m3的堆密度。随后,将珠粒在室温下稳定24小时。用泡沫成型机制备泡沫平板作为用于实验c1、c2和c4的矩形平板。此外,制备具有槽的矩形平板(c3),其是由成型工具(槽距:30mm,取向:在平板的一侧纵向和横向,槽宽:2mm,槽深:19mm)制得的。在1.5bar下通过串蒸10秒并在2.2bar下高压汽蒸15秒来进行制备。此后,将泡沫块冷却并从模具中移出。在24小时后在室温下所述块的密度为50g/l。c)通过模制品形成的面板的树脂吸收对于树脂吸收,将制备后具有封闭的表面(c1)和通过刨平除去表面材料(c2)的平板进行直接对比。带槽的平板借助相应的磨具在珠粒发泡工艺中通过材料除去来制备(c3),或借助圆锯由平板通过材料除去工艺来制备(c4)。在每种情况下,纵向和横向的槽距为30mm。仅在平板的一侧引入槽宽为2mm,槽深为19mm的槽(板厚为20mm)。为了测定树脂吸收,除了所用的树脂体系、泡沫平板和玻璃纤维粗纱以外,还使用以下辅助材料:尼龙真空膜、真空密封带、尼龙流动助剂、聚烯烃隔离膜、聚酯分离织物和ptfe薄膜和聚酯吸收绒。面板(下文还称为夹层材料)由模制品通过借助真空灌入法施用纤维增强的外板层来制得。将两个外板层quadrax玻璃纤维粗纱(eglassse1500,ocv;织物:saertex,各向同性叠层[0°/-45°/90°45°]各自为1200g/m2)分别施用在(纤维增强的)泡沫的上侧和下侧。为了测定树脂吸附,将隔离膜插入模制品(下文还称为芯材料)和玻璃纤维粗纱之间,与面板的标准制备进行比较。以此方式,可测定纯模制品的树脂吸收。将分离织物和流动助剂设置在玻璃纤维粗纱的任一侧。随后将该结构配备上用于树脂体系的开口和用于抽空的开口。最后,将真空膜施用在整个结构上,并用密封带密封,将整个结构抽空。在电加热阶段制备具有玻璃表面的结构。所用的树脂体系为胺固化的环氧化物(树脂:basfbaxxores5400,固化剂:basfbaxxodur5440,根据数据表的混合比和进一步加工)。待两种组分混合后,将树脂抽空至20mbar10分钟。在树脂温度23+/-2℃下,在预加热的结构上进行灌入(阶段温度:35℃)。随后通过由35℃至75℃的0.3k/min的温度梯度和在75℃下等温固化6h,可以制备由模制品和玻璃纤维增强的外板层组成的面板。开始时,根据iso845(2009年十月版)分析模制品,以获得泡沫的表观密度。待树脂体系固化后,休整处理过的面板以消除由于不完全相配的真空膜造成的边缘区域过量的树脂积聚。随后,将外板层移除,再次通过iso845分析目前的模制品。密度的不同产生了绝对的树脂吸收。然后与模制品厚度的乘积产生了相应的树脂吸收(以kg/m2为单位)。示出的结果(参见表1)表明在由模塑泡沫制得的模制品的情况下可以明显降低树脂吸收。相应的结果是面板的密度降低。表1实施例材料封闭的表面树脂吸收c1加工后直接得到的平板(封闭的表面)>90%<0.2kg/m2c2除去表面材料后的平板<5%0.4kg/m2c3加工后直接得到的带槽的平板>90%3.3kg/m2c4通过材料除去工艺后的带槽的平板<5%3.8kg/m2实施例2(由含有增强的纤维的膨胀的珠粒泡沫制得的模制品)为了改进抗剥离性同时在表面具有低树脂吸收,重复实施例1的实验,不同之处在于,首先用玻璃纤维(玻璃纤维粗纱,s2玻璃,400tex,agy)部分增强模制品(膨胀的珠粒泡沫)。玻璃纤维以玻璃纤维粗纱的形式以45°的α角在彼此成β角(0°、90°、180°、270°)的四个不同的空间方向引入。在所有的空间方向上引入相同数量的玻璃纤维。玻璃纤维以等距(a)的规则的矩形图案引入。在实验中,所述距离从a=10mm至最高达a=20mm变化。在两侧,在外板层,额外留下约10mm超出的玻璃纤维,以改进与稍后引入作为外板层的玻璃纤维垫的结合。纤维或纤维粗纱以自动的方式通过组合的针/钩针方法引入。首先,使用钩针(直径约0.80mm)从模塑泡沫的第一侧完全穿过第二侧。在第二侧,将纤维粗纱钩入钩针的钩中,然后通过钩针从第二侧拉回至模塑泡沫的第一侧。最终,在第二侧切断纤维粗纱并切开在针上形成的纤维粗纱环。钩针因此准备下一次操作。在10mm的距离总计引入40000个增强的玻璃纤维元件(纤维粗纱)/m2并以ax=ay=20mm的图案引入10000个玻璃纤维元件/m2。随后,如上文实施例1所述,由模制品通过借助真空灌入法施用纤维增强的外板层来制备面板。与实施例1相比,在模制品和玻璃纤维粗纱之间没有引入隔离膜。面板的抗剥离性使用单悬梁臂(singlecantileverbeam,scb)样品来测定。样品的模制品高度为20mm;外板层各自由准各向同性的厚度为约2mm的玻璃纤维增强的环氧树脂层组成。将所述样品在zwickz050拉伸测试仪中在5mm/min的速度下测试,向样品中施加负载并以重复的方式(3至4次)移除负载。视觉上评估在每个负载周期(δa)中裂纹的生长和增加。使用力-距图来确定裂纹生长能量(δu)。这用于确定如下定义的撕裂强度或抗剥离性,其中b为样品宽度。表2由表2可以清楚地看出,借助包含膨胀的珠粒泡沫的具有整合的纤维的本发明的模制品,可以明显提高面板的抗剥离性(i5至i8)。相比之下,通过刨平表面带来的抗剥离性的改进,仅适度地增加了抗剥离性,同时与升高的树脂吸收(c2)相关。因此,模塑泡沫的纤维增强可以明显提高抗剥离性同时具有几乎相同的表面树脂吸收。特别地,所述强度仅稍微取决于表面粗糙度或预处理且因此能够使得剥离强度和树脂吸收两个优化目标互不相干。实施例3(用于说明优选的纤维角度的面板的设计,理论测定)理论上测定包含实施例c1的膨胀的珠粒泡沫的模制品的机械性质。所用的纤维(f)为玻璃纤维(纤维粗纱,s2glass,406tex,agy)。纤维(f)引入时呈现的α角认为在0°至80°范围内。在α角>0°时,认为纤维彼此以β角(0°、90°、180°、270°)呈现在四个空间方向上。认为呈现出等距a=12mm的矩形图案且α角为0°,27778玻璃纤维元件/m2。计算不同α角的剪切模量。为此,施用具有柔性支杆的拉杆模型来连接上下外层。外层假设是无限刚性的。膨胀的珠粒泡沫的厚度为25mm,剪切刚度g=19mpa,且压缩刚度e=35mpa。泡沫表面处的树脂吸收假设为0.2kg/m2(保守估计,因为在实验中<0.2kg/m2)。纤维束由s玻璃纤维组成。由于制备方法的原因,增强元件的厚度为2x406tex(=812tex);纤维体积含量被认为40体积%且直径为1.0mm。这产生在表3中所示的剪切模量、处理面板中的模制品的密度和比剪切模量的数值。表3清楚地看出,在再次降低以及约60°以上之前,剪切刚度随着纤维角度升高而快速升高。对于面板的用途而言,弯曲刚度或抗起泡性通常是非常重要的。具有平行对称外层的面板的气泡刚度(blisterstiffness)可用最后引入的标准力如下测定:其中f是在整体起泡前出现前的力(=抗起泡性),d为面板的弯曲刚度,g为模制品(=芯材料)的剪切模量,t为面板的模制品的厚度,b为面板的宽度且d为模制品(=芯材料)的厚度加上外层厚度。面板的弯曲刚度由下式计算:ed为外层的弹性模量,ek为模制品(=芯材料)的弹性模量,td为每侧外层的厚度,tk为模制品(=芯材料)的厚度,d为芯材料的厚度加上一个外层的厚度。面板的宽度为0.1m;长度为0.4m。模制品的厚度为25mm,外层的厚度为2mm,外层的弹性模量为39gpa。所用的模制品为实施例c9至c18的模制品。结果记载于表4中。表4清楚地看出,在再次降低以及约60°以上之前,起泡稳定性随着α角升高而快速升高。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1