一种[60]富勒烯并七元氮杂环衍生物的合成方法与流程

文档序号:12341877阅读:288来源:国知局

本发明属于富勒烯衍生物的合成技术领域,具体涉及一种[60]富勒烯并七元氮杂环衍生物的合成方法。



背景技术:

自由基反应是功能化富勒烯的强有力工具,众多不同类型的衍生物已经被合成与制备。与传统的过氧化物和光引发的富勒烯自由基反应相比,过渡金属催化与促进的富勒烯自由基反应在构建衍生物的结构多样性、反应的选择性与有效性以及底物的适用性等方面都展现出了明显的优势,在近年来已引起了人们的重要关注,逐渐发展成为功能化富勒烯的一种主要方法学。另一方面,在众多已知的[60]富勒烯环化衍生物中,仅有少量的报道是有关七元环化衍生物合成的例子。2006年Orfanopoulos课题组报道了C60与二烯基环丙烷的光化学环加成反应,反应给出了五元、七元和九元环化衍生物的混合物,如式1所示。

式1C60与二烯基环丙烷的光化学反应

之后,Chuang等人报道了C60与N-磺酰基取代的2-氨基联苯类化合物在Pd(OAc)2的催化作用下,通过C-H活化策略构建了一系列二氢二苯并氮杂卓类衍生物,如式2所示。另外,Jin课题组报道了C60与1,8-双(溴甲基)萘通过CoCl2dppe催化的自由基反应合成了tetrahydrocycloheptanaphthalene衍生物,如式3所示。

式2Pd(OAc)2催化的二氢二苯并氮杂卓类衍生物

式3CoCl2dppe催化的自由基反应

本发明发展了一种新型、高效且具有广泛底物适用范围的新方法,从而为构建结构有限的[60]富勒烯七元环化衍生物及相应的应用研究提供物质基础和方法支持。



技术实现要素:

本发明解决的技术问题是提供了一种底物适用范围广、化学选择性高且原料相对简单易得的[60]富勒烯并七元氮杂环衍生物的合成方法。

本发明为解决上述技术问题采用如下技术方案,一种[60]富勒烯并七元氮杂环衍生物的合成方法,其特征在于具体步骤为:以C60和N-磺酰基-O-氨基苯乙酮类化合物或N-磺酰基-O-氨基苯乙酮O-甲基肟类化合物为反应原料,在Cu(OAc)2和Cs2CO3的存在下,C60与N-磺酰基-O-氨基苯乙酮类化合物或N-磺酰基-O-氨基苯乙酮O-甲基肟类化合物发生[5+2]环加成反应合成[60]富勒烯并七元氮杂环衍生物,该合成过程中的反应方程式为:

其中X为O、N-OMe或N-OBn,R'为H或取代基,该取代基为Br或MeO,取代基为苯环上的一元取代或二元取代,R为4-MeOPh、4-NO2Ph、4-MePh、Me或2-噻吩基。

进一步优选,所述的C60、Cu(OAc)2、Cs2CO3与N-磺酰基-O-氨基苯乙酮类化合物或N-磺酰基-O-氨基苯乙酮O-甲基肟类化合物的投料摩尔比为1:(1-4.5):(1-2):(2-6)。

进一步优选,所述的[60]富勒烯并七元氮杂环衍生物的合成方法,其特征在于具体步骤为:首先将C60加入到干燥的反应试管中,加入邻二氯苯并超声使C60完全溶解,再将Cu(OAc)2、Cs2CO3和N-磺酰基-O-氨基苯乙酮类化合物加入到反应试管中,加入乙腈并超声溶解,然后塞上旋塞置于80℃或90℃的油浴锅中搅拌反应,TLC检测反应,至反应终点时停止反应,将反应产物湿法上样、过短硅胶柱,以甲苯为洗脱剂除去产物中的不溶性物质,减压蒸馏旋干,将剩余的固体用CS2溶解,上样、过柱,先用CS2作为洗脱剂收集未反应的C60,再用体积比CS2/CH2Cl2=3:1的CS2与CH2Cl2的混合溶液作为洗脱剂,得到目标产物,所述的N-磺酰基-O-氨基苯乙酮类化合物为:

进一步优选,所述的C60、Cu(OAc)2、Cs2CO3与N-磺酰基-O-氨基苯乙酮类化合物的投料摩尔比为1:2:1:4。

进一步优选,所述的[60]富勒烯并七元氮杂环衍生物的合成方法,其特征在于具体步骤为:首先将C60加入到干燥的反应试管中,加入邻二氯苯并超声使C60完全溶解,再将Cu(OAc)2、Cs2CO3和N-磺酰基-O-氨基苯乙酮O-甲基肟类化合物加入到反应试管中,加入乙腈并超声溶解,然后塞上旋塞置于120℃或130℃的油浴锅中搅拌反应,TLC检测反应,至反应终点时停止反应,将反应产物湿法上样、过短硅胶柱,以甲苯为洗脱剂除去产物中的不溶性物质,减压蒸馏旋干,将剩余的固体用CS2溶解,上样、过柱,先用CS2作为洗脱剂收集未反应的C60,再用体积比CS2/CH2Cl2=3:1的CS2与CH2Cl2的混合溶液作为洗脱剂,得到目标产物,所述的N-磺酰基-O-氨基苯乙酮O-甲基肟类化合物为:

进一步优选,所述的C60、Cu(OAc)2、Cs2CO3与N-磺酰基-O-氨基苯乙酮O-甲基肟类化合物的投料摩尔比为1:2:2:4。

本发明发展了一种简便、有效的氧化脱氢来合成新型[60]富勒烯并七元氮杂环衍生物的反应,反应表现出了广泛的底物适用性与官能团兼容性。本发明的合成工艺具有底物适用范围广,化学选择性高,原料相对易得且操作简单等特点。

具体实施方式

以下通过实施例对本发明的上述内容做进一步详细说明,但不应该将此理解为本发明上述主题的范围仅限于以下的实施例,凡基于本发明上述内容实现的技术均属于本发明的范围。

实施例1

C60与底物1a-1g在Cu(OAc)2促进下形成产物2a-2g:

反应路线:

反应步骤:

首先将C60(36.0mg,0.05mmol)加入干燥的15mL tube中,加入邻二氯苯(7mL),超声使C60完全溶解,之后将Cu(OAc)2(18.2mg,0.10mmol)、Cs2CO3(16.3mg,0.05mmol)和1a(1b-1g,0.20mmol)加入到上述体系中,并加入乙腈(1mL),超声溶解,之后塞上旋塞,放置于指定温度80℃(或90℃)的油浴锅中搅拌加热,TLC检测反应,至反应终点时停止反应,将体系湿法上样、过短硅胶柱,甲苯为洗脱剂除去体系不溶性物质,减压蒸馏旋干,将剩余固体用CS2溶解,上样、过柱、先用CS2作为洗脱剂收集未反应的C60,之后用CS2/CH2Cl2=3/1(v/v)的CS2和CH2Cl2混合溶液作为洗脱剂,得到产物2a(2b-2g)。

其中底物1a-1g分别为:

2a:1HNMR(400MHz,CDCl3/CS2)δ8.51–8.47(m,1H),7.86(d,J=8.4Hz,2H),7.68–7.65(m,2H),7.40–7.38(m,1H),7.26(d,J=8.4 Hz,2H),6.11(d,J=15.6 Hz,1H),4.59(d,J=15.2 Hz,1H),2.40(s,3H)。

13C NMR(100 MHz,CS2/CDCl3)δ194.11(CO),155.21,154.69,150.99,148.06,147.87,147.34,146.46,146.23,146.19,146.07,146.01,145.94,145.87,145.83,145.77,145.31(2C),145.26,145.17(4C),145.10,144.88,144.78,144.49,144.40,144.25,144.17(2C),143.98,143.83,142.90,142.63,142.59(2C),142.43(2C),142.37,142.24,142.06,142.00,141.91(2C),141.88,141.71,141.54,141.32,141.24,141.02,140.65,140.11(2C),140.08,139.73,139.31,139.06,138.11,136.13,136.10,135.65,134.59,134.08,131.60,130.36,129.55(aryl C),129.51(2C,aryl C),127.90(2C,aryl C),83.26(sp3-C of C60),64.23(sp3-C of C60),56.90,21.54。

FT-IRν/cm-1(KBr)2923,1678,1594,1450,1431,1352,1296,1163,1087,1046,920,813,767,716,672,570,527。

UV-vis(CHCl3max/nm(logε)257(5.06),317(4.62),432(3.39),692(2.51).MALDI-TOF MS m/z calcd for C75H13NO3SNa[M+Na]+1030.0508,found 1030.0500。

2b:1H NMR(400 MHz,CDCl3/CS2)δ7.86(s,1H),7.85(d,J=8.0 Hz,2H),7.29(d,J=8.0 Hz,2H),6.64(s,1H),5.93(d,J=15.2 Hz,1H),4.50(d,J=15.2 Hz,1H),4.04(s,3H),3.75(s,3H),2.45(s,3H)。

13C NMR(100 MHz,CS2/CDCl3 with Cr(acac)3 as relaxation reagent,all 1C unless indicated)δ192.99(CO),155.41,154.95,153.88,150.97,149.83,148.18(2C),147.46,146.56,146.36,146.34,146.19,146.13,146.07,145.96,145.94,145.82,145.44(2C),145.40,145.29(3C),145.27,145.23,145.06,144.90,144.59,144.54,144.47,144.33,144.30,144.09,143.92,143.03,142.80,142.72,142.55(2C),142.51,142.34,142.21,142.17,142.05,142.03,141.99,141.83,141.75,141.45,141.34,141.12,140.81,140.40,140.20(2C),139.84,139.38(2C),138.22,137.00,136.50,136.42,134.24,129.49(2C,aryl C),129.15(aryl C),127.99(2C,aryl C),112.12(aryl C),111.77(aryl C),83.80(sp3-C of C60),64.74(sp3-C of C60),56.89,55.83(2C),21.58。

FT-IRν/cm-1(KBr)2922,1664,1573,1516,1436,1372,1350,1290,1221,1159,1085,1041,997,816,764,711,675,631,609,565,543,526.λmax/nm(logε)258(5.07),318(4.66),433(3.46),693(2.67).MALDI-TOF MS m/z calcd for C77H17NO5SNa[M+Na]+1090.0720,found 1090.0725。

2c:1H NMR(400 MHz,CDCl3/CS2)δ8.59(d,J=2.4 Hz,1H),7.84(d,J=8.4 Hz,2H),7.77(dd,J=2.4,8.4 Hz,1H),7.29(d,J=8.0 Hz,2H),7.23(d,J=8.4 Hz,1H),6.05(d,J=15.6 Hz,1H),4.58(d,J=15.6 Hz,1H),2.45(s,3H)。

13C NMR(100 MHz,CS2/CDCl3 with Cr(acac)3 as relaxation reagent,all 1C unless indicated)δ192.51(CO),155.05,154.50,150.68,148.13,147.68,147.40,146.53,146.29(2C),146.15,146.08,146.02,145.94,145.90,145.82,145.40,145.35,145.34,145.28,145.25(3C),145.18,144.97,144.84,144.46,144.38,144.21,144.19,144.09,144.02,143.98,142.96,142.67,142.52(2C),142.50,142.45,142.30,142.12,142.01,142.00,141.93(2C),141.76,141.63,141.49,141.40,141.32,141.09,140.66,140.21,140.18,140.13,139.86,139.42,138.94,138.18,137.31,137.01,136.28,136.13,134.44,134.02,131.94,129.60(2C,aryl C),127.94(2C,aryl C),124.52(aryl C),83.33(sp3-C of C60),64.15(sp3-C of C60),56.67,21.58。

FT-IRν/cm-1(KBr)2921,1681,1576,1515,1467,1430,1393,1353,1265,1185,1162,1087,1045,919,811,767,712,672,569,527.λmax/nm(logε)257(5.12),318(4.70),432(3.46),690(2.57).MALDI-TOF MS m/z calcd for C75H12BrNO3SNa[M+Na]+1107.9613,found1107.9615。

2d:1H NMR(400 MHz,CDCl3/CS2)δ8.50–8.47(m,1H),7.90(d,J=8.8 Hz,2H),7.70–7.67(m,2H),7.39–7.37(m,1H),6.93(d,J=8.8 Hz,2H),6.09(d,J=15.6 Hz,1H),4.56(d,J=15.6 Hz,1H),3.86(s,3H)。

13C NMR(100 MHz,CS2/CDCl3 with Cr(acac)3 as relaxation reagent,all 1C unless indicated)δ193.89(CO),162.82(aryl C),155.29,154.81,151.17,148.07(2C),147.35,146.47,146.24,146.20,146.07,146.02,145.95,145.87,145.83,145.75,145.33(2C),145.28,145.18(3C),145.16,145.11,144.90,144.80,144.47,144.42,144.29,144.20(2C),144.01,142.91,142.74,142.63,142.61,142.44(2C),142.38,142.25,142.08,142.02,141.94,141.92,141.89,141.71,141.56,141.33,141.27,141.04,140.66,140.14,140.12,140.05,139.75,139.35,138.15,136.12(2C),135.73,134.45,134.11,133.63,131.59,130.42,129.99(2C,aryl C),129.43(aryl C),113.94(2C,aryl C),83.20(sp3-C of C60),64.29(sp3-C of C60),56.88,55.24。

FT-IRν/cm-1(KBr)2922,1675,1574,1519,1431,1382,1353,1260,1180,1155,1088,1047,1025,920,829,802,769,719,676,588,567,550,527.λmax/nm(logε)255(5.03),318(4.61),433(3.37),693(2.50).MALDI-TOF MS m/z calcd for C75H13NO4SNa[M+Na]+1046.0457,found 1046.0461。

2e:1H NMR(400 MHz,CDCl3/CS2)δ8.53(dd,J=2.4,7.2 Hz,1H),8.34(d,J=8.8 Hz,2H),8.20(d,J=8.8 Hz,2H),7.74–7.71(m,2H),7.31–7.29(m,1H),6.03(d,J=16.0 Hz,1H),4.63(d,J=16.0 Hz,1H)。

13C NMR(100 MHz,CS2/CDCl3 with Cr(acac)3 as relaxation reagent,all 1C unless indicated)δ193.02(CO),154.95,154.20,150.16,149.79,148.12,147.38,147.01,146.86,146.54,146.26,146.24,146.12,146.07,146.01,145.96,145.90,145.89,145.40,145.32,145.25(3C),145.18(2C),145.15,144.82,144.80,144.44,144.12,144.06,144.04,143.96,143.93, 142.98,142.68,142.53(2C),142.42,142.35,142.09(2C),141.97,141.95,141.90,141.86,141.75(2C),141.54,141.34,141.30,141.12,140.51,140.35,140.26,140.06,139.87,139.44,138.21,136.33,135.85,135.71,134.69,133.98,131.97,130.00(aryl C),129.89(aryl C),129.09(2C,aryl C),124.05(2C,aryl C),83.65(sp3-C of C60),64.02(sp3-C of C60),56.86。

FT-IRν/cm-1(KBr)2923,1679,1574,1529,1476,1431,1361,1349,1296,1168,1087,1044,922,854,745,735,682,655,614,596,565,550,527.λmax/nm(logε)256(5.10),318(4.69),432(3.47),690(2.78).MALDI-TOF MS m/z calcd for C74H10N2O5SNa[M+Na]+1061.0203,found 1061.0201。

2f:1H NMR(400 MHz,CDCl3/CS2)δ8.50(dd,J=2.0,7.6 Hz,1H),7.76–7.67(m,3H),7.64–7.61(m,2H),7.04(dd,J=4.0,4.8 Hz,1H),6.02(d,J=15.6 Hz,1H),4.57(d,J=15.6 Hz,1H)。

13C NMR(100 MHz,CS2/CDCl3 with Cr(acac)3 as relaxation reagent,all 1C unless indicated)δ193.46(CO),155.07,154.62,150.61,148.08,147.34,147.14,146.49,146.25(2C),146.08,146.04,145.96,145.88(2C),145.83,145.35,145.31,145.29,145.25,145.19(3C),145.12,144.91,144.77,144.50,144.43,144.29,144.17,144.08,143.98,143.33,142.89,142.71,142.62,142.47(2C),142.45,142.40,142.28,142.08,142.02,141.94(3C),141.73,141.53,141.36,141.30,141.05,140.51,140.19,140.18,140.14,139.80,139.33,138.00,136.36,136.07,135.26,134.67,134.23,134.03,132.86,131.58,130.31(aryl C),129.54(aryl C),126.87(aryl C),83.22(sp3-C of C60),64.28(sp3-C of C60),56.81。

FT-IRν/cm-1(KBr)2928,1675,1592,1510,1476,1448,1355,1294,1222,1159,1089,1045,1014,920,853,767,713,673,609,591,575,545,526.λmax/nm(logε)258(5.17),318(4.73),432(3.50),691(2.66).MALDI-TOF MS m/z calcd for C72H9NO3S2Na[M+Na]+1021.9916,found 1021.9917。

2g:1H NMR(400 MHz,CDCl3/CS2)δ8.49(dd,J=1.6,7.6 Hz,1H),7.77(td,J=1.6,7.6Hz,1H),7.69(td,J=0.8,7.6 Hz,1H),7.57(dd,J=0.8,8.0 Hz,1H),5.90(d,J=15.6 Hz,1H),4.53(d,J=15.6 Hz,1H),3.58(s,3H)。

13C NMR(100 MHz,CS2/CDCl3 with Cr(acac)3 as relaxation reagent,all 1C unless indicated)δ193.34(CO),155.11,154.42,150.83,148.13,147.43,147.10,146.52,146.28(2C),146.12,146.06,146.03,145.93,145.89,145.74,145.39,145.38,145.30,145.27,145.26(3C),145.17,144.96,144.87,144.53,144.20,144.15,144.13,144.06,143.84,142.95,142.74,142.65,142.52(2C),142.45,142.35(2C),142.18,142.02,141.97,141.94,141.90,141.71,141.63,141.38,141.26,141.25,140.80,140.74,140.28,140.17,139.83,139.58,138.88,136.44,136.10,135.16,134.83,134.00,131.66(aryl C),130.10(aryl C),129.51(aryl C),83.00(sp3-C of C60),64.11(sp3-C of C60),56.83,45.55。

FT-IRν/cm-1(KBr)2928,1731,1676,1593,1476,1430,1349,1295,1224,1158,1047,957,766,646,566,529.λmax/nm(logε)255(5.11),318(4.72),432(3.54),691(2.78).MALDI-TOF MS m/z calcd for C69H9NO3SNa[M+Na]+954.0195,found 954.0198。

实施例2

C60与底物1a合成产物3a的实验步骤:

反应路线:

反应步骤:

首先将C60(36.4mg,0.05mmol)加入干燥的15mL tube中,加入邻二氯苯(7mL),超声使C60完全溶解,之后将CuSO4(16.3mg,0.10mmol)、Cs2CO3(16.4mg,0.05mmol)和1a(57.8mg,0.20mmol)加入到上述体系中,并加入乙腈(1mL),超声使之溶解,之后旋上旋塞,放置于80℃的油浴锅中搅拌加热,TLC检测反应,2h停止反应,将体系湿法上样、过短硅胶柱,甲苯为洗脱剂除去体系不溶性物质,减压蒸馏旋干,将剩余固体用CS2溶解,上样、过柱,先用CS2作为洗脱剂收集未反应的C60(24.4mg,67%),用CS2/CH2Cl2=5/1(v/v)的CS2和CH2Cl2混合溶液作为洗脱剂,得到产物3a(8.2mg,16%)。

3a:1H NMR(400MHz,CD3COCD3/CS2)δ11.09(s,1H),8.63(d,J=7.6Hz,1H),7.77(d,J=8.4Hz,1H),7.68(d,J=8.4Hz,2H),7.59(t,J=7.6Hz,1H),7.26(t,J=8.0Hz,1H),7.23(d,J=8.4Hz,2H),5.83(s,1H),2.36(s,3H)。

13C NMR(100MHz,CDCl3/CS2with Cr(acac)3as relaxation reagent,all 2C unless indicated)δ192.04(CO)(1C),147.14,145.85,145.04,144.98,144.93,144.89(4C),144.80,144.43(3C),144.39,144.36,144.35,144.20(1C),144.14,143.61,143.56(1C),143.37,143.01,142.90(1C),142.77,142.69(3C),142.49,142.08,141.94,141.76(4C),141.08(1C),140.96,140.69,139.07,136.53(1C),136.35,135.74(1C),131.04(1C),129.50(aryl C),127.18(aryl C),122.76(1C,aryl C),120.91(1C,aryl C),119.47(1C,aryl C),71.65(sp3-C of C60),44.64(1C),21.56(1C)。FT-IRν/cm-1(KBr)2925,1646,1600,1572,1490,1449,1333,1205,1158,1090,1007,912,872,811,745,659,564,545,526.λmax/nm(logε)258(4.97),327(4.48),428(3.37),687(2.49).MALDI-TOF MS m/z calcd for C75H13NO3SNa[M+Na]+1030.0508,found1030.0507。

实施例3

C60与底物4a-4h在Cu(OAc)2促进下形成产物5a-5h:

反应路线:

反应步骤:

首先将C60(36.0mg,0.05mmol)加入干燥的15mL tube中,加入邻二氯苯(7mL),超声使C60完全溶解,之后将Cu(OAc)2(18.2mg,0.10mmol)、Cs2CO3(32.6mg,0.10mmol)和4a(4b-4h,0.20mmol)加入到上述体系中,并加入乙腈(1mL),超声溶解,之后旋上旋塞,放置于指定温度120℃(或130℃)的油浴锅中搅拌加热,TLC检测反应,停止反应,将体系湿法上样、过短硅胶柱,甲苯为洗脱剂除去体系不溶性物质,减压蒸馏旋干,将剩余固体用CS2溶解,上样、过柱,先用CS2作为洗脱剂收集未反应的C60,之后用CS2/CH2Cl2=4/1(v/v)的CS2和CH2Cl2混合溶液作为洗脱剂,得到产物5a(5b-5h)。

其中底物4a-4h分别为:

5a:1H NMR(400MHz,CDCl3/CS2)δ8.40(d,J=8.0Hz,1H),7.84(d,J=8.4Hz,2H),7.51(t,J=7.6Hz,1H),7.39(t,J=7.6Hz,1H),7.25(d,J=8.4Hz,2H),7.18(d,J=7.6Hz,1H),5.46(d,J=17.2,1H),5.38(d,J=17.2,1H),4.13(s,3H),2.43(s,3H)。

13C NMR(100MHz,CDCl3/CS2with Cr(acac)3as relaxation reagent,all 1C unless indicated)δ155.85,155.83,152.50,151.65,148.27,148.03,147.35,146.40,146.19,146.12,146.04,145.97,145.88,145.83,145.78,145.72,145.44,145.29,145.11(4C),145.07,145.03,144.94,144.81,144.73,144.63,144.48,144.38,144.18,144.13,143.30,142.86,142.61(2C),142.39(2C),142.30,142.23,142.05(2C),141.93(2C),141.89,141.69(2C),141.22,141.20,140.97,140.81,140.09,139.93(3C),139.61,139.54,139.23,138.12,136.09,135.75,135.34, 134.77,130.51(aryl C),130.06(aryl C),129.33(2C,aryl C),129.14(aryl C),128.32(aryl C),127.81(2C,aryl C),82.98(sp3-C of C60),64.73(sp3-C of C60),62.23,39.64,21.54。

FT-IRν/cm-1(KBr)2929,1573,1520,1432,1380,1353,1277,1183,1163,1090,1047,921,898,812,762,715,680,667,590,566,547,527.λmax/nm(logε)260(5.07),317(4.63),434(3.59),694(2.94).MALDI-TOF MS m/z calcd for C76H16N2O3SNa[M+Na]+1059.0774,found 1059.0757。

5b:1H NMR(400 MHz,CDCl3/CS2)δ7.834(s,1H),7.83(d,J=8.0 Hz,2H),7.25(d,J=8.0 Hz,2H),6.49(s,1H),5.42(d,J=16.8 Hz,1H),5.29(d,J=16.8 Hz,1H),4.09(s,3H),4.01(s,3H),3.65(s,3H),2.43(s,3H)。

13C NMR(100 MHz,CDCl3/CS2 with Cr(acac)3 as relaxation reagent,all 1C unless indicated)δ155.90(2C),152.42,151.48,150.41,149.56,148.42,148.13,147.45,146.46,146.27,146.24,146.13,146.05,145.97,145.89,145.87,145.76,145.50,145.39,145.21(2C),145.17(2C),145.12,145.09,145.05,144.88,144.72,144.71,144.68,144.49,144.28,144.20,143.60,142.95,142.70(2C),142.48,142.46,142.40,142.30,142.16,142.14,142.00,141.98(2C),141.86,141.79,141.27(2C),141.02,140.95,140.35,139.98,139.92,139.67,139.54,139.26,138.22,136.37,135.98,134.86,133.09,129.37(2C,aryl C),128.10(aryl C),127.85(2C,aryl C),112.71(aryl C),108.93(aryl C),83.60(sp3-C of C60),65.08(sp3-C of C60),62.20,55.72,55.67,39.47,21.51。

FT-IRν/cm-1(KBr)2927,1574,1519,1433,1382,1356,1277,1218,1165,1090,1046,932,770,705,671,595,571,547,526.λmax/nm(logε)257(5.02),317(4.61),432(3.37),694(2.53).MALDI-TOF MS m/z calcd for C78H20N2O5SNa[M+Na]+1119.0985,found 1119.0981.5c:1H NMR(400 MHz,CDCl3/CS2)δ8.57(d,J=2.0 Hz,1H),7.81(d,J=8.4 Hz,2H),7.50(dd,J=2.0,8.4 Hz,1H),7.26(d,J=8.4 Hz,2H),7.05(d,J=8.4 Hz,1H),5.43(d,J=17.2 Hz,1H),5.38(d,J=17.2 Hz,1H),4.15(s,3H),2.43(s,3H)。

13C NMR(100 MHz,CDCl3/CS2 with Cr(acac)3 as relaxation reagent,all 1C unless indicated)δ155.51,155.49,151.38,151.16,148.03,147.92,147.34,146.39,146.16,146.15,146.05,145.96,145.88,145.83,145.78,145.70,145.37,145.31,145.12,145.10(3C),145.08,145.06,144.95,144.77,144.52,144.45,144.36(2C),144.13,144.07,143.53,142.85,142.59,142.44,142.39(2C),142.31,142.21,142.02,141.99,141.92,141.88(2C),141.70,141.67,141.20(2C),140.96,140.73,140.13,139.92,139.88,139.64,139.26,139.21,138.77,138.11,136.98,136.21,135.71,134.58,132.96,131.93,130.94(aryl C),129.41(2C,aryl C),127.76(2C,aryl C),123.96(aryl C),83.00(sp3-C of C60),64.62(sp3-C of C60),62.45,39.33,21.49。

FT-IRν/cm-1(KBr)2929,1594,1509,1465,1431,1400,1356,1259,1217,1183,1165,1090,1045,906,810,726,667,584,568,549,527.λmax/nm(logε)258(4.98),317(4.51),433 (3.32),691(2.43).MALDI-TOF MS m/z calcd for C76H15BrN2O3SNa[M+Na]+1136.9879,found 1136.9880。

5d:1H NMR(400 MHz,CDCl3/CS2)δ8.39(d,J=8.0 Hz,1H),7.85(d,J=8.8 Hz,2H),7.49(t,J=7.2 Hz,1H),7.38(t,J=7.2 Hz,1H),7.16(d,J=8.0 Hz,1H),6.89(d,J=8.8 Hz,2H),5.42(d,J=17.2 Hz,1H),5.36(d,J=17.2 Hz,1H),4.12(s,3H),3.84(s,3H)。

13C NMR(100 MHz,CDCl3/CS2 with Cr(acac)3 as relaxation reagent,all 1C unless indicated)δ162.73(aryl C),155.96,155.94,152.80,151.81,148.43,148.14,147.46,146.49,146.27,146.23,146.13,146.07,145.98,145.94,145.88,145.82,145.53,145.39,145.23,145.21,145.18(3C),145.11,145.05,144.90,144.79,144.73,144.59,144.47,144.26,144.24,142.96,142.69,142.65,142.49(2C),142.39,142.33,142.14(2C),142.01(3C),141.80(2C),141.33,141.27,141.06,140.93,140.19,140.07,140.02,139.92,139.70,139.34,138.25,136.16,135.75,135.44,134.88,134.06,130.70(aryl C),130.23(aryl C),129.94(2C,aryl C),129.33(aryl C),128.39(aryl C),113.91(2C,aryl C),83.04(sp3-C of C60),64.85(sp3-C of C60),62.36,55.32,39.81。

FT-IRν/cm-1(KBr)2928,1575,1520,1428,1382,1348,1277,1262,1157,1089,1048,1022,932,830,772,680,591,567,527.λmax/nm(logε)257(4.92),325(4.52),433(3.28),694(2.53).MALDI-TOF MS m/z calcd for C76H16N2O4SNa[M+Na]+1075.0723,found 1075.0725.5e:1H NMR(400 MHz,CDCl3/CS2)δ8.41(d,J=7.2 Hz,1H),8.30(d,J=8.4 Hz,2H),8.15(d,J=8.8 Hz,2H),7.55(t,J=7.2 Hz,1H),7.42(t,J=7.2 Hz,1H),7.09(d,J=7.6 Hz,1H),5.42(d,J=17.2 Hz,1H),5.35(d,J=17.2 Hz,1H),4.14(s,3H)。

FT-IRν/cm-1(KBr)2933,1530,1513,1431,1359,1310,1219,1170,1091,1049,903,855,735,684,660,615,604,574,564,549,527.λmax/nm(logε)257(5.09),318(4.63),432(3.55),689(2.93).MALDI-TOF MS m/z calcd for C75H13N3O5SNa[M+Na]+1090.0468,found1090.0467.

5f:1H NMR(400 MHz,CDCl3/CS2)δ8.42(dd,J=1.2,8.4 Hz,1H),7.66(dd,J=1.2,4.0Hz,1H),7.58(dd,J=1.2,5.2 Hz,1H),7.55–7.51(m,1H),7.48–7.42(m,2H),7.02(dd,J=3.6,4.8 Hz,1H),5.42(d,J=17.6 Hz,1H),5.37(d,J=17.6 Hz,1H),4.12(s,3H)。

13C NMR(100 MHz,CDCl3/CS2 with Cr(acac)3 as relaxation reagent,all 1C unless indicated)δ155.80,155.74,152.51,151.31,148.17,147.57,147.48,146.54,146.30(2C),146.17,146.11,146.00,145.96,145.95,145.93,145.53,145.45,145.26,145.23(2C),145.21(2C),145.18,145.08,144.89,144.86,144.66,144.64,144.50,144.27,144.23,143.69,142.96,142.76,142.72,142.54,142.52,142.44,142.38,142.17(2C),142.07(2C),142.04,141.84,141.81,141.38,141.33,141.10,140.80,140.23,140.12,140.08,139.79,139.76,139.35,138.12,136.40,135.75,135.03,134.81,133.99(aryl C),132.67(aryl C),130.55(aryl C),130.47(aryl C),129.46(aryl C),128.32(aryl C),126.88(aryl C),83.14(sp3-C of C60),64.88(sp3-C of C60),62.41,39.66。

FT-IRν/cm-1(KBr)2927,1598,1511,1432,1357,1223,1162,1091,1046,1015,898,851,761,715,680,668,575,544,526.λmax/nm(logε)256(5.11),317(4.64),433(3.47),693(2.60).MALDI-TOF MS m/z calcd for C73H12N2O3S2Na[M+Na]+1051.0182,found 1051.0177.

5g:1H NMR(400MHz,CDCl3/CS2)δ8.41(d,J=6.8Hz,1H),7.53–7.46(m,2H),7.40(d,J=8.4Hz,1H),5.36(d,J=17.2Hz,1H),5.25(d,J=17.2Hz,1H),4.09(s,3H),3.49(s,3H)。

FT-IRν/cm-1(KBr)2915,1512,1443,1346,1219,1183,1156,1085,1046,987,958,904,872,768,656,563,538,527.λmax/nm(logε)256(5.06),317(4.59),433(3.40),694(2.49).MALDI-TOF MS m/z calcd for C70H12N2O3SNa[M+Na]+983.0461,found 983.0448.

5h:1H NMR(400MHz,CDCl3/CS2)δ8.54(d,J=2.4Hz,1H),7.81(d,J=8.4Hz,2H),7.48(dd,J=2.4,8.4Hz,1H),7.31–7.22(m,7H),7.05(d,J=8.0Hz,1H),5.47(d,J=16.4Hz,1H),5.40(d,J=16.4Hz,1H),5.397(d,J=12.0Hz,1H),5.34(d,J=12.4Hz,1H),2.43(s,3H)。

13C NMR(100MHz,CDCl3/CS2with Cr(acac)3as relaxation reagent,all 1C unless indicated)δ155.41,155.39,151.75,151.09,148.02,147.93,147.33,146.39,146.16,146.15,146.04,145.96,145.88,145.82,145.79,145.69,145.36,145.30,145.13(2C),145.09(3C),145.03,144.96,144.75,144.50,144.43,144.37(2C),144.14,144.04,143.56,142.83,142.59,142.53,142.40,142.38,142.31,142.20,142.02,142.00,141.91,141.88(2C),141.71,141.66,141.24,141.17,140.99,140.68,140.16,139.93,139.89,139.61,139.27,139.17,138.84,138.10,136.84,136.72,136.30,135.84,134.52,133.07,131.90,130.85,129.42(2C,aryl C),128.32(2C,aryl C),127.78(2C,aryl C),127.75(3C,aryl C),123.96(aryl C),83.07(sp3-C of C60),76.95,64.71(sp3-C of C60),39.32,21.51。

FT-IRν/cm-1(KBr)2924,1643,1596,1550,1465,1402,1354,1261,1162,1089,1047,911,811,727,667,570,548,527.λmax/nm(logε)258(4.81),317(4.35),433(3.21),694(2.47).MALDI-TOF MS m/z calcd for C82H19BrN2O3SNa[M+Na]+1213.0192,found 1213.0196。

实施例4

自由基捕捉剂存在条件下1a与C60的反应:

反应路线

反应步骤:

首先将C60(36.0mg,0.05mmol)加入干燥的15mL tube中,加入邻二氯苯(7mL),超声使C60完全溶解,之后将Cu(OAc)2(18.2mg,0.10mmol)、Cs2CO3(16.3mg,0.05mmol)、1a(57.9mg,0.20mmol)和TEMPO(0.05mmol,0.20mmol,0.40mmol)或者加尔万氧基自由基(0.20mmol)加入到上述体系中,并加入乙腈(1mL),超声溶解,之后将体系密封,放置于80℃的油浴锅中搅拌加热,2h停止反应,将体系湿法上样、过短硅胶柱,甲苯为洗脱剂除去体系不溶性物质,减压蒸馏旋干,将剩余固体用CS2溶解,上样、过柱,先用CS2作为洗脱剂收集未反应的C60,之后用CS2/CH2Cl2=3/1(v/v)的CS2和CH2Cl2混合溶液作为洗脱剂,得到产物2a。结果证明TEMPO和加尔万氧基自由基均能够抑制2a的生成。

以上实施例描述了本发明的基本原理、主要特征及优点,本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明原理的范围下,本发明还会有各种变化和改进,这些变化和改进均落入本发明保护的范围内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1