一种硅氮烷改性的水性聚氨酯分散体及其制备方法和用途与流程

文档序号:12243284阅读:691来源:国知局

本发明涉及高分子聚合物领域,具体公开了一种硅氮烷改性的水性聚氨酯分散体及其制备方法和用途。



背景技术:

目前制备水性聚氨酯分散体的方法是,在分子主链上引入亲水扩链剂(如二羟甲基丙酸或二羟甲基丁酸),使树脂获得亲水性,分散在水中。因此,水性聚氨酯树脂耐水性较差,人们通过有机硅或有机氟对水性聚氨酯分子改性,提高耐水性的同时还可以提高水性聚氨酯的耐候性,以及提高树脂成膜的爽滑手感。

目前对水性聚氨酯有机硅的改性方式有:(1)采用大分子硅醚多元醇,但是大分子硅醚多元醇分子链极其柔软,用量较多时导致乳化困难,并且使得树脂机械强度大大下降;(2)采用氨基硅烷偶联剂进行封端或者扩链,氨基硅烷偶联剂是通过伯氨基或者仲氨基与异氰酸酯反应,在分子主链或者侧链链接上含硅基团,但该反应过于剧烈不易控制,因此,亟需一种水性聚氨酯分散体解决上述反应困难、反应不易控制的问题。



技术实现要素:

本发明的目的在于克服现有技术的缺陷,提供一种硅氮烷改性的水性聚氨酯分散体及其制备方法和用途,该改性水性聚氨酯树脂分散体提高耐热稳定性以及贮存稳定性。

为了实现以上目的及其他目的,本发明是通过包括以下技术方案实现的:一种硅氮烷改性的水性聚氨酯分散体,包括以下原料组分及重量百分比:

所述多元醇与所述多异氰酸酯的摩尔比为1:2~10;所述成盐剂与所述亲水扩链剂的摩尔比为0.6~1.1:1。

所述硅氮烷为多硅氮烷,其结构式为:

其中,R1、R2、R3、R1’、R2’和R3’均包括烷基、环烷基、芳基和硅氮烷基中的一种,R包括H原子、烷基和环烷基中的一种。

优选地,所述硅氮烷改性的水性聚氨酯分散体还包括蓖麻油,所述蓖麻油重量占所述硅氮烷改性的水性聚氨酯分散体总重量的百分比为2~6%。

优选地,所述大分子多元醇选自聚氧化丙烯二醇、聚四氢呋喃醚二醇、聚丁二酸酯类二元醇、聚碳酸酯二醇、聚烯烃多元醇、蓖麻油多元醇、大豆油多元醇和棕榈油多元醇中的一种或多种。

优选地,所述多异氰酸酯选自甲苯二异氰酸酯、二苯基甲烷二异氰酸酯、异氟尔酮二异氰酸酯、六亚甲基二异氰酸酯、二环己基甲烷二异氰酸酯、萘二异氰酸酯、对苯二异氰酸酯、1,4-环己烷二异氰酸酯、苯二亚甲基二异氰酸酯、环己烷二亚甲基二异氰酸酯和三甲基-1,6-六亚甲基二异氰酸酯中的一种或多种。

优选地,所述扩链剂选自乙二醇、1,4-丁二醇、一缩二乙二醇、1,2-丙二醇、新戊二醇、甲基丙二醇、1,6-己二醇、1,3-丙二醇、一缩二丙二醇、丁基乙基丙二醇、二乙基戊二醇、3-甲基-1,5-戊二醇、1,3-丁二醇、1,5-戊二醇、三甲基戊二醇、乙基己二醇、十二碳二醇、1,4-二羟甲基环己烷、环己二醇、对苯二酚二羟乙基醚、间苯二酚二羟乙基醚、双酚A二羟乙基醚和双酚A二羟丙基醚中的一种或多种;

和/或,所述交联剂选自三羟甲基丙烷、甘油、三羟甲基乙烷、1,2,6-己三醇、三羟乙基异氰尿酸酯、季戊四醇、木糖醇、山梨醇、甘露醇、蔗糖和甲基葡萄糖苷中的一种或多种。

优选地,所述亲水扩链剂选自二羟甲基丙酸和二羟甲基丁酸中的一种或两种。

优选地,所述中和试剂为三乙胺。

优选地,所述催化剂为有机金属催化剂。

优选地,所述催化剂选自二月硅酸二丁基锡、辛酸亚锡、异辛酸钾、异辛酸铋和异辛酸锌中的一种或多种。

优选地,所述硅氮烷选自六甲基二硅氮烷、六甲基环三硅氮烷、四甲基二乙烯基二硅氮烷和聚硅氮烷中的一种或多种。

一种制备如上述所述硅氮烷改性的水性聚氨酯分散体的方法,包括以下步骤:1)按照以下A或B方式进行:A、按照重量比例将所述多异氰酸酯和所述大分子多元醇加入反应器中,在搅拌条件下,升温至70~110℃,反应1~4h;B、按照重量比例将所述多异氰酸酯、所述大分子多元醇和所述蓖麻油加入反应器中,在搅拌条件下,升温至70~110℃,反应1~4h;2)降温至40~55℃,然后向所述反应器加入所述扩链剂、所述交联剂和所述亲水扩链剂,升温至60~90℃,反应1~4h;3)降温至40~55℃,向所述反应器中加入所述催化剂和所述硅氮烷,升温至60~90℃,反应2~5h后,得到预聚体;4)向所述预聚体加入低沸点溶剂稀释所述预聚体,并将所述预聚体的温度降低至0~40℃;5)将稀释后的所述预聚体转移至乳化缸内,加入所述成盐剂进行成盐反应;然后在搅拌速度为1000~2000r/min的条件下,加入去离子水直至发生相转变,得到水性聚氨酯分散体。

优选地,所述低沸点溶剂为丙酮和丁酮中的一种或两种。

优选地,在步骤1)之前,需对所述多异氰酸酯、所述大分子多元醇、所述扩链剂、所述交联剂和所述亲水扩链剂进行脱水处理。

优选地,在步骤1)中采用B方式中,进行反应之前,还需对所述蓖麻油进行脱水处理。

本发明还公开如上述所述的硅氮烷改性的水性聚氨酯分散体或者如上述所述的制备方法获得的硅氮烷改性的水性聚氨酯分散体在合成革浆料或木器漆中的用途。选用的多异氰酸酯的不同,制备水性聚氨酯涂膜硬度也会不同,根据硬度判断该水性聚氨酯应用于合成革浆料还是应用于木器漆。

本发明添加的硅氮烷与聚氨酯预聚体中端异氰酸酯基团的进行反应,反应式如下:

反应式中Si-N-Si反应活性略低于醇羟基与异氰酸酯基团的反应活性,适合在扩链反应中加入硅氮烷进行部分封端反应。硅氮烷易于水解(生成硅醇),并且在一定温度下可被羟基进攻生成胺类化合物,从而与扩链剂竞争反应,导致反应不易控制。所以,硅氮烷的添加适合分步合成预聚体的工艺,并且在扩链剂反应完全后添加,进行部分封端反应。

综上所述,本发明提供一种硅氮烷改性的水性聚氨酯分散体及其制备方法和用途,其有益效果为:

本发明使用硅氮烷对水性聚氨酯分散体进行改性,将NCO基团插入到硅氮键中从而得到硅氮烷封端的聚氨酯预聚体分子,封端含硅基团水解能力大大下降,避免副反应。硅氮烷与异氰酸酯反应活性远小于氨基与异氰酸酯的活性,反应容易控制;同时使聚合物中含有硅氮键,大大提高聚合物的耐热稳定性,进而提高聚合物的贮存稳定性。

进一步,由聚氨酯分散体制备合成革面料或贝斯具有良好的耐水耐醇性,以及很好的耐热性能。由聚氨酯分散体制备的涂料具有优良的耐水耐醇性,以及很好的耐热性能,尤其是应用于木器漆中,可以有效的防止高温熨烫,并且漆膜表面平整、滑润、摸起来触感好,漆膜在高温下的抗粘连性好,不会留下杯子等用品的印痕。

进一步,本发明获得的硅氮烷改性的水性聚氨酯分散体的涂膜干燥速度快,光泽度可达90°以上,耐水性达到用水滴在涂膜上48h无异常,远远超越国家标准;耐醇性可达到将质量分数为50%的乙醇溶液滴在涂膜上4h无异常。

具体实施方式

下面结合实施例进一步阐述本发明。应理解,实施例仅用于说明本发明,而非限制本发明的范围。

实施例1

称取200g PPG-2000和52g甲苯二异氰酸酯,投入四口烧瓶中,在转速为600r/min的搅拌条件下,升温至85℃,反应2h。降温至50℃,加入6g1,4-丁二醇、7.45g二羟甲基丁酸,然后升温至85℃反应2h。降温至50℃后,加入4g六甲基二硅氮烷、0.25g二月桂酸二正丁基锡和20g丁酮,然后升温至70℃反应3h。再加入100g丙酮,降温到20℃。然后转移到乳化缸中,开启搅拌,搅拌转速为500r/min,加入5.6g三乙胺,反应2min。将转速提高至1500r/min,加入400g去离子水,然后乳化至发生相转变,继续搅拌30min,获得硅氮烷改性的水性聚氨酯分散体。

其中,六甲基二硅氮烷的结构式如下:

实施例2

称取208g PGMEG-2000和55g甲苯二异氰酸酯,投入四口烧瓶中,在转速为600r/min的搅拌条件下,升温至90℃,反应2h。降温至50℃,加入6g 1,4-丁二醇、7.45g二羟甲基丙酸,升温至80℃反应2h。降温至50℃后,加入4.1g六甲基环三硅氮烷、0.2g二月桂酸二正丁基锡、20g丁酮,升温至70℃,反应3h。再加入100g丙酮,降温至20℃。然后转移到乳化缸中,开启搅拌,搅拌转速为500r/min,加入4.4g三乙胺,反应5min。将转速提高至1300r/min,加入去350g离子水,然后乳化至发生相转变,继续搅拌30min,获得硅氮烷改性的水性聚氨酯分散体。

其中,六甲基环三硅氮烷的结构式如下:

实施例3

称取100g PPG-2000、110g PTMEG-3000和50g甲苯二异氰酸酯,投入四口烧瓶中,在转速为600r/min的搅拌条件下,升温至85℃,反应2.5h。降温至50℃,加入7.45g二羟甲基丙酸,升温至80℃反应2h。降温至50℃,加入3.5g四甲基二乙烯基二硅氮烷、0.37g二月桂酸二正丁基锡、20g丁酮,升温至70℃,反应3h。再加入100g丙酮,降温至20℃。然后转移至乳化缸中,开启搅拌,搅拌转速为500r/min,加入5.6g三乙胺,反应2min。将转速提高至1500r/min,加入389g去离子水,然后乳化至发生相转变,继续搅拌30min,获得硅氮烷改性的水性聚氨酯分散体。

其中,四甲基二乙烯基二硅氮烷的结构式如下:

实施例4

称取30g聚碳酸酯二醇-1000、110g聚己二酸乙二酯二醇-3000、10g改性蓖麻油和45g4,4'-二环己基甲烷二异氰酸酯,投入四口烧瓶中,在转速为600r/min的搅拌条件下,升温至85℃,反应2.5h。降温至50℃,加入7.45g二羟甲基丙酸、环己二醇4.8g、0.2g甘油,升温至80℃反应2h。降温至50℃,加入2g加入聚硅氮烷、0.40g异辛酸锌,20g丙酮,升温至70℃反应3h。再加入100g丙酮,降温到20℃。然后转移到乳化缸中,开启搅拌,搅拌转速为500r/min,加入5.6g三乙胺,反应2min。将转速提高至1400r/min,加入410g去离子水,然后乳化至发生相转变,继续搅拌30min,获得硅氮烷改性的水性聚氨酯分散体。

其中,聚硅氮烷的结构式如下:

实施例5

称取20g聚乙二醇-1000、150g聚己二酸新戊二醇酯二醇-2000和45g 4,4'-二环己基甲烷二异氰酸酯,投入四口烧瓶中,在转速为600r/min的搅拌条件下,升温至85℃,反应2.5h。降温至50℃,加入5.65g二羟甲基丙酸、甲基丙二醇4.3g、0.3g三羟甲基丙烷,升温至80℃,反应2h。降温至50℃,加入6g六甲基二硅氮烷、0.3g辛酸铋,升温至65℃反应3h。再加入150g丙酮,降温到10℃。然后转移到乳化缸中,开启搅拌,搅拌转速为500r/min,加入4.6g三乙胺,反应2min。将转速提高至1400r/min,加入去离子水410g,然后乳化至发生相转变,继续搅拌3min,获得硅氮烷改性的水性聚氨酯分散体。

对比例1

称取200g PPG-2000和52g甲苯二异氰酸酯,投入四口烧瓶中,在转速为600r/min的搅拌条件下,升温至85℃,搅拌下反应2h。降温至50℃,加入6g 1,4-丁二醇、7.45g二羟甲基丁酸,升温到85℃,反应2h。降温到50℃,加入0.25g二月桂酸二正丁基锡、20g丁酮,升温至70℃反应3h。再加入100g丙酮,降温至20℃。然后转移到乳化缸中,开启搅拌,搅拌转速为500r/min,加入5.6g三乙胺,反应2min。将转速提高至1500r/min,加入400g去离子水,然后乳化至发生相转变,继续搅拌30min,获得硅氮烷改性的水性聚氨酯分散体。

性能检测:

检测实施例1至5获得的硅氮烷改性的水性聚氨酯分散体的性能,将实施例1至5获得的硅氮烷改性的水性聚氨酯分散体进行涂膜,烘干,按照国家标准GB/T 23999-2009《室内装饰装修用水性木器涂料》评定涂膜的表面光泽、耐水性及耐醇性,依照国家标准GB1743-79进行光泽度测试,依照国家标准GB/T9286-1998进行附着力测试,依照国家标准GB/T1733-1993进行耐水性测试,依照国家标准GN/T1735-89《漆膜耐热性测定法》进行耐热性测试,将涂膜放置100℃的烘箱中,放置12h后,取出观察涂膜表面是否出现发黏或变色的现象。检测结果如表1所示。

表1实施例1至5及对比例1获得的水性聚氨酯分散体的性能结果

由表1可看出,实施例1至5获得的硅氮烷改性的水性聚氨酯分散体的涂膜的光泽度为90~92°,而对比例1中涂膜的光泽度明显低于实施例1至5中涂膜光泽度;实施例1至5获得的改性水性聚氨酯树脂的涂膜附着力≦1级,附着力比较强;将自来水滴至实施例1至5获得改性水性聚氨酯的涂膜上48小时无异常,说明涂膜耐水性好;将质量分数为50%的乙醇溶液滴至涂膜上4小时无异常,说明涂膜的耐醇性优良;实施例1至5获得的硅氮烷改性的水性聚氨酯分散体的涂膜在100℃的烘箱中放置12h后未出现发黏和变色的情况,而对比例1中涂膜在100℃的烘箱中放置12h后出现发黏。所以,实施例1至5获得水性聚氨酯树脂在耐醇性、耐水性、光泽度、附着力和耐热性方面的性能优良,远远超越国家标准。

以上所述,仅为本发明的较佳实施例,并非对本发明任何形式上和实质上的限制,应当指出,对于本技术领域的普通技术人员,在不脱离本发明方法的前提下,还将可以做出若干改进和补充,这些改进和补充也应视为本发明的保护范围。凡熟悉本专业的技术人员,在不脱离本发明的精神和范围的情况下,当可利用以上所揭示的技术内容而做出的些许更动、修饰与演变的等同变化,均为本发明的等效实施例;同时,凡依据本发明的实质技术对上述实施例所作的任何等同变化的更动、修饰与演变,均仍属于本发明的技术方案的范围内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1