本发明涉及热传导性优异的硅酮组合物以及半导体装置。
背景技术:
由于多数的电子部件在使用中放热,为了确实地发挥该电子部件的功能,需要从该电子部件去除热。尤其是被用于个人计算机的CPU等的集成电路元件,由于操作频率的高速化导致热值增大,从而散热对策则成为重要的问题。
人们提出了众多的散放出上述热的方法。特别是提出了在放热量多的电子部件中,于电子部件和散热体等的部件之间借助热传导性润滑脂和热传导性片材的热传导性材料进行放热的方法。
在日本特开平2-153995号公报(专利文献1)中,公开了将一定粒径范围的球状六方晶系氮化铝粉配合在特定的有机聚硅氧烷中的硅酮润滑脂组合物;在日本特开平3-14873号公报(专利文献2)中,公开了组合细粒径的氮化铝粉和粗粒径的氮化铝粉的热传导性有机硅氧烷组合物;在日本特开平10-110179号公报(专利文献3)中,公开了组合氮化铝粉和氧化锌粉的热传导性硅酮润滑脂组合物;在日本特开2000-63872号公报(专利文献4)中,公开了使用用有机硅烷处理了的氮化铝粉的热传导性润滑脂组合物。
氮化铝的热传导率为70~27OW/mK,由此作为热传导性高的材料,有热传导率900~2000W/mK的金刚石。在日本特开2002-30217号公报(专利文献5)中,公开了使用了硅酮树脂、金刚石、氧化锌以及分散剂的热传导性硅酮组合物。
另外,在日本特开2000-63873号公报(专利文献6)和日本特开2008-222776号公报(专利文献7)中,公开了于硅油等的基础油中混合了金属铝粉的热传导性润滑脂组合物。
进一步,还公开了将热传导率高的银粉作为填充剂使用的日本专利3130193号公报(专利文献8)和日本专利3677671号公报(专利文献9)等。
但是,以上所有的热传导性材料和热传导性润滑脂针对最近的CPU等的集成电路元件的放热量皆为不充分的热传导性材料。
现有技术文献
专利文献
专利文献1日本特开平2-153995号公报
专利文献2日本特开平3-14873号公报
专利文献3日本特开平10-110179号公报
专利文献4日本特开2000-63872号公报
专利文献5日本特开2002-30217号公报
专利文献6日本特开2000-63873号公报
专利文献7日本特开2008-222776号公报
专利文献8日本专利3130193号公报
专利文献9日本专利3677671号公报
技术实现要素:
发明要解决的问题
因此,本发明的目的在于,提供一种发挥良好的放热效果的热传导性硅酮组合物。
用于解决问题的方案
为了达到上述目的,本发明人们依据精心研究的结果,找出了通过将具有特定的振实密度和比表面积的银粉混合在特定的有机聚硅氧烷中,从而能够飞跃性地提高热传导性的方法,进而完成了本发明。
即,本发明为提供以下的热传导性硅酮组合物等的发明。
<1>一种热传导性硅酮组合物,其包含:
成分(A)和成分(B),
其中,成分(A)为以下述平均组成式(1)表示,且在25℃下的运动粘度为10~100000mm2/s的有机聚硅氧烷,
R1aSiO(4-a)/2 (1)
通式中,R1表示选自氢原子、羟基或碳原子数为1~18的饱和或不饱和一价烃基中的一种或二种以上基团,a满足1.8≤a≤2.2,
成分(B)为振实密度3.0g/cm3以上、比表面积为2.0m2/g以下的银粉,相对于100质量份的成分(A),其配合量为300~11000质量份。
<2>如<1>所述的热传导性硅酮组合物,其中,成分(B)的银粉的长径比为2.0~150.0。
<3>如<1>或<2>所述的热传导性硅酮组合物,其中,部分或全部成分(A)为:
成分(C),在1个分子中至少含有2个与硅原子键合的烯基的有机聚硅氧烷;和/或
成分(D),在1个分子中至少含有2个与硅原子键合的氢原子的有机氢聚硅氧烷。
<4>如<1>或<2>所述的热传导性硅酮组合物,其进一步含有固化催化剂。
<5>如<1>或<2>所述的热传导性硅酮组合物,其进一步含有作为成分(E)的有机硅烷,该作为成分(E)的有机硅烷以下述通式(2)所表示,
R2bSi(OR3)4-b (2)
在通式(2)中,R2表示选自任选具有取代基的饱和或不饱和的一价烃基、环氧基、丙烯基以及甲基丙烯基中的1种或2种以上基团、R3表示一价烃基、b满足1≤b≤3,
并且,相对于100质量份的成分(A),所述作为成分(E)的有机硅烷的含量为0~10质量份。
<6>一种半导体装置,其为具备放热性电子部件和散热体的半导体装置,且<1>或<2>所述的热传导性硅酮组合物介于所述放热性电子部件和散热体之间。
<7>一种半导体装置的制造方法,该方法具有如下工艺:
于放热性电子部件和散热体之间,在施加0.01MPa以上的压力状态下将<1>或<2>所述的热传导性硅酮组合物加热至80℃以上。
发明的效果
本发明的热传导性硅酮组合物由于具有优异的热传导性,因此对半导体装置为有用。
附图说明
图1为表示本发明的半导体装置的一例的纵剖面概略图。
符号说明
1.基板
2.放热性电子部件(CPU)
3.热传导性硅酮组合物层
4.散热体(盖)
具体实施方式
以下,对本发明的热传导性硅酮组合物加以详细地说明。
成分(A):
为成分(A)的有机聚硅氧烷为以下述平均组成式(1)所表示,且在25℃下的运动粘度为10~100000mm2/s的有机聚硅氧烷。
R1aSiO(4-a)/2 (1)
[通式中,R1表示选自氢原子、羟基或碳原子数为1~18的饱和或不饱和一价烃基中的一种或二种以上基团,a满足1.8≤a≤2.2。]
在上述通式(1)中,作为以R1表示的碳原子数为1~18的饱和或不饱和的一价烃基,可列举例如,甲基、乙基、丙基、己基、辛基、癸基、十二烷基、十四烷基、十六烷基以及十八烷基等的烷基;环戊基、环己基等的环烷基;乙烯基、烯丙基等的烯基;苯基、甲苯基等的芳基;2-苯乙基、2-甲基-2-苯乙基等的芳烷基;3,3,3-三氟丙基、2-(全氟丁基)乙基、2-(全氟辛基)乙基以及对氯苯基等的卤化烃基。如果将本发明的硅酮组合物作为润滑脂使用,从作为硅酮润滑脂组合物所要求的浓稠度的观点考虑,a优选为在1.8~2.2的范围,特别优选为在1.9~2.1的范围。
另外,在本发明中使用的有机聚硅氧烷在25℃下的运动粘度如果低于10mm2/s,则在制成组合物时容易出现渗油,如果高于100000mm2/s,则在制成组合物时的粘度增高,其不易操作,因此,其粘度需要在25℃下为10mm2/s~100000mm2/s,特别优选为30mm2/s~10000mm2/s。需要说明的是,有机聚硅氧烷的运动粘度为在25℃下用奥斯特瓦尔德粘度计所测定的值。
成分(C)和成分(D)
成分(A)的全部或一部分优选为作为成分(C)的在1个分子中至少含有2个与硅原子键合的烯基的有机聚硅氧烷和/或作为成分(D)的在1个分子中至少含有2个与硅原子键合的氢原子的有机氢聚硅氧烷。
作为成分(C)的含有与硅原子键合的烯基的有机聚硅氧烷为在一分子中平均具有2个以上(通常为2~50个)、优选为2~20个、更优选为2~10个左右的与硅原子键合的烯基的有机聚硅氧烷。作为成分(C)的有机聚硅氧烷中的烯基,可列举例如,乙烯基、烯丙基、丁烯基、戊烯基、己烯基、庚烯基等。其中,尤其优选为乙烯基。成分(C)中的烯基,其既可与分子链末端的硅原子键合,也可与非分子链末端部位的硅原子键合,并且可同时与分子链末端部位的硅原子和非分子链末端部位的硅原子键合。
在为成分(C)的有机聚硅氧烷中,作为除烯基以外的与硅原子键合的有机基,可列举例如,甲基、乙基、丙基、丁基、戊基、己基以及庚基等的烷基;苯基、甲苯基、二甲苯基以及萘基等的芳基;苄基、苯乙基等的芳烷基;氯甲基、3-氯丙基以及3,3,3-三氟丙基等的卤化烷基等。其中,尤其优选为甲基、苯基。
作为这样的成分(C)的分子结构,虽可列举,例如直链状、具有部分支链的直链状、环状、支链状、三维网状等,但优选为基本上主链由二有机硅氧烷单元(D单元)的重复所构成,且分子链两末端用三有机硅氧基封端的直链状二有机聚硅氧烷;或为该直链状的二有机聚硅氧烷和支链状或三维网状的有机聚硅氧烷的混合物。
为成分(D)的有机氢聚硅氧烷,为在一分子中至少含有2个(通常为2~300个)、优选为2~100个左右的与硅原子键合的氢原子(即,SiH基)的有机氢聚硅氧烷,也可为直链状、支链状、环状或三维网状结构的树脂状物的任意一种。成分(D)中的氢原子,其既可与分子链末端的硅原子键合,也可与非分子链末端部位的硅原子键合,并且可同时与分子链末端部位的硅原子和非分子链末端部位的硅原子键合。
在为成分(D)的有机氢聚硅氧烷中,作为氢原子以外的已与硅原子键合的有机基团,可列举例如,为甲基、乙基、丙基、丁基、戊基、己基以及庚基等的烷基;苯基、甲苯基、二甲苯基以及萘基等的芳基;苄基、苯乙基等的芳烷基;氯甲基、3-氯丙基、3,3,3-三氟丙基等的卤化烷基等。其中,尤其优选为甲基、苯基。
另外,在添加以成分(A)的平均组成式(1)所表示的有机聚硅氧烷的同时,也可配合以下述通式(3)表示的具有水解性基的有机聚硅氧烷(K)。该水解性有机聚硅氧烷的含量,相对于成分(A)优选为0~20质量%的量,更优选为0~10质量%的量。
(在通式(3)中,R4为碳原子数1~6的烷基、R5彼此独立地为碳原子数1~18的饱和或不饱和的非取代或取代的一价烃基,c为5~120。)
以上述通式(3)所示的有机聚硅氧烷辅助将粉末高填充于硅酮组合物中。另外,还可通过该有机聚硅氧烷对粉末的表面进行疏水化处理。
在上述通式(3)中,R4为碳原子数1~6的烷基、例如,可列举甲基、乙基、丙基等的碳原子数1~6的烷基等,但特别优选为甲基、乙基。R5彼此独立地为碳原子数1~18、优选为碳原子数1~10的饱和或不饱和的非取代或取代的一价烃基。作为该一价烃基,可列举例如,甲基、乙基、丙基、己基、辛基、癸基、十二烷基、十四烷基、十六烷基以及十八烷基等烷基;环戊基和环己基等的环烷基;乙烯基和烯丙基等的烯基;苯基和甲苯基等的芳基;2-苯乙基和2-甲基-2-苯乙基等的芳烷基;或用氟、溴、氯等卤原子、氰基等取代这些基团的一部分或所有的氢原子而成的基团,例如,可列举3,3,3-三氟丙基、2-(全氟丁基)乙基、2-(全氟辛基)乙基、对氯苯基等。其中,特别优选为甲基。在上述通式(3)中,c为5~120的整数,优选为10~90的整数。
成分(B):
成分(B)为,振实密度为3.0g/cm3以上,比表面积为2.0m2/g以下的银粉。
为成分(B)的银粉的振实密度如果小于3.0g/cm3,则不能够提升成分(B)对于组合物的填充率,从而组合物的粘度上升,导致操作性变劣,因此,以在3.0g/cm3~10.0g/cm3的范围为宜。优选为4.5g/cm3~10.0g/cm3的范围,更优选为6.0g/cm3~10.0g/cm3的范围。
为成分(B)的银粉的比表面积如果大于2.0m2/g,则不能够提升对于组合物的填充率,从而组合物的粘度上升,导致操作性变劣,因此,以在0.08m2/g~2.0m2/g的范围为宜。优选为0.08m2/g~1.0m2/g的范围,更优选为0.08m2/g~0.5m2/g的范围。
需要说明的是,本说明书所记载的振实密度为,称量出100g银粉,用漏斗柔和地洒落在100ml量筒中后,将该量筒载置于振实密度测定仪上,并以落差距离20mm、60次/分钟的速度振击银粉600次,从而从已压缩的银粉的容积而算出的值。
另外,比表面积为称取约2g银粉作为样品,在60±5℃条件下脱气10分钟后,使用比表面积自动测定装置(BET法)测定了总表面积,其后,称量样品,用下述公式(4)进行计算而算出的值。
比表面积(m2/g)=总表面积(m2)/样品量(g) (4)
为成分(B)的银粉的长径比以2.0~150.0为宜,优选为3.0~100.0的范围,更优选为3.0~50.0的范围为宜。所谓长径比是指粒子的长径和短径的比率(长径/短径)。作为其测定方法,例如,可以拍摄粒子的电子显微镜的照片,从该照片测定粒子的长径和短径,从而算出长径比。粒子的大小能够用从上面拍摄的电子显微镜的照片进行测定。将该从上面拍摄的电子显微镜的照片中的大的直径作为长径进行测定。相对于该长径的短径作为粒子的厚度。但粒子的厚度不能使用该从上面拍摄的电子显微镜的照片进行测定。测定粒子厚度,在拍摄电子显微镜的照片时将放置粒子的试样台倾斜安装,从上面拍摄电子显微镜的照片,用试样台的倾斜角度进行补正,从而可以算出粒子的厚度。具体说来,在用电子显微镜拍摄多枚扩大数千倍的照片后,任意测定100个粒子的长径和短径,然后算出长径和短径的比率(长径/短径),从而得出了平均值。
为成分(B)的银粉的粒径虽无特别地限制,但平均粒径优选为在0.2~50μm的范围,更优选为1.0~30μm的范围为宜。平均粒径为,用微型药勺取1~2勺银粉于100ml烧杯中,再加入约60ml异丙醇,在用超声波均化器使银粉分散1分钟后,可通过激光衍射式粒度分析仪测定的以体积为基准的体积平均粒径[MV]。需要说明的是,其测定时间为30秒。
用于本发明的银粉的制备方法并无特别地限定,可列举例如,电解法、粉碎法、热处理法、雾化法、还原法等。在此,既可直接使用通过上述方法所得到的银粉,也可使用通过在满足上述数值的范围的条件下进行粉碎而得到的银粉。在粉碎银粉时,其装置并无特别地限定,例如可列举捣碎机、球磨机、振动磨机、锤磨机、轧辊机、研钵等的公知的装置。其优选为捣碎机、球磨机、振动磨机、锤磨机。
成分(B)的配合量,相对于成分(A)的100质量份为300~11000质量份。成分(B)的配合量相对于成分(A)的100质量份,若少于300质量份、则所得到的组合物的热传导率变劣;成分(B)的配合量相对于成分(A)的100质量份,若多于11000质量份,则组合物的流动性变劣,从而操作性变劣。成分(B)的配合量,相对于成分(A)的100质量份优选为300~5000质量份、更优选为500~5000质量份的范围。
另外,本发明的热传导性硅酮组合物,除成分(B)以外,在不有损于本发明的效果的范围内,也可兼顾含有无机化合物粉末和/或有机化合物材料。无机化合物粉末其优选为热传导率高的无机化合物粉末,可列举,例如选自铝粉末、氧化锌粉末、氧化钛粉末、氧化镁粉末、氧化铝粉末、氢氧化铝粉末、氮化硼粉末、氮化铝粉末、金刚石粉末、金粉末、铜粉末、炭粉末、镍粉末、铟粉末、镓粉末、金属硅粉末以及二氧化硅粉末中的1种或2种以上。有机化合物材料也优选为热传导率高的有机化合物材料。可列举,例如选自碳素纤维、石墨烯、石墨、碳纳米管以及碳材料中的1种或2种以上。这些无机化合物粉末和有机化合物材料的表面,可根据需要用有机硅烷、有机硅氮烷、有机聚硅氧烷以及有机氟化合物等进行疏水化处理。无机化合物粉末和有机化合物材料的平均粒径,由于不论是小于0.5μm还是大于100μm,其对于所得到的组合物的填充率都得不到提高,因此,其优选为0.5~100μm范围,特别优选为1~50μm的范围。另外,碳素纤维的长度由于不论是小于10μm还是大于500μm,其对于所得到的组合物的填充率都得不到提高,因此,其优选为10~500μm范围,特别优选为30~300μm的范围。无机化合物粉末和有机化合物材料的配合量,相对于成分(A)的100质量份若高于3000质量份、则流动性变劣,从而操作性变劣,因此,优选为0~3000质量份、特别优选为0~2000质量份。
固化催化剂:
另外,本发明组合物通过配合固化催化剂能够形成固化性组合物。本发明组合物如果通过硅氢化反应进行固化的情况下,作为成分(A),添加成分(C)、成分(D)以及铂族催化剂。相对于成分(C)的烯基1摩尔,优选成分(D)的配合量为使成分(D)的与硅原子键合的氢原子为0.1~10摩尔范围内的量,进一步优选使成分(D)的与硅原子键合的氢原子为0.1~5摩尔范围内的量,特别优选为使成分(D)的与硅原子键合的氢原子为0.1~3.0摩尔范围内的量。
铂族催化剂为用于促进本发明组合物的固化的催化剂。可列举例如,氯铂酸、氯铂酸的醇溶液、铂的链烯络合物、铂的烯基硅氧烷络合物以及铂的羰基络合物。
在本发明的组合物中,铂族催化剂的含量为对本发明的组合物的固化所必需的量,即为所谓的催化剂量。具体说来,相对于(A)成分,本成分中的铂金属优选为以质量单位计在0~500ppm范围内的量,特别优选为在0~200ppm范围内的量。
另外,为了调节本发明组合物的固化速度,从而提高操作性,可含有固化反应抑制剂。该固化反应抑制剂可列举为,2-甲基-3-丁炔-2-醇、2-苯基-3-丁炔-2-醇、1-乙炔基-1-环己醇等的乙炔类化合物;3-甲基-3-戊烯-1-炔、3,5-二甲基-3-己烯-1-炔等的烯-炔化合物;其它的肼类化合物、膦类化合物、硫醇类化合物等。该固化反应抑制剂的含量并无限定,其优选为相对于(A)成分100质量份在0.0001~1.0质量份的范围内。
另外,在通过缩合反应固化本发明组合物的情况下,其优选在组合物中作为固化剂含有于一分子中具有至少3个与硅原子键合的水解性基团的硅烷或硅氧烷低聚物;以及作为固化催化剂含有缩合反应用催化剂。在次,作为硅原子键合水解性基团,可例示烷氧基、烷氧烷氧基、酰氧基、酮肟基、链烯氧基、氨基、氨氧基以及酰胺基。另外,除上述的水解性基外,在该硅烷的硅原子上,还可键合例如,与上述同样的直链状烷基、支链状烷基、环状烷基、烯基、芳基、芳烷基以及卤化烷基。作为这样的硅烷或硅氧烷低聚物,可列举例如,四乙氧基硅烷、甲基三乙氧基硅烷、乙烯基三乙氧基硅烷、甲基三(甲基乙基酮肟)硅烷、乙烯基三乙酰氧基硅烷、乙基正硅酸盐、乙烯基三(异丙烯氧基)硅烷。
该硅烷或硅氧烷低聚物的含量,为使本发明的组合物固化所必需的量,具体说来,相对于(A)成分100质量份,优选为在0.01~20质量份的范围内,特别优选为在0.1~10质量份的范围内。
另外,缩合反应用催化剂为任意成分,例如,在将具有氨氧基、氨基、酮肟基等的水解性基团的硅烷作为固化剂使用的情况下可不为必需。作为这样的缩合反应用催化剂,可列举例如,四丁基钛酸酯、四异丙基钛酸酯等的有机钛酸酯;二异丙氧基双(乙酰醋酸酯)钛、二异丙氧基双(乙酰醋酸酯)钛等的有机钛螯合物化合物;三(乙酰丙酮)铝、三(乙酰乙酸乙酯)铝等的有机铝化合物;四(乙酰丙酮)锆、四丁酸锆等的有机锆化合物;二丁基二辛酸锡、二丁基二月桂酸锡、丁基-2-乙基己酸锡等的有机锡化合物;萘酸锡、油酸锡、丁酸锡、萘酸钴、硬脂酸锌等的有机羧酸的金属盐;己胺、磷酸十二胺等的胺化合物以及其盐;苄基三乙基乙酸铵等的季铵盐;醋酸钾等的碱金属的低级脂肪酸盐;二甲基羟胺、二乙基羟胺等的二烷基羟胺;含有胍基的有机硅化合物。
在本发明的组合物中,该缩合反应用催化剂的含量为任意量。在进行配合时,具体说来,相对于(A)成分100质量份,优选为在0.01~20质量份的范围内,特别优选为在0.1~10质量份的范围内。
另外,本发明的组合物如果通过利用有机过氧化物的自由基反应进行固化,其固化催化剂优选使用有机过氧化物。作为该有机过氧化物,可列举例如,苯甲酰过氧化物、二(对甲基苯甲酰)过氧化物、二(邻甲基苯甲酰)过氧化物、二异丙苯过氧化物、2,5-二甲基-2,5-双(叔丁基)己烷过氧化物、二叔丁基过氧化物、苯甲酸叔丁酯过氧化物以及1,1-二(叔丁基过氧化)环已烷。该有机过氧化物的含量为本发明组合物的固化所需要的量,具体说来,相对于(A)成分100质量份,优选为在0.1~5质量份的范围内。
成分(E):
进一步,在本发明的组合物中,作为成分(E)也可以配合以下述通式(2)表示的有机硅烷。
R2bSi(OR3)4-b (2)
[在通式(2)中,R2表示选自任选具有取代基的饱和或不饱和的一价烃基、环氧基、丙烯基以及甲基丙烯基中的1种或2种以上的基团、R3表示为一价烃基、b满足1≤b≤3。]
作为上述通式(2)的R2,可列举例如,甲基、乙基、丙基、己基、辛基、壬基、癸基、十二烷基以及十四烷基等的烷基;环烷基烯基;丙烯基;环氧基;环戊基和环己基等的环烷基;乙烯基和烯丙基等的烯基;苯基和甲苯基等的芳基;2-苯乙基和2-甲基-2-苯乙基等的芳烷基;3.3.3-三氟丙基、2-(全氟丁基)乙基、2-(全氟辛基)乙基、对氯苯基等的卤化烃基等。作为一价烃基的取代基,可列举丙烯酰氧基、甲基丙烯酰氧基等。另外,b为1~3。作为R3,可列举甲基、乙基、丙基、丁基、戊基以及己基等的碳原子数为1~6的1种或2种以上的烷基。其中,特别优选为甲基和乙基。
作为成分(E)的以通式(2)所表示的有机硅烷的具体例子,可例举如下。
C10H21Si(OCH3)3
C12H25Si(OCH3)3
C12H25Si(OC2H5)3
C10H21Si(CH3)(OCH3)2
C10H21Si(C6H6)(OCH3)2
C10H21Si(CH3)(OC2H5)2
C10H21Si(CH=CH2)(OCH3)2
C10H21Si(CH2CH2CF3)(OCH3)2、
CH2=C(CH3)COOC8H16Si(OCH3)3
在添加该有机硅烷的情况下,其添加量为相对于(A)成分100质量份,以添加0.1~20质量份的范围为宜,更优选为添加0.1~10质量份的范围。
本发明的硅酮组合物的制备方法只要是遵循以往的硅酮组合物的制备方法即可,并无特殊的限制。例如,可通过将上述(A)成分和(B)成分以及根据需要的其他成分用三辊混合机、双辊混合机、行星式搅拌机(全部为井上制作所(株式会社)制造的混合机的注册商标)、高速搅拌机(瑞穗工业(株式会社)制造的混合机的注册商标)、HIVIS DISPER混合机(PRIMIX Corporation制造混合机的注册商标)等的混合机进行混合30分钟~4小时而制备。另外,根据需要,也可在50~150℃范围的温度下边加热边进行混合。
本发明的热传导性硅酮组合物,其在25℃下所测定的绝对粘度为10~600Pa·s,优选为50~500Pa·s,更优选为50~400Pa·s。通过将绝对粘度控制在上述范围内,可提供良好的润滑脂,且操作性优异。该绝对粘度可通过用上述配合量调整各成分而获得。上述绝对粘度为使用株式会社马尔科姆公司制造的型号PC-1TL(10rpm)而进行测定所得到的结果。
对以上述的方式所得到的热传导性硅酮组合物,在施加0.01MPa以上的压力的状态下加热至80℃以上,从而使本发明的热传导性硅酮组合物固化。如此得到的固化物的性状并无限定,例如,可列举凝胶状、低硬度的橡胶状或高硬度的橡胶状。
半导体装置:
本发明的半导体装置,其特征在于,本发明的热传导性硅酮组合物介于放热性电子部件的表面和放热体之间。本发明的热传导性硅酮组合物,其优选为以10~200μm的厚度介于上述两者之间。
图1示出了代表性构造,但本发明并不被限定于此。本发明的热传导性硅酮为于图1中的3所示者。
在制造本发明的半导体装置的方法中,其优选为在放热性电子部件和放热体之间,在施加0.01MPa以上的压力的状态下,将本发明的热传导性硅酮组合物加热至80℃以上的方法。此时,所施加的压力,优选为0.01MPa以上,特别优选为0.05MPa~100MPa,更优选为0.1MPa~100MPa。加热温度需要为80℃以上。优选为90℃~300℃,更优选为100℃~300℃,进一步优选为120℃~300℃。
(实施例)
基于进一步明确本发明的效果的目的,通过实施例和比较例对本发明进行更为详细地说明,但本发明并不被这些实施例限制。
以下述的方法进行了有关涉及本发明的效果的试验。
[粘度]
在25℃下,使用马尔科姆粘度计(型号PC-1TL)测定了组合物的绝对粘度。
[热传导率]
在将实施例1~13和比较例1~8的各种组合物分别浇铸在6mm厚的模具内,且在施加0.1MPa的压力的状态下于170℃加热后,均在25℃条件下,通过京都电子工业株式会社制造的TPS-2500S测定了热传导率。有关实施例14、15,在将各组合物浇铸在6mm厚的模具内,且在23±2℃/50±5%RH条件下放置7天后,通过京都电子工业株式会社制造的TPS-2500S,在25℃条件下测定了热传导率。
准备了形成组合物的以下各种成分。
成分(A)
A-1:两末端用二甲基乙烯基甲硅烷基所封端,在25℃下的运动粘度为600mm2/s的二甲基聚硅氧烷
A-2:由((CH3)3SiO1/2)单元和((CH3)2SiO)单元构成、在25℃下的运动粘度为5000mm2/s的有机聚硅氧烷
A-3:以下述通式表示的有机氢聚硅氧烷
A-4:两末端用羟基所封端,在25℃下的运动粘度为5000mm2/s的二甲基聚硅氧烷
A-5(比较例):由((CH3)3SiO1/2)单元和((CH3)2SiO)单元构成的运动粘度为200000mm2/s的有机聚硅氧烷
成分(B)
B-1:振实密度为6.2g/cm3、比表面积为0.48m2/g、长径比为13的银粉
B-2:振实密度为6.4g/cm3、比表面积为0.28m2/g、长径比为8的银粉
B-3:振实密度为9.0g/cm3、比表面积为0.16m2/g、长径比为30的银粉
B-4:振实密度为3.0g/cm3、比表面积为2.0m2/g、长径比为50的银粉
B-5(比较例):振实密度为2.3g/cm3、比表面积为2.3m2/g、长径比为1的银粉
B-6(比较例):振实密度为3.3g/cm3、比表面积为2.11m2/g、长径比为1的银粉
B-7(比较例):振实密度为2.8g/cm3、比表面积为1.8m2/g、长径比为2的银粉
成分(K)
K-1:以下述通式表示的有机聚硅氧烷
成分(E)
E-1:以下述通式表示的有机硅烷
成分(F)固化催化剂
F-1:铂-二乙烯基四甲基二硅氧烷络合物的A-1溶液,且作为铂原子含有1wt%
成分(G)固化反应抑制剂
G-1:1-乙炔基-1-环己醇
成分(H)固化催化剂
H-1:过氧化物(日本油脂株式会社制造商品名∶C)
成分(I)固化剂
I-1:乙烯基三(异丙烯氧基)硅烷
成分(J)缩合反应用催化剂
J-1:四甲基胍基丙基三甲氧基硅烷
实施例1~15和比较例1~8
按下述表1~3所示的组成且按如下所示方法进行混合,从而获得了实施例1~15和比较例1~8的组合物。
即,将成分(A)、成分(K)以及成分(E)放在5公升行星式搅拌机(井上制作所株式会社制造)内,再加入成分(B),在25℃条件下混合1.5小时。然后再添加成分(F)、成分(G)、成分(H)、成分(I)或成分(J),并将其混合至均匀。
表1
单位:质量份
表2
单位:质量份
表3
单位:质量份