本发明涉及有机电致发光材料
技术领域:
,尤其涉及一种二氧化噻吨类有机电致发光材料及其制备方法和应用。
背景技术:
:有机电致发光(OLED:OrganicLightEmissionDiodes)器件技术既可以用来制造新型显示产品,也可以用于制作新型照明产品,有望替代现有的液晶显示和荧光灯照明,应用前景十分广泛。OLED发光器件犹如三明治的结构,包括电极材料膜层,以及夹在不同电极膜层之间的有机功能材料,各种不同功能材料根据用途相互叠加在一起共同组成OLED发光器件。作为电流器件,当对OLED发光器件的两端电极施加电压,并通过电场作用有机层功能材料膜层中正负电荷,正负电荷进一步在发光层中复合,即产生OLED电致发光。当前,OLED显示技术已经在智能手机,平板电脑等领域获得应用,进一步还将向电视等大尺寸应用领域扩展,但是,和实际的产品应用要求相比,OLED器件的发光效率,使用寿命等性能还需要进一步提升。对于OLED发光器件提高性能的研究包括:降低器件的驱动电压,提高器件的发光效率,提高器件的使用寿命等。为了实现OLED器件的性能的不断提升,不但需要从OLED器件结构和制作工艺的创新,更需要OLED光电功能材料不断研究和创新,创制出更高性能OLED的功能材料。应用于OLED器件的OLED光电功能材料从用途上可划分为两大类,即电荷注入传输材料和发光材料,进一步,还可将电荷注入传输材料分为电子注入传输材料、电子阻挡材料、空穴注入传输材料和空穴阻挡材料,还可以将发光材料分为主体发光材料和掺杂材料。针对当前OLED器件的产业应用要求,以及OLED器件的不同功能膜层,器件的光电特性需求,必须选择更适合,具有高性能的OLED功能材料或材料组合,才能实现器件的高效率、长寿命和低电压的综合特性。就当前OLED显示照明产业的实际需求而言,目前OLED材料的发展还远远不够,落后于面板制造企业的要求,作为材料企业开发更高性能的有机功能材料的开发显得尤为重要。技术实现要素:针对现有的OLED材料存在的上述问题,现提供一种二氧化噻吨类有机电致发光材料及其制备方法和应用,旨在提供具有良好的光电性能、能够满足面板制造企业的要求的二氧化噻吨类有机电致发光材料。具体技术方案如下:本发明的第一个方面是提供一种二氧化噻吨类有机电致发光材料,具有这样的特征,上述有机电致发光材料以二氧化噻吨为母核,其结构式如式如式(I)所示:其中,Ar1、Ar2分别独立地选自H、-Ar3-(R1)n或-R2,Ar3选自芳香基团,n取1或2;R1、R2分别独立地选自含有取代基或不含取代基的含有取代基或不含取代基的X1选自氧原子、硫原子、硒原子、二(C1-10直链烷基)取代的季烷基(或叔烷基)、二(C1-10支链烷基)取代的季烷基(或叔烷基)、芳基取代的季烷基(或叔烷基)、烷基取代的叔胺基或芳基取代的叔胺基中的一种。上述的有机电致发光材料,还具有这样的特征,含有取代基的和含有取代基的为至少一个苯环上被或邻位一元取代,即上述取代基通过C1-C2、C2-C3、C3-C4、C4-C5、C1'-C2'、C2'-C3'、C3'-C4'或C4'-C5'键连接,其中,X2、X3、X4分别独立地选自氧原子、硫原子、硒原子、二(C1-10直链烷基)取代的季烷基(或叔烷基)、二(C1-10支链烷基)取代的季烷基(或叔烷基)、芳基取代的季烷基(或叔烷基)、烷基取代的叔胺基或芳基取代的叔胺基中的一种。上述的有机电致发光材料,还具有这样的特征,含有取代基的中至少一个苯环上被取代,且通过C4-C5或C4'-C5'键连接时,X1和X2重叠,只取X1或者X2。上述的有机电致发光材料,还具有这样的特征,X1、X2、X3、X4分别独立地选自氧原子、硫原子、硒原子、二(C1-10直链烷基)取代的季碳、二(C1-10支链烷基)取代的季碳、芳基取代的季碳、烷基取代的叔胺基或芳基取代的叔胺基中的一种。上述的有机电致发光材料,还具有这样的特征,Ar3选自苯基、二联苯基、三联苯基、萘基、蒽基或菲基中的一种。优选的,R1、R2分别独立地选自如下结构中的任一种:优选的,本发明提供的有机电致发光材料优选为如下A1-A24、B1-B23中的任意一种:以上为一些具体的结构形式,但本发明中提供的二氧化噻吨类有机电致发光材料不局限于所列的这些化学结构,凡是以式(Ⅰ)为基础,取代基为定义的所有范围内基团的简单变换的化合物都应包含在内。本发明的第二个方面是提供上述有机电致发光材料的制备方法,具有这样的特征,向反应瓶中装入称取的二氧化噻吨的溴代化合物、胺基化合物,加入反应溶剂,再加入催化剂、配体和碱,在惰性气氛下,将上述反应物的混合溶液于95-100℃反应10-24小时,停止反应后经冷却、过滤、柱层析,得到有机电致发光材料,其合成路线如下:上述的制备方法,还具有这样的特征,二氧化噻吨的溴代化合物与胺基化合物的摩尔比为1:1.0-4.0。上述的制备方法,还具有这样的特征,催化剂为Pd2(dba)3,并且,催化剂与二氧化噻吨的溴代化合物的摩尔比为0.006-0.02:1;配体为三叔丁基磷,并且,配体与二氧化噻吨的溴代化合物的摩尔比为0.006-0.02:1。上述的制备方法,还具有这样的特征,碱为叔丁醇钠,并且,碱为叔丁醇钠,碱与二氧化噻吨的溴代化合物的摩尔比为1.0-6.0:1。上述的制备方法,还具有这样的特征,反应溶剂选自但不限于甲苯、苯、二甲苯中的一种。需要说明的是,本领域的技术人员在上述技术方案的基础上应可以合理的选择并量取反应溶剂。本发明的第三个方面是提供上述二氧化噻吨类有机电致发光材料在制备有机电致发光器件中的应用。本发明的第四个方面是提供一种有机电致发光器件,包括多个功能层,还具有这样的特征,至少有一个功能层含有上述的二氧化噻吨类有机电致发光材料。本发明中所制备的有机电致发光器件一般包括依次叠加的ITO导电玻璃衬底、空穴传输层、发光层(涉及本发明中提供的二氧化噻吨类有机电致发光材料)、电子传输层、电子注入层(LiF)和阴极层(Al),所有功能层均采用真空蒸镀工艺制成。应当理解,本发明中制作OLED器件的目的,只是为了更好地说明,本发明中提供的二氧化噻吨类有机电致发光材料所具有的电致发光能力,而并非是对本发明所提供的有机电致发光材料的应用范围的限制。上述方案的有益效果是:本发明提供的二氧化噻吨类有机电致发光材料中,以二氧化噻吨为母核,连接芳香杂环基团,破坏了分子对称性,从而破坏分子的结晶性,避免了分子间的聚集作用,具有好的成膜性,且分子中多为刚性基团,因而提高材料的热稳定性;同时,本发明提供的二氧化噻吨类有机电致发光材料具有D-A结构,电子和空穴分布更加平衡,且具有合适的HOMO和LUMO能级,可有效提高高激子利用率和高荧光辐射效率,降低高电流密度下的效率滚降,降低器件电压,改善器件在高电流密度下效率滚降问题;应用本发明提供的二氧化噻吨类有机电致发光材料的器件的电流效率、功率效率和外量子效率、寿命提升非常明显。本发明提供的二氧化噻吨类有机电致发光材料具有良好的应用效果和产业化前景。附图说明图1为本发明的实施例中提供的有机电致发光器件的结构示意图,由下层至上层,依次为透明基板层(1)、透明电极层(2)、空穴注入层(3)、空穴传输层(4)、发光层(5)、电子传输层(6)、电子注入层(7)、阴极反射电极层(8),其中,发光层(5)涉及到本发明中所提供的二氧化噻吨类有机电致发光材料。具体实施方式下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。下面结合附图和具体实施例对本发明作进一步说明,但不作为本发明的限定。实施例1化合物A1250ml的三口瓶,在通入氮气的气氛下,加入0.01mol9-苯基-9-(4-溴苯基)10,10-二氧化噻吨,0.011mol化合物C1,0.03mol叔丁醇钠,1×10-4molPd2(dba)3,1×10-4mol三叔丁基磷,150ml甲苯,加热回流24小时,取样点板,自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物,纯度99.63%,收率57%。元素分析结构(分子式C46H33NSO3):理论值:C,81.27;H,4.89;N,2.06;O,7.06测试值:C,81.39;H,4.90;N,2.36;O,7.40。高分辨质谱,ESI源,正离子模式,分子式C46H33NSO3,理论值:679.22,测试值:678.23。实施例2化合物A2250ml的三口瓶,在通入氮气的气氛下,加入0.01mol9-苯基-9-(4-溴苯基)10,10-二氧化噻吨,0.011mol化合物C2,0.03mol叔丁醇钠,1×10-4molPd2(dba)3,1×10-4mol三叔丁基磷,150ml甲苯,加热回流24小时,取样点板,自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物,纯度99.46%,收率52%。元素分析结构(分子式C46H33NO3S):理论值:C,81.27;H,4.89;N,2.06;O,7.06;S,4.72测试值:C,81.02;H,4.75;N,2.18;O,7.19;S,4.62。高分辨质谱,ESI源,正离子模式,分子式C46H33NO3S,理论值:679.22,测试值:678.28。实施例3化合物A3250ml的三口瓶,在通入氮气的气氛下,加入0.01mol9-苯基-9-(4-溴苯基)10,10-二氧化噻吨,0.011mol化合物C3,0.03mol叔丁醇钠,1×10-4molPd2(dba)3,1×10-4mol三叔丁基磷,150ml甲苯,加热回流24小时,取样点板,自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物,纯度99.75%,收率65%。元素分析结构(分子式C46H33NO3S):理论值:C,81.27;H,4.89;N,2.06;O,7.06;S,4.72测试值:C,80.95;H,4.65;N,2.17;O,7.56;S,4.43。高分辨质谱,ESI源,正离子模式,分子式C46H33NO3S,理论值:679.22,测试值:678.66。实施例4化合物A4250ml的三口瓶,在通入氮气的气氛下,加入0.01mol9-苯基-9-(4-溴苯基)10,10-二氧化噻吨,0.011mol化合物C4,0.03mol叔丁醇钠,1×10-4molPd2(dba)3,1×10-4mol三叔丁基磷,150ml甲苯,加热回流24小时,取样点板,自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物,纯度99.77%,收率48%。元素分析结构(分子式C52H38N2O2S):理论值:C,82.73;H,5.07;N,3.71;O,4.24;S,4.25测试值:C,82.33;H,4.87;N,3.92;O,4.10;S,4.11。高分辨质谱,ESI源,正离子模式,分子式C52H38N2O2S,理论值:754.27,测试值:754.34。实施例5化合物A5250ml的三口瓶,在通入氮气的气氛下,加入0.01mol9-苯基-9-(4-溴苯基)10,10-二氧化噻吨,0.011mol化合物C5,0.03mol叔丁醇钠,1×10-4molPd2(dba)3,1×10-4mol三叔丁基磷,150ml甲苯,加热回流24小时,取样点板,自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物,纯度99.35%,收率47%。元素分析结构(分子式C56H37NO3S):理论值:C,83.66;H,4.64;N,1.74;O,5.97;S,3.99测试值:C,81.53;H,5.67;N,1.54;O,6.21;S,4.85。高分辨质谱,ESI源,正离子模式,分子式C56H37NO3S,理论值:803.25,测试值:803.29。实施例6化合物A6250ml的三口瓶,在通入氮气的气氛下,加入0.01mol9-苯基-9-(4-溴苯基)10,10-二氧化噻吨,0.011mol化合物C6,0.03mol叔丁醇钠,1×10-4molPd2(dba)3,1×10-4mol三叔丁基磷,150ml甲苯,加热回流24小时,取样点板,自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物,纯度99.44%,收率60%。元素分析结构(分子式C49H32N2O3S):理论值:C,80.75;H,4.43;N,3.84;O,6.59;S,4.40测试值:C,79.88;H,5.42;N,3.54;O,6.32;S,4.75。高分辨质谱,ESI源,正离子模式,分子式C49H32N2O3S,理论值:728.21,测试值:727.36。实施例7化合物A7250ml的三口瓶,在通入氮气的气氛下,加入0.01mol9-苯基-9-(4-溴苯基)10,10-二氧化噻吨,0.011mol化合物C7,0.03mol叔丁醇钠,1×10-4molPd2(dba)3,1×10-4mol三叔丁基磷,150ml甲苯,加热回流24小时,取样点板,自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物,纯度99.57%,收率62%。元素分析结构(分子式C49H32N2O3S):理论值:C,80.75;H,4.43;N,3.84;O,6.59;S,4.40测试值:C,77.85;H,6.23;N,2.96;O,7.43;S,4.35。高分辨质谱,ESI源,正离子模式,分子式C49H32N2O3S,理论值:728.21,测试值:727.47。实施例8化合物A8250ml的三口瓶,在通入氮气的气氛下,加入0.01mol9-苯基-9-(4-溴苯基)10,10-二氧化噻吨,0.011mol化合物C8,0.03mol叔丁醇钠,1×10-4molPd2(dba)3,1×10-4mol三叔丁基磷,150ml甲苯,加热回流24小时,取样点板,自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物,纯度99.49%,收率54%。元素分析结构(分子式C55H37N3O2S):理论值:C,82.17;H,4.64;N,5.23;O,3.98;S,3.99测试值:C,81.98;H,5.44;N,5.45;O,3.53;S,3.12。高分辨质谱,ESI源,正离子模式,分子式C55H37N3O2S,理论值:803.26,测试值:803.61。实施例9化合物A9250ml的三口瓶,在通入氮气的气氛下,加入0.01mol9-苯基-9-(4-溴苯基)10,10-二氧化噻吨,0.011mol化合物C9,0.03mol叔丁醇钠,1×10-4molPd2(dba)3,1×10-4mol三叔丁基磷,150ml甲苯,加热回流24小时,取样点板,自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物,纯度99.73%,收率63%。元素分析结构(分子式C46H33NO3S):理论值:C,81.27;H,4.89;N,2.06;O,7.06;S,4.72测试值:C,80.33;H,5.79;N,2.26;O,8.06;S,3.52。高分辨质谱,ESI源,正离子模式,分子式C46H33NO3S,理论值:679.22,测试值:679.47。实施例10化合物A10250ml的三口瓶,在通入氮气的气氛下,加入0.01mol9-苯基-9-(4-溴苯基)10,10-二氧化噻吨,0.011mol化合物C10,0.03mol叔丁醇钠,1×10-4molPd2(dba)3,1×10-4mol三叔丁基磷,150ml甲苯,加热回流24小时,取样点板,自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物,纯度99.52%,收率65%。元素分析结构(分子式C46H33NO4S):理论值:C,79.40;H,4.78;N,2.01;O,9.20;S,4.61测试值:C,78.25;H,5.48;N,1.55;O,10.22;S,4.31。高分辨质谱,ESI源,正离子模式,分子式C46H33NO4S,理论值:695.21,测试值:695.25。实施例11化合物B1250ml的三口瓶,在通入氮气的气氛下,加入0.01mol9,9-二-(4-溴苯基)-9H-10,10-二氧化噻吨,0.022mol化合物C1,0.03mol叔丁醇钠,1×10-4molPd2(dba)3,1×10-4mol三叔丁基磷,150ml甲苯,加热回流24小时,取样点板,自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物,纯度99.63%,收率57%。元素分析结构(分子式C67H48N2O4S):理论值:C,82.35;H,4.95;N,2.87;O,6.55;S,3.28测试值:C,82.38;H,4.94;N,2.86;O,6.54;S,3.28。高分辨质谱,ESI源,正离子模式,分子式C46H33NSO3,理论值:976.33,测试值:976.53。实施例12化合物B2250ml的三口瓶,在通入氮气的气氛下,加入0.01mol9,9-二-(4-溴苯基)-9H-10,10-二氧化噻吨,0.022mol化合物C2,0.03mol叔丁醇钠,1×10-4molPd2(dba)3,1×10-4mol三叔丁基磷,150ml甲苯,加热回流24小时,取样点板,自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物,纯度99.46%,收率52%。元素分析结构(分子式C67H48N2O4S):理论值:C,82.35;H,4.95;N,2.87;O,6.55;S,3.28测试值:C,82.40;H,4.95;N,2.84;O,6.58;S,3.23。高分辨质谱,ESI源,正离子模式,分子式C67H48N2O4S),理论值:976.33,测试值:976.58。实施例13化合物B3250ml的三口瓶,在通入氮气的气氛下,加入0.01mol9,9-二-(4-溴苯基)-9H-10,10-二氧化噻吨,0.022mol化合物C3,0.03mol叔丁醇钠,1×10-4molPd2(dba)3,1×10-4mol三叔丁基磷,150ml甲苯,加热回流24小时,取样点板,自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物,纯度99.75%,收率65%。元素分析结构(分子式C67H48N2O4S):理论值:C,82.35;H,4.95;N,2.87;O,6.55;S,3.28测试值:C,82.42;H,4.98;N,2.81;O,6.58;S,3.21。高分辨质谱,ESI源,正离子模式,分子式C67H48N2O4S),理论值:976.33,测试值:976.36。实施例14化合物B4250ml的三口瓶,在通入氮气的气氛下,加入0.01mol9,9-二-(4-溴苯基)-9H-10,10-二氧化噻吨,0.022mol化合物C4,0.03mol叔丁醇钠,1×10-4molPd2(dba)3,1×10-4mol三叔丁基磷,150ml甲苯,加热回流24小时,取样点板,自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物,纯度99.77%,收率48%。元素分析结构(分子式C79H58N4O2S):理论值:C,84.16;H,5.19;N,4.97;O,2.84;S,2.84测试值:C,84.18;H,5.22;N,4.95;O,2.83;S,2.82。高分辨质谱,ESI源,正离子模式,分子式C79H58N4O2S,理论值:1126.43,测试值:1126.64。实施例15化合物B5250ml的三口瓶,在通入氮气的气氛下,加入0.01mol9,9-二-(4-溴苯基)-9H-10,10-二氧化噻吨,0.022mol化合物C5,0.03mol叔丁醇钠,1×10-4molPd2(dba)3,1×10-4mol三叔丁基磷,150ml甲苯,加热回流24小时,取样点板,自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物,纯度99.35%,收率47%。元素分析结构(分子式C87H56N2O4S):理论值:C,85.27;H,4.61;N,2.29;O,5.22;S,2.62测试值:C,85.36;H,4.60;N,2.24;O,5.23;S,2.57。高分辨质谱,ESI源,正离子模式,分子式C87H56N2O4S,理论值:1224.40,测试值:1224.46。实施例16化合物B6250ml的三口瓶,在通入氮气的气氛下,加入0.01mol9,9-二-(4-溴苯基)-9H-10,10-二氧化噻吨,0.022mol化合物C6,0.03mol叔丁醇钠,1×10-4molPd2(dba)3,1×10-4mol三叔丁基磷,150ml甲苯,加热回流24小时,取样点板,自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物,纯度99.44%,收率60%。元素分析结构(分子式C73H46N4O4S):理论值:C,81.54;H,4.31;N,5.21;O,5.95;S,2.98测试值:C,81.63;H,4.26;N,5.20;O,5.99;S,2.92。高分辨质谱,ESI源,正离子模式,分子式C73H46N4O4S,理论值:1074.32,测试值:1074.39。实施例17化合物B7250ml的三口瓶,在通入氮气的气氛下,加入0.01mol9,9-二-(4-溴苯基)-9H-10,10-二氧化噻吨,0.022mol化合物C7,0.03mol叔丁醇钠,1×10-4molPd2(dba)3,1×10-4mol三叔丁基磷,150ml甲苯,加热回流24小时,取样点板,自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物,纯度99.57%,收率62%。元素分析结构(分子式C73H46N4O4S):理论值:C,81.54;H,4.31;N,5.21;O,5.95;S,2.98测试值:C,81.63;H,4.23;N,5.25;O,5.97;S,2.92。高分辨质谱,ESI源,正离子模式,分子式C73H46N4O4S,理论值:1074.32,测试值:1074.56。实施例18化合物B8250ml的三口瓶,在通入氮气的气氛下,加入0.01mol9,9-二-(4-溴苯基)-9H-10,10-二氧化噻吨,0.022mol化合物C8,0.03mol叔丁醇钠,1×10-4molPd2(dba)3,1×10-4mol三叔丁基磷,150ml甲苯,加热回流24小时,取样点板,自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物,纯度99.49%,收率54%。元素分析结构(分子式C85H56N6O2S):理论值:C,83.31;H,4.61;N,6.86;O,2.61;S,2.62测试值:C,83.35;H,4.55;N,6.84;O,2.60;S,2.66。高分辨质谱,ESI源,正离子模式,分子式C85H56N6O2S,理论值:1224.42,测试值:1224.51。实施例19化合物B9250ml的三口瓶,在通入氮气的气氛下,加入0.01mol9,9-二-(4-溴苯基)-9H-10,10-二氧化噻吨,0.022mol化合物C9,0.03mol叔丁醇钠,1×10-4molPd2(dba)3,1×10-4mol三叔丁基磷,150ml甲苯,加热回流24小时,取样点板,自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物,纯度99.73%,收率63%。元素分析结构(分子式C67H48N2O4S):理论值:C,82.35;H,4.95;N,2.87;O,6.55;S,3.28测试值:C,82.33;H,4.79;N,2.86;O,6.46;S,3.56。高分辨质谱,ESI源,正离子模式,分子式C67H48N2O4S,理论值:976.33,测试值:976.67。实施例20化合物B10250ml的三口瓶,在通入氮气的气氛下,加入0.01mol9,9-二-(4-溴苯基)-9H-10,10-二氧化噻吨,0.022mol化合物C10,0.03mol叔丁醇钠,1×10-4molPd2(dba)3,1×10-4mol三叔丁基磷,150ml甲苯,加热回流24小时,取样点板,自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物,纯度99.52%,收率65%。元素分析结构(分子式C67H48N2O6S):理论值:C,79.74;H,4.79;N,2.78;O,9.51;S,3.18测试值:C,79.76;H,4.74;N,2.71;O,9.57;S,3.22。高分辨质谱,ESI源,正离子模式,分子式C67H48N2O6S,理论值:1008.32,测试值:1008.35。对本发明中化合物A1、化合物A2、化合物B1、化合物B2、现有材料CBP、BD1进行热性能、发光光谱、荧光量子效率以及循环伏安稳定性的测试,测试结果如下表所示:化合物Tg(℃)Td(℃)λPL(nm)Φf(%)循环伏安稳定性化合物A112237945177.5优化合物B113238247279.5优材料CBP11335336926.1差化合物A212536844475.3优化合物B213437746177.3优材料BD1-33448628.3差上述测试中,玻璃化温度Tg由示差扫描量热法(DSC,德国耐驰公司DSC204F1示差扫描量热仪)测定,升温速率10℃/min;热失重温度Td是在氮气气氛中失重1%的温度,在日本岛津公司的TGA-50H热重分析仪上进行测定,氮气流量为20mL/min;λPL是样品溶液荧光发射波长,利用日本拓普康SR-3分光辐射度计测定;Φf是固体粉末荧光量子效率(利用美国海洋光学的Maya2000Pro光纤光谱仪,美国蓝菲公司的C-701积分球和海洋光学LLS-LED光源组成的测试固体荧光量子效率测试系统,参照文献(Adv.Mater.1997,9,230-232的方法进行测定);循环伏安稳定性是通过循环伏安法测试材料的氧化还原特性来进行鉴定;测试条件:测试样品溶于体积比为2:1的二氯甲烷和乙腈混合溶剂,浓度1mg/mL,电解液是0.1M的四氟硼酸四丁基铵或六氟磷酸四丁基铵的有机溶液。参比电极是Ag/Ag+电极,对电极为钛板,工作电极为ITO电极,循环次数为20次。由上表分析可知,本发明化合物具有合适的发光光谱,较高的Φf,适合作为发光层材料;同时,本发明化合物具有较好的氧化还原稳定性,较高的热稳定性,使得应用本发明化合物的OLED器件效率和寿命得到提升。有机电致发光器件实施例本发明的实施例21-28中以部分上述有机电致发光材料制备获得器件1-8,应当理解,器件实施过程与结果,只是为了更好地解释本发明,并非对本发明的限制,上述有机电致发光器件的制备方法如下:a)对ITO阳极层(膜厚为150nm)依次进行碱洗涤、纯水洗涤、干燥,再进行紫外线-臭氧洗涤以清除透明ITO阳极层2表面的有机残留物。b)在ITO阳极层上蒸镀空穴注入层(MoO3),膜厚为10nm;c)在空穴注入层上蒸镀空穴传输层(TAPC),膜厚80nm;d)在空穴传输层上蒸镀发光层,膜厚30nm;e)在发光层上蒸镀电子传输层(TPBI),膜厚为40nm;f)在电子传输层上蒸镀电子注入层装置(LiF),膜厚1nm;g)在电子注入层上蒸镀阴极反射电极层(Al),膜厚80nm;其中,各物质的结构式如下:如上完成器件1-9及对比器件1后,用公知的驱动电路将阳极和阴极连接起来,测量器件的电流效率,发光光谱以及器件的寿命,器件1-9及对比器件1的主要结构层及测试结果如下表所示:其中,GD19的结构式为:上述测试中以比较例1作为参照,比较例1器件各项性能指标设为1.0。比较例1的电流效率为6.5cd/A(@10mA/cm2);CIE色坐标为(0.32,0.61);5000亮度下LT95寿命衰减为3.8Hr。本发明的实施例29-32中以部分上述有机电致发光材料制备获得器件9-12,本发明中实施例29-32与实施例21中器件的制作工艺相同,区别在于发光层结构不同。如上完成器件9-12及对比器件2后,用公知的驱动电路将阳极和阴极连接起来,测量器件的电流效率,发光光谱以及器件的寿命,器件1-9及对比器件2的主要结构层及测试结果如下表所示:其中,BD1的结构式为:由上表分析可知,本发明提供的二氧化噻吨类有机电致发光材料无论是作为发光层的主体材料,还是作为发光层的掺杂材料,器件的电流效率、寿命均比已知OLED材料获得较大改观,特别是器件高电流密度下的效率滚降获得改善。本发明所述化合物在OLED发光器件中具有良好的应用效果,具有良好的产业化前景。以上所述仅为本发明较佳的实施例,并非因此限制本发明的实施方式及保护范围,对于本领域技术人员而言,应当能够意识到凡运用本发明说明书及图示内容所作出的等同替换和显而易见的变化所得到的方案,均应当包含在本发明的保护范围内。当前第1页1 2 3