i)技术领域
描述了一种将柔性纤维与合适的热塑性聚合物和偶联剂结合的系统和方法,其中所述方法产生呈粒料、薄膜或三维可模制产品形式的完全均匀、无空隙的透明热塑性复合材料。
ii)现有技术描述
生物纤维作为热塑性复合材料中的增强组分在过去几十年中引起了极大的关注,这主要是由于增加的环境问题,但也由于它们的高性能和它们的低密度。如今,纤维增强热塑性塑料中使用的主要纤维仍然是合成纤维(主要是玻璃纤维),所述合成纤维由于它们的低成本和良好的机械性质而被广泛使用。与玻璃纤维相比,生物纤维是碳中和的、可再生的、可回收利用的并且在相似的性能下具有低得多的密度。在过去的二十年中,生物纤维增强的热塑性塑料越来越多地用于汽车、建筑、家具和其他行业。在汽车领域内,聚丙烯(pp)是典型的热塑性树脂,并且生物纤维增强的热塑性塑料已经广泛用于非结构性汽车零件,如门板、杂物盘、座椅靠背、后备箱衬垫等。
生物纤维-pp复合材料的缺点是它们在界面处的固有不相容性。纤维素的高极性表面导致与非极性聚丙烯的界面相容性差。已经研究了许多策略来改进聚合物-纤维界面相互作用。在策略中,马来酸酐-接枝聚合物被认为是非常有效的并且已经广泛用于商业规模。偶联剂上的酸酐基团可通过酯化与纤维素上的羟基形成共价键。因此,可降低纤维素表面的极性,并且进而改进与非极性聚合物的相容性。聚合物/纤维素复合材料的机械性质最终应该增加。
共挤出已经广泛用于将热塑性聚合物与添加剂和增强材料(reinforcement)配混,由此共挤出机的双螺杆用于将添加剂或增强材料共混到热塑性熔体中。可同向或反向旋转的双螺杆的设计可以是具有所需属性的产品的最终设计的关键方面。在共挤出过程中,气泡可能被捕获,特别是在试图挤出不相容和不均匀的成分时。这些气泡可能是在复合材料产品中产生微裂纹的位置,以及增强材料与聚合物之间的弱界面。一些发明人(美国专利4,067,554和4,063,718)已尝试使用双螺杆挤出机来使热塑性塑料和弹性体脱气,而其他发明人(美国专利申请2011/0001255a1)使用共挤出使制备的聚氨酯泡沫脱气。共挤出也已用于制备纤维状多孔衬底(美国专利申请2009/0166910a1),其与本文所述的目标相反。
技术实现要素:
根据一个实施方案,提供了一种复合材料,所述复合材料包括:50wt.%至96wt.%的热塑性树脂;0.1wt.%至10wt.%的增容剂;以及2wt.%至40wt.%的木浆纤维,其中所述复合材料包含小于0.5wt.%的水。
根据另一个实施方案,提供了本文所述的复合材料,其中所述热塑性塑料是聚烯烃、聚酯树脂或共聚物树脂。
根据另一个实施方案,提供了本文所述的复合材料,其中所述聚烯烃是聚丙烯或聚乙烯。
根据另一个实施方案,提供了本文所述的复合材料,其中所述聚酯是聚乳酸。
根据另一个实施方案,提供了本文所述的复合材料,其中所述共聚物是丙烯腈-丁二烯-苯乙烯三元共聚物。
根据另一个实施方案,提供了本文所述的复合材料,其中所述热塑性树脂是复合材料的55wt.%至90wt.%。
根据另一个实施方案,提供了本文所述的复合材料,其还包含10wt.%至20wt.%的玻璃纤维。
根据另一个实施方案,提供了本文所述的复合材料,其包括根据astmd1238在230℃/2.16kg下测量的10至22g/10min的熔体流动速率。
根据另一个实施方案,提供了本文所述的复合材料,其中所述木浆纤维是复合材料的2wt.%至40wt.%。
根据另一个实施方案,提供了本文所述的复合材料,其中所述复合材料还包含选自由纤维素纳米丝和碳纳米丝组成的组的丝状材料。
根据另一个实施方案,提供了本文所述的复合材料,其中所述复合材料是半透明的。
根据另一个实施方案,提供了一种复合材料,其包含55wt.%至90wt.%的热塑性塑料;0.1wt.%至10wt.%的马来酸酐;以及小于或等于40wt.%的木浆纤维,其中所述复合材料包含小于0.5wt.%的水。
根据另一个实施方案,提供了本文所述的复合材料,其中所述热塑性塑料是聚烯烃、聚酯或共聚物树脂。
根据另一个实施方案,提供了本文所述的复合材料,其中所述聚烯烃是聚丙烯或聚乙烯。
根据另一个实施方案,提供了本文所述的复合材料,其中所述聚酯是聚乳酸。
根据另一个实施方案,提供了本文所述的复合材料,其中所述共聚物是丙烯腈-丁二烯-苯乙烯三元共聚物。
根据另一个实施方案,提供了本文所述的复合材料,其包括根据astmd1238在230℃/2.16kg下测量的10至22g/10min的熔体流动速率。
根据另一个实施方案,提供了一种用于生产复合材料的方法,所述方法包括:提供木浆纤维水性悬浮液;提供增容剂;将所述木浆纤维水性悬浮液与所述增容剂混合以产生适于热塑性共混的接枝纤维;在真空辅助共挤出机中提供热塑性树脂,以及在受控温度下共挤出所述热塑性树脂和所述接枝纤维以产生所述复合材料。
根据另一个实施方案,提供了本文所述的方法,其中其中所述增容剂的马来酸酐含量大于40mgkoh/g且小于50mgkoh/g,并且分子量在8000与10000之间。
根据另一个实施方案,提供了本文所述的方法,其中所述木浆纤维的混合还包括与所述增容剂混合的浆丝状材料的悬浮液。
根据另一个实施方案,提供了本文所述的方法,其中所述木浆纤维或丝状材料水性悬浮液是30wt.%至40wt.%固体。
根据另一个实施方案,提供了本文所述的方法,其中与木浆纤维或丝状水性悬浮液一起提供玻璃纤维。
根据另一个实施方案,提供了本文所述的方法,其中所述热塑性塑料是聚烯烃、聚酯或共聚物。
根据另一个实施方案,提供了本文所述的复合材料,其中所述聚烯烃是聚丙烯或聚乙烯。
根据另一个实施方案,提供了本文所述的复合材料,其中所述聚酯是聚乳酸。
根据另一个实施方案,提供了本文所述的复合材料,其中所述共聚物是丙烯腈-丁二烯-苯乙烯三元共聚物。
根据另一个实施方案,提供了一种用于生产复合材料的方法,所述方法包括:提供木浆纤维水性悬浮液;提供热塑性树脂增容剂;用所述基于马来酸酐的增容剂接枝所述木浆纤维,以及在真空辅助共挤出机中与热塑性树脂共挤出以产生所述半透明的复合材料。
根据另一个实施方案,提供了本文所述的方法,其中提供所述木浆纤维水性悬浮液还包括选自由纤维素纳米丝、粘土纳米丝和碳纳米丝组成的组的丝状材料。
根据另一个实施方案,提供了本文所述的方法,其中所述木浆纤维水性悬浮液和/或木浆丝状水性悬浮液是30wt.%至40wt.%固体。
根据另一个实施方案,提供了本文所述的方法,其中与木浆纤维或丝状水性悬浮液一起提供玻璃纤维。
根据另一个实施方案,提供了一种用于生产复合材料的方法,所述方法包括:提供干木浆纤维;提供增容剂;将所述干木浆纤维与所述增容剂混合以产生适于热塑性共混的接枝纤维;在真空辅助共挤出机中提供热塑性树脂,以及在受控温度下共挤出所述热塑性树脂和所述接枝纤维以产生所述复合材料。
根据另一个实施方案,提供了本文所述的方法,其中其中所述增容剂的马来酸酐含量大于40mgkoh/g且小于50mgkoh/g,并且分子量在8000与10000之间。
根据另一个实施方案,提供了本文所述的方法,其中所述木浆纤维的混合还包括与所述增容剂混合的干浆丝状材料。
根据另一个实施方案,提供了本文所述的方法,其中使用锤磨机加工所述干木浆纤维或丝状材料。
根据另一个实施方案,提供了本文所述的方法,其中与木浆纤维或丝状材料一起提供玻璃纤维。
根据另一个实施方案,提供了本文所述的方法,其中所述热塑性塑料是聚烯烃、聚酯或共聚物。
根据另一个实施方案,提供了本文所述的复合材料,其中所述聚烯烃是聚丙烯或聚乙烯。
根据另一个实施方案,提供了本文所述的复合材料,其中所述聚酯是聚乳酸。
根据另一个实施方案,提供了本文所述的复合材料,其中所述共聚物是丙烯腈-丁二烯-苯乙烯三元共聚物。
附图说明
图1是根据一个实施方案的本文描述的方法的过程框图;
图2是双螺杆挤出机系统的示意性图示,所述系统包括6个区,包括进料区,其中在每个区中精确控制温度。如本文所公开的真空系统在冲模之前引入区6中,以便在前5个区中允许复合材料成分的充分混合并且最好地促进混合;
图3a是沿着六个区的双螺杆共挤出机中的螺杆构造的示意图;
图3b示出用于图3a的挤出机的挤出螺杆(ext);
图3c示出用于图3a的挤出机的进给螺杆(fs);
图3d示出用于图3a的挤出机的反向进给螺杆(rfs);
图3e示出用于图3a的挤出机的半进给螺杆(fs/2);
图3f示出用于图3a的挤出机的反向半进给螺杆(rfs/2);
图3g示出图3a的挤出机的混合元件0°偏移;
图3h示出用于图3a的挤出机的混合元件90°偏移;
图4a是nbsk(北方漂白软木牛皮纸)浆纤维的生物复合材料的粒料和薄膜(用fpinnovations鉴定)半透明样品的照片;
图4b是山杨牛皮纸(aspenkraft)浆纤维的生物复合材料的粒料和薄膜(用fpinnovations鉴定)半透明样品的照片;
图4c是bctmp(漂白的化学-热机械浆)纤维的生物复合材料的粒料和薄膜(用fpinnovations鉴定)半透明样品的照片;
图4d是mdf(中密度纤维)浆的生物复合材料的粒料和薄膜(用fpinnovations鉴定)半透明样品的照片,较深的颜色是由于浆中存在较高量的木质素;
图5是与本文所述的生物复合材料和混合复合材料的密度相比的机械性能的示意性图示。
图6a-1和6a-2是描绘拉伸测试前生物复合材料试样的形态的扫描电子显微照片(sem)图像;
图6b-1和6b-2是描绘拉伸测试后的生物复合材料试样的扫描电子显微照片(sem)图像;
图6c-1和6c-2是描绘拉伸测试前的混合复合材料试样的扫描电子显微照片(sem)图像;
图6d-1和6d-2是描绘拉伸测试后的混合生物复合材料试样的扫描电子显微照片(sem)图像;
图7是包含木浆、玻璃纤维和聚丙烯的混合复合材料的动态力学分析的图,其中北方漂白软木牛皮纸(nbsk)或中密度(mdf)纤维用于木浆:7(a)储能模量;
图7b是tanδ或损耗因子对比温度的图,在张力模式下对perkinelmerdma8000进行动态力学分析(dma),并且将复合材料样品切割成厚度为0.4mm的5mm宽的条带。标距长度或夹具之间的距离被设定为10mm,并且使用0.02mm的固定应变和3℃.min-1的温度斜升在1hz的等时条件中进行测量。检查了三种混合复合材料组合物。b样品由5wt.%木质纤维(nbsk或mdf)、5wt.%偶联剂和90wt.%聚丙烯组成。d样品由10wt.%木质纤维(nbsk或mdf)、10wt.%偶联剂、10wt.%玻璃纤维和70wt.%聚丙烯组成。g样品由5wt.%木质纤维(nbsk或mdf)、5wt.%偶联剂、20wt.%玻璃纤维和70wt.%聚丙烯组成。
图8a、8b、8c和8d是本文所述的复合材料试样的扫描电子显微照片(sem),其说明适形的柔性木浆纤维的性质,以及它们与热塑性树脂的良好粘附,还可见其他玻璃纤维;
图9是柔性适形纤维如何改进熔体流动特性的示意性图示,其中当复合材料熔体流动通过共挤出机时纤维似乎引导较硬的玻璃纤维。
表格说明
表格1:包含5wt.%木浆纤维、5wt.%偶联剂和90wt.%热塑性聚合物的生物复合材料的机械性质。检查了四种类型的木浆纤维:北方漂白软木牛皮纸(nbsk)、漂白的化学-热机械浆(bctmp)、中密度纤维(mdf)和山杨硬木牛皮纸(山杨牛皮纸)。
表2:含有bctmp纤维的生物复合材料的机械性质。纤维负载量从0wt.%至40wt.%变化。偶联剂的负载量是木浆纤维负载量的10wt.%。
表3:含有玻璃纤维的常规短纤维复合材料和含有柔性bctmp纤维和硬玻璃纤维两者的混合复合材料的机械性质。纤维负载量在表中示出。偶联剂用于混合复合材料,并且负载量是木浆的10wt.%。
表4:具有各种木浆纤维和玻璃纤维负载量的生物复合材料和混合复合材料的密度。所有复合材料都含有木浆纤维负载量的10重量%的偶联剂,并且剩余部分是聚丙烯树脂。
表5:在-20℃(低于玻璃化转变)和25℃(高于玻璃化转变)下混合复合材料的储能模量,e'。玻璃化转变的值tg由图4b的tanδ图确定。检查了三种混合复合材料组合物。b样品由5wt.%木质纤维(nbsk或mdf)、5wt.%偶联剂和90wt.%聚丙烯组成。d样品由10wt.%木质纤维(nbsk或mdf)、10wt.%偶联剂、10wt.%玻璃纤维和70wt.%聚丙烯组成。g样品由5wt.%木质纤维(nbsk或mdf)、5wt.%偶联剂、20wt.%玻璃纤维和70wt.%聚丙烯组成。
表6:纤维负载量为5wt.%至40wt.%的生物复合材料的储能模量。所述值是在-20℃(低于玻璃化转变)和25℃(高于玻璃化转变)下。偶联剂负载量是木浆纤维负载量的10重量%,并且剩余部分是聚丙烯树脂。
表7:生物复合材料和混合复合材料在各种组成和纤维负载量下的热变形温度(hdt)和缺口冲击强度。偶联剂负载量是木浆纤维负载量的10重量%,并且剩余部分是聚丙烯树脂。
表8:混合复合材料的熔体流动速率(mfr)。表5中描述了纤维负载量细节。
具体实施方式
本文提供了实施例的详细描述。然而,应当理解,所述实施例可采用各种形式。因此,下文论述的具体细节不应被解释为限制,而是作为教导本领域技术人员如何使用本文所述的方法和复合材料的代表性基础。
本发明的方法和复合材料通过提供用于生产基本上无缺陷的、透明或半透明的包含柔性天然纤维的生物复合材料或由柔性纤维、管状木浆纤维或纳米或微米元件丝状材料(如碳纳米管或纤维素长丝)的集合体和硬纤维(例如玻璃或碳纤维)以及合适的热塑性聚合物组成的混合复合材料的的系统和方法克服现有技术的缺点。还有可能使用所需量的偶联剂来改进界面性质,特别是天然纤维与热塑性聚合物之间的界面性质。由于适当使用偶联剂和纤维与基质之间的良好相容性,增强纤维完全被热塑性聚合物包围。
一批天然柔性纤维和合适的偶联剂可首先通过使用合适的混合技术物理混合两种组分来制备,在所述混合技术中使用高剪切和低停留时间(例如,商业gelimattm混合器)或低剪切和长停留时间(商业haake混合器)。然后可将这种预混合的批料引入共挤出系统并与热塑性聚合物熔体配混,或者在混合复合材料的情况下,与硬纤维(例如玻璃)混合。因此产生的复合材料粒料可加工成可控厚度的薄膜或注塑或压缩模制成三维物体。
使用本文所述的系统和方法生产的物体的特征在于透明的/半透明的,从而表明纤维增强材料在聚合物基质内的优异分散且不存在任何聚集的纤维材料。这也表明没有空气空隙或气穴被截留在复合材料内或纤维状集合体内。共挤出实现纤维长丝的轻柔解开,并且真空系统有助于除去任何截留的空气空隙。增容的天然纤维形成非常好的粘附,以使得纤维完全被聚合物包围,以及由于这种方法,在热塑性聚合物熔体内经历优异分散。这有效地使得产生具有优异流动性质的更强、更硬和更坚韧的基于生物的聚合物复合材料。将给出说明性实施例,所述实施例详述所得生物或混合复合材料的性能和功能性的改进。
将描述关于生物复合材料和混合复合材料的机械性质和动态性质的显著改进的细节。通过在长时间段内检查最终复合材料的水吸收,还将提供生物纤维与热塑性聚合物的优异界面和生物纤维在热塑性聚合物内的包封的确认。本文所述的新颖系统和方法产生可与原始聚合物一样流动并且显著优于用天然或合成纤维增强的现有复合材料的复合材料。
图1示出根据一个实施方案的本文所述的真空共挤出的方法100。木浆纤维/长丝12以干燥或水性悬浮液的形式提供,并与增容剂14混合10。任选地,可提供玻璃纤维13并将其混合到悬浮液中。增容剂14优选地是马来酸酐,或具有高马来酸酐含量或酸值和相对低的分子量(<10,000)。将增容剂14接枝到纤维/长丝12的表面上(在混合或共混步骤10期间),因此混合容器充当混合容器和反应容器。
将增容剂纤维/长丝16的混合物送至真空共挤出20,其中混合物与热塑性树脂22一起共挤出。真空共挤出使树脂22和混合物16充分混合并粘合,同时产生水-蒸汽空气25,以及具有≤0.5%wt低水含量的复合材料26。
理想地,将首先通过柔性纤维和合适的偶联剂的物理共混来制备一批复合材料26,然后与刚性纤维(在混合复合材料制备的情况下)和热塑性树脂一起引入反向或反向旋转的双螺杆共挤出机中。
所述系统和方法进行了进一步详细地描述并且在图2和图3中示意性地示出。双螺杆挤出机100具有单独的区(在此示出6个区),其中根据所用热塑性聚合物的类型精确地且单独地控制温度。图3a的挤出机100包括进料端口105;进料端口排气口107和109;冷却的进料区111和冲模120;其中tc是指控制热电偶。图3b、3c、3d、3e、3f、3g和3h示出可能的螺杆和混合元件。螺杆几何形状是使得可优化进料、混合和挤出动作。有可能重新布置图3a的螺杆配置以满足所使用的特定纤维的需要。在同向旋转的双螺杆的剪切作用下,特定的螺杆配置可证明对于柔性(例如,木浆)和刚性(例如,玻璃)纤维的共混是理想的。改变柔性纤维与刚性纤维的比例可能需要图3a的示意图上的改变。可以这么说,螺杆几何形状可最佳配置,以适合增强纤维和添加剂的特定共混物。
设计中的一个考虑因素是在共挤出机的端部处或附近放置合适的真空系统,其中在本实施例中,它处于最后和或第六区。这允许提取任何截留的气泡和/或水分(图3a)。气泡截留的原因很多,其中包括纤维增强材料和热塑性聚合物的不均匀性,以及共混柔性和硬纤维或纤维材料。如果捕获气泡,则最终的薄膜样品将看起来呈颗粒状和不透明。图4a、4b、4c和4d描绘使用不同长度的不同类型的柔性木浆纤维,按照本文公开的系统和方法制备的粒料和薄膜的照片。所有薄膜看起来都是透明/半透明的,并且在一些粒料/薄膜中的较暗外观是由于起始木浆纤维中存在木质素(以各种量)。例如,mdf纤维具有比牛皮纸纤维或bctmp更高量的木质素(>10%),并且因此在加工后呈现褐色。
本文公开的系统和方法的重要结果是生物复合材料或混合复合材料具有与起始热塑性聚合物类似的流动性质的能力,这对于实际应用和工业应用是重要的。通过控制热塑性树脂的分子量和/或通过添加增塑剂可微调流动性质。重要的是,柔性纤维和刚性纤维的结合可显著改进负载下的变形温度和冲击强度,这转化为根据所公开的方法和系统制备的混合复合材料的更好能量吸收能力以及高温下的耐久性。
在高度不相容的增强纤维的情况下,如在高度极性的木浆纤维和非极性聚烯烃(例如聚丙烯)的情况下,需要合适的增容剂以确保增强纤维与热塑性聚合物基质之间的良好分散和界面粘附。在这种特定情况下,偶联剂,例如马来酸酐改性的聚丙烯(mapp)可证明是成本有效的选择。具体地说,希望具有高马来酸酐(ma)含量的mapp,优选介于40与50mgkoh/g之间,并且在8,000至10,000之间的分子量有效地在纤维素纤维表面上产生相对高的接枝率,并且由此有助于产生纤维素纤维与聚合物基质之间的最佳界面粘附,以及在基质内的良好、均匀的分散,以帮助实现最佳的应力转移,并且由此获得改进的机械性能(参见图5)。增容剂可以干燥形式引入(如粒料或粉末)或以湿形式作为悬浮液引入。
本文所述的纤维/长丝是适形的且柔性的,并且这些性质将这些纤维与木材流(颗粒、微粒或薄片)和其他刚性的天然纤维区分开。本文所述的木浆纤维从其为中空管的结构获得其适形性和柔性(图9)。适形性涉及纤维对应或符合复合材料内的以及在双螺杆挤出机或高剪切混合器中引导螺杆的过程中的轮廓的能力。这种适形性基本上使得纤维跨越连续长度而不被破坏,在刚性、不适形的纤维的情况下情况将是这样(被破坏)。
柔性纤维可以是离散的天然纤维(例如木质纤维),纤维网络(例如纤维素长丝或纳米纤维),以及纳米元件至微元件的柔性集合体,例如聚集的碳纳米管的集合体。还有可能使用真空辅助共挤出工艺来生产混合复合材料,所述混合复合材料包含刚性纤维,如玻璃纤维或碳纤维;以及柔性纤维或纤维网络,如纤维素纤维或纤维素长丝。热塑性树脂可以是但不限于,聚烯烃,如聚丙烯或聚乙烯;或聚酯,如聚乳酸。树脂还可包括热塑性共聚物,例如丙烯腈-丁二烯-苯乙烯三元共聚物。
本文所述的热塑性树脂包括1)基于石化厂的聚烯烃,即聚丙烯、聚乙烯(高密度和低密度);以及2)热塑性聚酯,如聚乳酸。
当需要增容剂时,使用高剪切/短停留时间系统(例如,gelimattm)或低剪切/长停留时间系统(例如,haake)物理地共混偶联剂和纤维是有利的。两种系统均等效地起作用并且可产生均匀的混合物,然后可将所述混合物引入共挤出机中。对于两种系统,木浆纤维或纤维状集合体可在干或湿条件下处理,但在优选的实施方案中,作为约30%-40%固体的水性悬浮液。偶联剂与木浆的比例通过实验确定,其取决于所需界面性质的水平和随后的机械性能的改进。因此,范围可从按重量计0.05:1的偶联剂与纤维素纤维至1:1变化。然后可使用例如cemoticmill研磨所制备的混合物以获得均匀尺寸的颗粒,并且使用3mm筛理想地筛分碾磨的纤维-偶联剂混合物。(3mm是商业热塑性聚合物粒料的典型尺寸。
共挤出机中的停留时间主要取决于螺杆配置、螺杆速度和所需的共混水平,或最终取决于机械性能的改进水平。必须在(a)获得高接枝率和纤维在基质中随机均匀分散以获得最佳界面性质的需要与(b)确保在通过混合器或共挤出机的同时有限纤维切割的需要之间取得平衡。所有纤维都经历某种形式的切割,并且纤维越硬,切割越明显。由于木浆纤维是柔性和柔软的,所以当两个螺杆同向旋转时,它们倾向于在聚合物熔体内蜿蜒,从而使纤维切割最小化。这对于确保最佳的应力传递至关重要。通常对于聚丙烯,从进料器至冲模的共挤出机中的温度分布被设置为:190℃/200℃/210℃/210℃/210℃/180℃,并且挤出速度约300rpm。
马来酸酐基团是一类可商购的偶联剂,马来酸酐聚丙烯或mapp可通过酯化与纤维素上的羟基反应。通过将mapp永久接枝到纤维素纤维的表面上,木纤维的极性将被降低,并且可获得与pp的更好界面相互作用。具有高马来酸酐含量(大于40mgkoh/g但小于50mgkoh/g)且分子量介于8,000与10,000之间的特定偶联剂是选择的优选实施方案,以便提供纤维素纤维表面上的高度mapp接枝效率以及极性纤维素与非极性聚丙烯之间的良好界面。使用高剪切/短停留时间(例如,gelimat)或低剪切/长停留时间(例如,haake)将纤维素纤维或纤维材料与偶联剂预混合提供类似的接枝率,大约45%-65%。接枝率强烈地影响界面性质,并且显然柔性木质纤维良好地粘附到热塑性聚合物上,并且在混合复合材料的情况下不像玻璃纤维那样经常断裂或拉出(图6a-1/2、6b-1/2、6c-1/2和6d-1/2)。
扫描电子显微照片(sem)可用于研究复合材料中柔性木质纤维与聚丙烯基质之间的界面。通过在液氮中冷冻破裂制备未经测试的试样用于电子显微镜成像,而在拉伸测试的试样的情况下对破裂表面成像。木浆纤维看起来是柔性且扁平的,而玻璃纤维是圆的且坚硬的。显然柔性木质纤维良好地粘附到热塑性聚合物上,并且在混合复合材料的情况下不像玻璃纤维那样经常断裂或拉出。生物复合材料由5wt.%木浆(北方漂白软木牛皮纸,nbsk)纤维和按重量计等量的偶联剂组成,并且剩余是热塑性聚合物,聚丙烯。在这种情况下,混合复合材料包含相似量的木浆纤维和偶联剂、15wt.%刚性玻璃纤维和75wt.%热塑性聚合物。从图6中可明显看出,在测试之前柔性木浆纤维与聚合物基质之间没有间隙,这表明增强纤维和基质之间的优异界面粘附。在张力下,柔性木浆纤维可适应基质的变形并且享受良好的应力传递。几乎没有纤维拉出的证据,从而证明了纤维与基质之间的良好粘附。纤维拉出被定义为通过纤维增强的复合材料的失效机制之一。
在显微镜下设想为将纤维从复合材料树脂中拉出,从而在纤维所在的位置留下孔或间隙。发生纤维拉出是因为纤维与基质之间的界面弱于纤维强度。
因此,并且从断裂的生物复合材料表面的形态可明显看出,由于纤维与树脂之间的良好粘附,柔性木质纤维实际上不会经历纤维拉出。断裂复合材料表面上的条纹表明在外部拉伸负载下热塑性聚合物的屈服。
从图6a-1/2、6b-1/2、6c-1/2和6d-1/2中同样值得注意的是,混合复合材料样品描绘了更大百分比的拉出硬(玻璃)纤维,以及这些纤维的断裂。值得注意的是,在混合复合材料中,柔性纤维经历极少拉出至没有拉出、有限的断裂,而硬(玻璃)纤维经历最大程度的纤维拉出。目前描述的复合材料是独特的,在于允许柔性纤维的全部潜力和柔性纤维与刚性纤维之间的良好协同作用,其中可获得最佳的应力传递-如通过改进的机械性能所证实的,参见表1。
表1包括包含5wt.%木浆纤维、5wt.%偶联剂和90wt.%热塑性聚合物的生物复合材料的拉伸强度、弯曲性质和吸水率(通过重量分析测量的)数据。检查了四种类型的木浆纤维:北方漂白软木牛皮纸(nbsk)、漂白的化学-热机械浆(bctmp)、中密度纤维(mdf)和山杨硬木牛皮纸(山杨牛皮纸)。
表1
表2包括含有bctmp纤维的生物复合材料的拉伸性质、弯曲性质和吸水率(通过重量分析测量的)数据。纤维负载量从0wt.%至40wt.%变化。偶联剂的负载量是木浆的10wt.%。随着纤维负载量增加,生物复合材料的机械性能显著改进。同时,即使在40%的木质纤维负载量下,24小时吸水率也可保持在1%以下,从而表明木浆纤维的均匀分散和热塑性聚合物对纤维的良好密封。
表2
表3包括含有玻璃纤维的常规短纤维复合材料以及含有柔性bctmp纤维和硬玻璃纤维两者的混合复合材料的拉伸性质、弯曲性能和吸水率(通过重量分析测量的)数据。纤维负载量在表中示出。偶联剂用于混合复合材料,并且负载量是木浆的10wt.%。在相同水平的纤维负载下,与常规短纤维复合材料相比,混合复合材料显示出明显改进的强度。
*gf=玻璃纤维
表3
图5示出相对于测量的密度的机械性能的示意图。柔性木质纤维的使用产生不太致密的复合材料,特别是与用诸如玻璃纤维的矿物纤维增强的复合材料相比时。表4列出具有各种木浆纤维和玻璃纤维负载量的生物复合材料和混合复合材料的密度。有可能生产一系列混合复合材料,所述复合材料可在性能以及最终部件重量降低上进行竞争。重量降低可显著影响废物,并且在生产例如汽车零件的情况下关键性地影响燃料效率。我们的系统和方法清楚地表明,相对于用矿物纤维或填料增强的致密热塑性复合材料,能够生产更轻、更好或至少相等的混合复合材料。
表4
吸水率对复合材料的性能和长期耐久性具有显著影响。水可在复合材料中诱导微裂纹和脱粘,这将降低复合材料的机械性质。但是,吸水率的限制可根据应用而变化。例如,对于汽车零件,长期浸入水中的值小于1wt.%是理想的。如表1和表2中所示,在研究的所有情况下,由柔性木质纤维和硬质矿物纤维组成的生物复合材料或混合复合材料的24小时吸水率<1wt.%。因此,本公开中论述的生物复合材料和混合复合材料有可能在降低的重量或密度下具有良好的机械性能和可接受的吸水率两者。
通过检查这些复合材料在指定频率下对于一系列温度(图7)或在特定温度下对于一系列频率对施加的负载的动态力学响应,可获得混合复合材料的机械性能改进的进一步证实。混合复合材料(包含北方漂白软木牛皮纸nbsk或中密度mdf纤维,以及玻璃纤维和聚丙烯)随温度变化的储能模量说明木质纤维和玻璃纤维对热塑性聚合物的热机械性质的影响。在约-25℃至25℃的区域中检测到储能模量的显著降低,这对应于聚丙烯的玻璃化转变区域。这是基于已建立的实验证据,即聚丙烯的机械损耗因子或tanδ曲线在100℃(α)、10℃(β)和-80℃(γ)附近表现出三次弛豫。β弛豫对应于聚丙烯的非晶形部分的玻璃-橡胶转变,并且tanδ的最大峰值的温度是玻璃化转变温度(tg)。如图6中所示的结果所证明的,在宽温度范围内相对于聚合物树脂(聚丙烯),使用本文所述的系统和方法结合柔性木浆纤维和刚性玻璃纤维显著改进混合复合材料的储能模量。表5中给出一组代表性混合复合材料在-20℃(低于tg)和25℃(高于tg)下的储能模量。注意,tg由图7b的tanδ图确定。
表5包括混合复合材料在-20℃(低于玻璃化转变)和25℃(高于玻璃化转变)下的储能模量e’。玻璃化转变的值tg由图5b的tanδ图确定。检查了三种混合复合材料组合物。b样品由5wt.%木质纤维(nbsk或mdf)、5wt.%偶联剂和90wt.%聚丙烯组成。d样品由10wt.%木质纤维(nbsk或mdf)、10wt.%偶联剂、10wt.%玻璃纤维和70wt.%聚丙烯组成。g样品由5wt.%木质纤维(nbsk或mdf)、5wt.%偶联剂、20wt.%玻璃纤维和70wt.%聚丙烯组成。
表5
结果表明,相对于对照聚合物树脂,在玻璃化转变温度tg以下或以上,储能模量显著增加。改进的范围平均为约50%,并且在某些情况下对于tg以上的储存模量可达到80%。值得注意的是,储能模量遵循与这些混合复合材料的拉伸和弯曲性质的改进类似的趋势(对于使用nbsk和玻璃纤维制备的混合复合材料,参见表3)。
在表中给出了生物复合材料在-20℃(低于玻璃化转变)和25℃(高于玻璃化转变)下的储能模量。随着柔性bctmp纤维负载量增加,这些值增加。
表6
按照本文公开的系统和方法将柔性木浆纤维以及硬玻璃纤维结合到热塑性聚合物中使得聚合物的玻璃化转变tg变为略低的温度(表5)。tg的降低可通过聚合物链的链段迁移率的增加来解释。此外,检查图6b中所示的tanδ图清楚地表明,对于所有混合复合材料,tanδ值倾向于以类似的方式降低。这种降低据信是由于柔性纤维和硬纤维的共混物的强化作用,这导致限制聚合物基质的流动性。值得注意的是,在热塑性聚合物树脂中结合柔性纤维和/或刚性纤维不会改变聚合物熔点;然而,纤维的存在导致强烈成核,并且最终影响热塑性聚合物的结晶。
本文公开的系统和方法的一个重要特征是在生物复合材料和混合复合材料中木浆纤维的存在可显著改进在负载下的热变形温度(hdt)和缺口冲击强度。这转化为复合材料的更好能量吸收能力和在高温下的耐久性。表7提供了根据所公开的方法和系统制备的生物复合材料和混合复合材料的hdt和缺口冲击强度数据。
表7
本文公开的系统和方法的一个有利特征是生物复合材料或混合复合材料具有与起始热塑性聚合物类似的流动性质的能力,这对于实际应用和工业应用是重要的。表8中呈现了一组选定的混合复合材料的熔体流动速率。这表明使用公开的方法和系统,通过结合纤维,复合材料的流动性和热成型性不受干扰。
表8包括表5中论述的一种类型的混合复合材料的熔体流动速率(mfr)。
表8
图8a、8b、8c和8d清楚地示出了本文所述的纤维长丝的管状性质,所述纤维长丝与热塑性树脂具有良好粘附。
图9示意性地示出当复合材料熔体流行进通过共挤出机时,柔性适形纤维/长丝通过引导静止玻璃纤维来改进熔体流动性质的方式。这种独特特征允许最终复合材料具有如通过astm标准d1238测量的高熔体流动速率指数(通常以g/10min为单位和230℃在2.16kg载荷下测量)。
参考文献:
1.koch,k.,″methodandapparatusforextrudingplasticandsimilarmaterial,″uspatent4,067,554.
2.koch,k.,″processandapparatusforextrudingplasticandsimilarmaterial,″uspatent4,063,718.
3.tardif,m,-a,″vacuumremovalofentrainedgassesinextruded,foamedpolyurethane,″uspatentapplication2011/0001255a1.
4,marshall,j.m,andliu,j.j.,″systemandmethodfortwinscrewextrusionofafibrousporoussubstrate,″uspatentapplication2009/0166910a1.
5.astmd882-09standardtestmethodfortensilepropertiesofthinplasticsheeting.
6.astmd790-07standardtestmethodsforflexuralpropertiesofunreinforcedandreinforcedplasticsandelectricalinsulatingmaterials.