预成型体、其制备方法及其用途与流程

文档序号:17292606发布日期:2019-04-03 04:05阅读:366来源:国知局

本发明涉及包含多级聚合物的复合预成型体。

本发明特别涉及制造包含纤维材料和多级聚合物的复合预成型体的方法及其在制造复合制品中的用途。

本发明更特别涉及制备包含纤维材料和多级聚合物的复合预成型体的方法及其用于制造纤维增强的抗冲改性复合材料的用途。

[技术问题]

在其使用过程中必须经受高应力的机械部件广泛地由复合材料制成。复合材料是两种或更多种不混溶材料的宏观组合。复合材料由至少一种形成基质,即确保结构内聚的连续相的材料和增强材料构成。

使用复合材料的目的是实现由独自使用复合材料的单独成分无法获得的来自复合材料的性能。因此复合材料尤其由于它们比均质材料好的机械性能(更高的拉伸强度、更高的拉伸模量和更高的断裂韧度)和它们的低密度而在一些工业部门中广泛使用,例如建筑、汽车、航空航天、运输、休闲、电子和体育运动。

考虑到在商业工业规模下的量,最重要的类别是含有机基质的复合材料,其中基质材料通常是聚合物。聚合物复合材料的主要基质或连续相是热塑性聚合物或热固性聚合物。

热固性聚合物由交联三维结构构成。通过将所谓预聚物内的反应性基团固化获得该交联。例如可通过加热聚合物链以使该材料永久交联和硬化而获得固化。

为了制备聚合物复合材料,将预聚物与其它组分,如玻璃珠或纤维(增强材料)或被预聚物润湿或浸渍的其它组分混合并此后固化。热固性聚合物的预聚物或基质材料的实例是不饱和聚酯、乙烯基酯、环氧树脂或酚醛树脂。在固化后,热固性复合材料无法重新成型并保持其预定形状。

热塑性聚合物由未交联的线性或支化聚合物构成。将热塑性聚合物加热以混合制造复合材料所必需的成分并冷却以凝固。使用热塑性聚合物制造复合材料的限制是它们为了均匀浸渍例如纤维基底在熔融状态下的高粘度。只有热塑性树脂的流动性足够才能实现纤维被热塑性聚合物润湿或正确浸渍。

浸渍纤维基底的另一方式是将热塑性聚合物溶解在有机溶剂中。

制备热塑性复合材料的另一方式是用包含单体的液体浆料浸渍纤维基底和所述单体的聚合。

但是用于制备复合材料的许多聚合物仍然非常脆并且没有良好的机械性质,例如冲击强度。尽管纤维基底能够通过吸收来自冲击的能量来增强材料的机械性质,但由于基于热塑性聚合物的基质是脆性的,其无法阻止例如裂纹扩展,因此最终复合材料仍然太脆。

为了改进聚合物的冲击强度,已知做法是加入改变冲击强度的抗冲添加剂,其包含弹性体相或橡胶。这样的橡胶可以是核壳粒子形式的多级聚合物的一部分,其中一级是橡胶或弹性体相。这些粒子通过乳液聚合制备以形成分散体并可例如以粉末形式回收。它们通常包含一系列的“硬”和“软”层。因此可发现双层(软-硬)或三层(硬-软-硬)粒子。粒度通常小于1µm,更特别在50nm至500nm之间。

核壳粒子形式的多级聚合物可作为附聚干粉末提供,将后者分散在基质中以获得初始核壳粒子的均匀分布。对于某些热固性聚合物或树脂,尤其是环氧树脂,以及对于热塑性聚合物,正确分散这些多级聚合物粒子非常困难或几乎不可能。

为浸渍纤维增强材料而将这些通常弱交联的离散核壳粒子分散在液体浆料或预聚物中在浸渍步骤的过程中造成问题。实际上,该粒子在浆料中溶胀,这导致浆料胶凝。粘度随后太高并且不再有可能浸渍纤维基底而不出现缺陷。为避免这一胶凝现象,必须将这些粒子在树脂中的含量限制为极低含量。但是,这样的含量仍然太低并且没有带来期望的机械性质,尤其是在冲击强度方面。

本发明的目的是获得包含纤维基底和多级聚合物的稳定预成型体。

本发明的一个目的还在于获得可用于制造抗冲改性聚合物复合材料的包含纤维基底和多级聚合物的稳定预成型体。

本发明的另一目的是找出在聚合物复合材料或包含该聚合物复合材料的机械或结构化部件或制品中引入多级聚合物的方法。

本发明的再一目的是获得包含纤维基底和多级聚合物的稳定预成型体的方法。

本发明的再一目的是快速获得包含纤维基底和多级聚合物的稳定预成型体的方法。

本发明的再一目的是通过使用尽可能少的有机溶剂或优选不使用有机溶剂获得包含纤维基底和多级聚合物的稳定预成型体的方法。

另一目的是提供制造抗冲改性聚合物复合材料或包含该抗冲改性聚合物复合材料的机械或结构化部件或制品的方法。

[发明背景]现有技术

文献ep1312453公开了复合制品,包括预浸料坯、预成型体、层压件和夹芯模制品,及其制造方法。特别公开了由聚合物粒子涂覆的具有小于5µm的平均直径的多根纤维的束。该聚合物粒子是热塑性聚合物或交联热塑性聚合物。提到具有至少10,000g/mol的高分子量的具有在0.1µm至0.25µm之间的小尺寸的聚合物粒子。

现有技术文献无一公开了根据本发明的预成型体或其制备方法。

[发明概述]

已经令人惊讶地发现,一种预成型体保持其形状,其包含

a)纤维基底和

b)多级聚合物,

其中所述预成型体中的多级聚合物的量在3重量%至50重量%之间。

还已经令人惊讶地发现,一种预成型体可用于制造聚合物复合材料或包含所述聚合物复合材料的机械或结构化部件或制品,所述预成型体包含

a)纤维基底和

b)多级聚合物,

其中所述预成型体中的多级聚合物的量在3重量%至50重量%之间。

还已经令人惊讶地发现,一种制造预成型体的方法产生保持其形状的预成型体,所述方法包括以下步骤

a)使纤维基底和多级聚合物的水性分散体接触

b)干燥步骤a)的产物,

c)加热b)的干燥产物,

其中所述预成型体中的多级聚合物的量在3重量%至50重量%之间。

[发明详述]

根据第一方面,本发明涉及预成型体,其包含

a)纤维基底和

b)多级聚合物,

其中所述预成型体中的多级聚合物的量在3重量%至50重量%之间。

根据第二方面,本发明涉及一种制造预成型体的方法,其包括以下步骤

a)使纤维基底和多级聚合物的水性分散体接触

b)干燥步骤a)的产物,

c)加热b)的干燥产物,

其中所述预成型体中的多级聚合物的量在3重量%至50重量%之间。

第三方面,本发明涉及一种预成型体用于制造聚合物复合材料或包含所述聚合物复合材料的机械或结构化部件或制品的用途,所述预成型体包含

a)纤维基底和

b)多级聚合物,

其中所述预成型体中的多级聚合物的量在3重量%至50重量%之间。

所用术语“聚合物粉末”是指包含通过包含纳米级粒子的初级聚合物或聚合物或低聚物的附聚获得的在至少1微米(µm)的范围内的粉粒的聚合物。

所用术语“初级粒子”是指包含纳米级粒子的球形聚合物。初级粒子优选具有在20纳米至800纳米之间的重均粒度。

所用术语“粒度”是指被视为球形的粒子的体积平均直径。

所用术语“共聚物”是指该聚合物由至少两种不同单体构成。

所用“多级聚合物”是指通过多级聚合法依序形成的聚合物。优选的是多级乳液聚合法,其中第一聚合物是第一级聚合物,且第二聚合物是第二级聚合物,即第二聚合物通过在第一乳液聚合物存在下的乳液聚合形成。

所用术语“(甲基)丙烯酸系”是指所有种类的丙烯酸系和甲基丙烯酸系单体。

所用术语“(甲基)丙烯酸系聚合物”是指该(甲基)丙烯酸系聚合物主要包含含有构成该(甲基)丙烯酸系聚合物的50重量%或更多的(甲基)丙烯酸系单体的聚合物。

所用术语“抗冲改性剂”被理解为是一旦并入聚合材料中就通过橡胶材料或橡胶聚合物的相微域提高该聚合材料的抗冲击性和韧性的材料。

所用术语“橡胶”是指该聚合物在高于其玻璃化转变温度的热力学状态。

所用术语“橡胶聚合物”是指具有低于0℃的玻璃化转变温度(tg)的聚合物。

所用术语“预成型体”是指在复合材料制造中公知的预成型纤维增强材料。通过例如聚合物使作为纤维增强材料的例如柔性纤维垫的初始外形保持在一定的已固定形状。更复杂的预成型体的形状对应于稍后组件的几何形状,其中通过合适的粘合剂将单个纤维的取向固定在层中。其是基本已具有预成型体的必要外轮廓的纤维半成品,其足够刚性以完全自动化和准确安放。通过添加例如树脂或用树脂浸渍预成型体完成该预成型体,该树脂聚合以获得成品复合材料或结构化制品。

在本发明中提及x至y的范围意在包括这一范围的上限和下限,相当于至少x和最多y。

在本发明中提及一个范围在x至y之间,其意在排除这一范围的上限和下限,相当于大于x和小于y。

根据本发明的预成型体包含纤维基底和多级聚合物,其中该预成型体中的多级聚合物的量在3重量%至50重量%之间。

优选地,该预成型体中的多级聚合物的量为基于这两种化合物a)和b)的总和的至少4重量%,更优选至少5重量%,有利地至少6重量%,最有利地至少7重量%。

优选地,该预成型体中的多级聚合物的量为基于这两种化合物a)和b)的总和的最多40重量%,更优选最多30重量%,有利地最多25重量%。

优选地,该预成型体中的多级聚合物的量在基于这两种化合物a)和b)的总和的4重量%至40重量%之间,更优选在5重量%至30重量%之间,有利地在6重量%至25重量%之间,有利地在7重量%至25重量%之间。

根据本发明的多级聚合物具有至少两级,其聚合物组成不同。

该多级聚合物优选为球形聚合物粒子的形式。这些粒子也被称作核壳粒子。第一级形成核,第二级或随后的所有级形成各个壳。

关于球形聚合物粒子,其具有在20纳米至800纳米之间的重均粒度。该聚合物的重均粒度优选在25nm至600nm之间,更优选在30nm至550nm之间,再更优选在35nm至500nm之间,有利地在40nm至400nm之间,更有利地在50nm至400nm之间,再更有利地在75nm至350nm之间,最有利地在80nm至300nm之间。

该聚合物粒子具有多层结构,其包含至少一个包含具有低于0℃的玻璃化转变温度的聚合物(a1)的层(a)和包含具有超过30℃的玻璃化转变温度的聚合物(b1)的另一层(b)。具有超过30℃的玻璃化转变温度的聚合物(b1)优选是具有多层结构的聚合物粒子的外层。优选地,级(a)是第一级,且包含聚合物(b1)的级(b)接枝在包含聚合物(a1)的级(a)上。

该聚合物粒子通过多级法,如包括两个、三个或更多个级的方法获得。层(a)中的具有低于0℃的玻璃化转变温度的聚合物(a1)决不在多级法的最后一级中制造。这意味着聚合物(a1)决不在具有多层结构的粒子的外层中。层(a)中的具有低于0℃的玻璃化转变温度的聚合物(a1)在聚合物粒子的核种或内层之一中。

层(a)中的具有低于0℃的玻璃化转变温度的聚合物(a1)优选在形成具有多层结构的聚合物粒子的核的多级法的第一级中制造。聚合物(a1)优选具有低于-5℃,更优选低于-15℃,有利地低于-25℃的玻璃化转变温度。

具有超过30℃的玻璃化转变温度的聚合物(b1)优选在形成具有多层结构的聚合物粒子的外层的多级法的最后一级中制造。

可存在通过一个或多个中间级获得的一个或多个附加中间层。

层(b)的聚合物(b1)的至少一部分优选接枝在前一层中制成的聚合物上。如果只有分别包含聚合物(a1)和(b1)的两个级(a)和(b),一部分聚合物(b1)接枝在聚合物(a1)上。更优选至少50重量%的聚合物(b1)接枝。可通过用聚合物(b1)的溶剂萃取和在萃取之前和之后重力测量以测定非接枝量来测定接枝比。

可以例如通过动态法,如热机械分析估算多级聚合物的各聚合物的玻璃化转变温度tg。

为了获得各聚合物(a1)和(b1)的样品,它们可单独而非通过多级法制备,以更容易独立估算和测量各级的各聚合物的玻璃化转变温度tg。

关于聚合物(a1),在第一实施方案中,其是包含至少50重量%的来自丙烯酸烷基酯的单体的(甲基)丙烯酸系聚合物。

聚合物(a1)更优选包含可与丙烯酸烷基酯共聚的一种或多种共聚单体,只要聚合物(a1)具有小于0℃的玻璃化转变温度。

聚合物(a1)中的一种或多种共聚单体优选选自(甲基)丙烯酸系单体和/或乙烯基单体。

聚合物(a1)中的(甲基)丙烯酸系共聚单体包含选自(甲基)丙烯酸c1至c12烷基酯的单体。聚合物(a1)中的(甲基)丙烯酸系共聚单体再更优选包含甲基丙烯酸c1至c4烷基酯单体和/或丙烯酸c1至c8烷基酯单体。

聚合物(a1)的丙烯酸系或甲基丙烯酸系共聚单体最优选选自丙烯酸甲酯、丙烯酸丙酯、丙烯酸异丙酯、丙烯酸丁酯、丙烯酸叔丁酯、甲基丙烯酸甲酯、甲基丙烯酸乙酯、甲基丙烯酸丁酯及其混合物,只要聚合物(a1)具有小于0℃的玻璃化转变温度。

聚合物(a1)优选交联。这意味着将交联剂添加到另一单体或其它单体中。交联剂包含至少两个可聚合的基团。

在一个具体实施方案中,聚合物(a1)是丙烯酸丁酯的均聚物。

在另一具体实施方案中,聚合物(a1)是丙烯酸丁酯和至少一种交联剂的共聚物。交联剂构成这种共聚物的小于5重量%。

第一实施方案的聚合物(a1)的玻璃化转变温度tg更优选在-100℃至0℃之间,再更优选在-100℃至-5℃之间,有利地在-90℃至-15℃之间,更有利地在-90℃至-25℃之间。

在第二实施方案中,聚合物(a1)是基于硅酮橡胶的聚合物。该硅酮橡胶例如是聚二甲基硅氧烷。更优选地,第二实施方案的聚合物(a1)的玻璃化转变温度tg在-150℃至0℃之间,再更优选在-145℃至-5℃之间,有利地在-140℃至-15℃之间,更有利地在-135℃至-25℃之间。

在第三实施方案中,具有低于0℃的玻璃化转变温度的聚合物(a1)包含至少50重量%的来自异戊二烯或丁二烯的聚合单元并且级(a)是具有多层结构的聚合物粒子的最内层。换言之,包含聚合物(a1)的级(a)是该聚合物粒子的核。

例如,作为第二实施方案的核的聚合物(a1),可以提到异戊二烯均聚物或丁二烯均聚物、异戊二烯-丁二烯共聚物、异戊二烯与最多98重量%的乙烯基单体的共聚物和丁二烯与最多98重量%的乙烯基单体的共聚物。该乙烯基单体可以是苯乙烯、烷基苯乙烯、丙烯腈、(甲基)丙烯酸烷基酯或丁二烯或异戊二烯。在一个实施方案中,该核是丁二烯均聚物。

更优选地,包含至少50重量%的来自异戊二烯或丁二烯的聚合单元的第三实施方案的聚合物(a1)的玻璃化转变温度tg在-100℃至0℃之间,再更优选在-100℃至-5℃之间,有利地在-90℃至-15℃之间,再更有利地在-90℃至-25℃之间。

关于聚合物(b1),可以提到包含具有双键的单体和/或乙烯基单体的均聚物和共聚物。聚合物(b1)优选是(甲基)丙烯酸系聚合物。

聚合物(b1)优选包含至少70重量%的选自(甲基)丙烯酸c1至c12烷基酯的单体。聚合物(b1)再更优选包含至少80重量%的甲基丙烯酸c1至c4烷基酯单体和/或丙烯酸c1至c8烷基酯单体。

聚合物(b1)的丙烯酸系或甲基丙烯酸系单体最优选选自丙烯酸甲酯、丙烯酸乙酯、丙烯酸丁酯、甲基丙烯酸甲酯、甲基丙烯酸乙酯、甲基丙烯酸丁酯及其混合物,只要聚合物(b1)具有至少30℃的玻璃化转变温度。

有利地,聚合物(b1)包含至少70重量%的来自甲基丙烯酸甲酯的单体单元。

聚合物(b1)的玻璃化转变温度tg优选在30℃至150℃之间。聚合物(b1)的玻璃化转变温度更优选在60℃至150℃之间,再更优选在80℃至150℃之间,有利地在90℃至150℃之间,更有利地在100℃至150℃之间。

关于制造根据本发明的多级聚合物的方法,其包括以下步骤

a)通过乳液聚合使单体或单体混合物(am)聚合以获得一个包含具有小于0℃的玻璃化转变温度的聚合物(a1)的层(a)

b)通过乳液聚合使单体或单体混合物(bm)聚合以获得包含具有至少30℃的玻璃化转变温度的聚合物(b1)的层(b)

单体或单体混合物(am)和单体或单体混合物(bm)选自根据之前给出的聚合物(a1)和聚合物(b1)的组成的各单体。

步骤a)优选在步骤b)之前进行。如果只有两级,步骤b)更优选在步骤a)中获得的聚合物(a1)存在下进行。

再更优选使用接枝连接(graftlinking)化合物以将步骤b)的至少一部分聚合物(b1)接枝在步骤a)的聚合物(a1)上。

有利地,制造根据本发明的多级聚合物组合物的方法是多步法,其包括以下依次的步骤

a)通过乳液聚合使单体或单体混合物(am)聚合以获得一个包含具有小于0℃的玻璃化转变温度的聚合物(a1)的层(a)

b)通过乳液聚合使单体或单体混合物(bm)聚合以获得包含具有至少30℃的玻璃化转变温度的聚合物(b1)的层(b)。

分别用于形成分别包含聚合物(a1)和(b1)的层(a)和(b)的各单体或单体混合物(am)和(bm)和各聚合物(a1)和(b1)的特征与上文规定的相同。

再更有利地使用接枝连接化合物以将步骤b)的至少一部分聚合物(b1)接枝在步骤a)的聚合物(a1)上。

制造该多级聚合物的方法可包括在步骤a)和b)之间的用于附加级的附加步骤。

制造该多级聚合物的方法还可包括在步骤a)和b)之前的用于附加级的附加步骤。晶种(seed)可用于通过乳液聚合使单体或单体混合物(am)聚合以获得包含具有小于0℃的玻璃化转变温度的聚合物(a1)的层(a)。该晶种优选是具有至少20℃的玻璃化转变温度的热塑性聚合物。

该多级聚合物作为聚合物粒子的水性分散体获得。该分散体的固体含量在10重量%至65重量%之间。

关于纤维基底,可以提到可为条、圈、编带、绺或片形式的织物、毡或非织造物。该纤维材料可具有不同形式和一维、二维或三维的尺寸。纤维基底包含一种或多种纤维的组合体。当该纤维是连续的时,它们的组合体形成织物。

一维形式是线性长纤维。该纤维可以是不连续或连续的。该纤维可以无规排列或作为互相平行的连续长丝排列。纤维通过其纵横比定义,所述纵横比是纤维的长度与直径之间的比率。本发明中所用的纤维是长纤维或连续纤维。该纤维具有至少1000,优选至少1500,更优选至少2000,有利地至少3000,更有利地至少5000的纵横比。

二维形式是纤维垫或纤维的非织造增强材料或织造粗纱或束,它们也可以是编织的。

三维形式是例如堆叠或折叠的纤维垫或纤维的非织造增强材料或束或其混合物——二维形式在第三维度中的组合体。

该纤维材料的来源可以是天然或合成的。作为天然材料,可以提到植物纤维、木纤维、动物纤维或矿物纤维。

天然纤维是例如剑麻、黄麻、大麻、亚麻、棉、椰子纤维和香蕉纤维。动物纤维是例如羊毛或毛发。

作为合成材料,可以提到选自热固性聚合物、热塑性聚合物或其混合物的纤维的聚合纤维。

该聚合纤维可由聚酰胺(脂族或芳族)、聚酯、聚乙烯醇、聚烯烃、聚氨酯、聚氯乙烯、聚乙烯、不饱和聚酯、环氧树脂和乙烯基酯制成。

矿物纤维也可选自尤其e型、r型或s2型玻璃纤维、碳纤维、硼纤维或二氧化硅纤维。

本发明的纤维基底选自植物纤维、木纤维、动物纤维、矿物纤维、合成聚合纤维、玻璃纤维、碳纤维或其混合物。

该纤维基底优选是二维或三维的。

关于制造根据本发明的预成型体的方法,其包括以下步骤

a)使纤维基底和多级聚合物的水性分散体接触

b)干燥步骤a)的产物,

c)加热b)的干燥产物,

其中所述预成型体中的多级聚合物的量在3重量%至50重量%之间。

所述方法的步骤a)可通过用包含多级聚合物的水性分散体浸渍、浸注或渗透纤维基底进行。

步骤b)通过水相的蒸发或通过轻微加热进行。步骤b)优选通过加热到至少45℃进行。

步骤c)在模具中在100℃至250℃之间,优选125℃至225℃之间的温度下进行。该模具可以在压力下。

制造预成型体的方法还可包括将预成型体转变(transforming)的步骤。这可在步骤c)的过程中进行,该加热在一定形式的模具中进行,或在步骤c)后再在加热下将预成型体转变成另一形式。

本发明的预成型体可用于制造聚合物复合材料或包含该聚合物复合材料的机械或结构化部件或制品。

本发明的预成型体用于如灌注、真空袋模塑、压力袋模塑、高压釜模塑、树脂传递模塑(rtm)、反应注塑(rim)、增强反应注塑(r-rim)及其变体、压力成型或压塑之类的工艺。

该工艺优选是树脂传递模塑。

在这一工艺的过程中,将基质或连续相添加到预成型体中并获得抗冲改性聚合物复合材料或包含该聚合物复合材料的机械或结构化部件或制品。

该聚合物复合材料的基质或连续相是热固性聚合物或热塑性聚合物。

作为一个实例,制造抗冲改性聚合物复合材料的方法通过模制法进行。该方法通常涉及将预成型体成型以匹配模具轮廓、将成型预成型体置于模具中、将未固化或熔融的模制树脂或待聚合的浆料注入模具、然后按需要固化或冷却该模制树脂或聚合以形成固体模制聚合物复合材料的步骤。

[评估方法]

粒度分析

用来自malvern的zetasizernanos90测量在多级聚合后初级粒子的粒度。

用来自malvern的malvernmastersizer3000测量聚合物粉末的粒度。为了估算体积中值粒度d50,使用具有300mm透镜的测量0,5-880µm的范围的malvernmastersizer3000装置。

玻璃化转变温度

用能够实现热机械分析的设备测量多级聚合物的玻璃化转变温度(tg)。已使用rheometricscompany提出的rdaii“rheometricsdynamicanalyser”。热机械分析精确地随施加的温度、应变或变形测量样品的粘弹性变化。该装置在受控温度变化程序期间在保持应变固定的同时连续记录样品变形。通过随温度绘制弹性模量(g’)、损耗模量和tanδ,获得结果。tg是当tanδ的导数等于0时在tanδ曲线中读取的较高温度值。

[实施例]

使用或制备下列材料:

使用玻璃纤维织物形式的纤维基底。

作为多级聚合物,根据美国专利4,278,576中描述的技术制备聚合抗冲改性剂,其使用标准乳液聚合技术。

作为聚合抗冲改性剂(im1),通过多级法使用89.2份丙烯酸丁酯、0.4份丁二醇二丙烯酸酯和0.4份马来酸二烯丙酯作为弹性体核、接着聚合10份甲基丙烯酸甲酯制备核/壳丙烯酸系聚合物抗冲改性剂。固体含量为(im1)的水性分散体的40%。

将玻璃纤维织物数次浸渍在(im1)的水性分散体中以浸透织物。改变浸渍步骤数以使织物上具有不同量的来自分散体的多级聚合物(im1)。

该织物在烘箱中在50℃下干燥。

通过在浸渍前和干燥后称重织物计算织物中的多级聚合物的量。

获得下列产物:

实施例1:多级聚合物(im1)在织物中为7重量%。

实施例2:多级聚合物(im1)在织物中为12重量%。

对比例1:多级聚合物(im1)在织物中为3重量%。

堆叠各织物或层片的3个层以获得大约1mm的厚度。将该堆叠体置于在压力下的模具中并在10分钟的过程中将温度从20℃提高到200℃。使200℃保持15分钟,然后在25分钟的过程中将模具冷却到70℃,并从模具中取出预成型体。

层片之间的内聚足以制造预成型体。用实施例1和2制成的预成型体保持其形状几周并可用作预成型体。

对比例2:回收(im1)的水性分散体,通过喷雾干燥将该聚合物组合物干燥。将所得聚合物组合物在20℃下在搅拌下与甲乙酮(mek)混合以使相对于mek计40重量%的im1存在于包含多级聚合物im1的组合物中。由于多级聚合物im1的溶胀,所得混合物不是液体。

对比例3:回收(im1)的水性分散体,通过喷雾干燥将该聚合物组合物干燥。将所得聚合物组合物在20℃下在搅拌下与甲乙酮(mek)混合以使相对于mek计5重量%的im1存在于包含多级聚合物im1的组合物中。由于多级聚合物im1的溶胀,所得混合物变粘稠。将玻璃纤维织物数次浸渍到该混合物中以浸透织物。在相同数量的浸渍步骤后,织物上的多级聚合物(im1)的量没有用(im1)的水性分散体获得的量多。另外,溶剂蒸发并发出气味(smells)。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1