有机发光化合物及其制备方法和有机电致发光器件与流程

文档序号:15113212发布日期:2018-08-07 18:55阅读:277来源:国知局

本发明涉及有机电致发光化合物领域,具体涉及一种有机发光化合物及其制备方法和有机电致发光器件。



背景技术:

电致发光器件(electroluminescencedevice:eldevice)作为自发光型显示器件,它具有可视角度宽、对比度好,以及应答速度快的优点。1987年,柯达(eastmankodak)公司首次开发了利用低分子芳香二胺和铝络合物作为发光层材料的有机电致发光器件。

有机电致发光器件(organicelectroluminescencedevice:oled)是在有机发光材料中加以电压,使电能转化为发光的一种器件,通常结构是以阳极(anode),阴极(cathode)和两极之间的有机物层组成。有机电致发光器件中的有机物层可以由空穴注入层、空穴传输层、电子阻断层,发光层(包括主体材料及掺杂材料),电子缓冲层,空穴阻断层,电子传输层,电子注入层等形成。用作有机物层中的材料根据功能不同可分为,空穴注入材料,空穴传输材料,电子阻断材料,发光材料,电子缓冲材料,空穴阻断材料,电子传输材料,电子注入材料等。此种有机电致发光器件加以电压后,从阳极注入空穴,从阴极注入电子至发光层,通过空穴与电子复合形成高能量的激子,释放出能量,将能量传递给有机发光物质分子,使其从基态跃迁到激发态,受激分子再从激发态回到基态,辐射跃迁而产生发光现象。

有机电致发光器件中,电子传输材料是将电子从阴极顺利输送至发光层,且抑制在发光层中未结合的空穴的移动来增加发光层内空穴与电子的再结合的机会,一般电子亲和性优秀的材料才可以用作电子传输材料。类似alq3具有发光功能的有机金属络合物,因电子移动能力优秀,素来用作电子传输材料。但是alq3有向其他层移动和用在蓝光器件中有降低色彩纯度等问题。所以要求一种新型电子传输材料面世,不存在上述问题,具有高的电子亲和性,且用在有机电致发光器件时,快速的电子移动特性来显出高的发光效率。



技术实现要素:

本发明要解决现有技术中的技术问题,提供一种有机发光化合物及其制备方法和有机电致发光器件。

为了解决上述技术问题,本发明的技术方案具体如下:

一种有机发光化合物,其结构式如下:

式中:r1为芳基或杂环芳基;

r2为氢、取代或未取代的苯基、或杂环芳基;

ar1为下列结构中的任意一个:

其中x为c或n,至少有一个为n,为与n连接部位;

ar2和ar3各自独立地选自氢、取代或未取代的苯基、取代或未取代的杂环芳基、或取代或未取代的稠环芳基。

在上述技术方案中,r1为碳原子数为6的芳基、或碳原子数为12的杂环芳基;r2为氢、碳原子数为6-18的取代或未取代的苯基、或碳原子数为12的杂环芳基;ar2和ar3各自独立地选自氢、碳原子数为6-24的取代或未取代的苯基、碳原子数为5-18的取代或未取代的杂环芳基、或碳原子数为10-29的取代或未取代的稠环芳基。

在上述技术方案中,r1为苯基或二苯并呋喃基;r2为氢、苯基、二苯并呋喃基、二苯并噻吩基、咔唑基或对二苯胺基苯基;

或者r2为苯基,该苯基并在与之相连接的苯环上。

在上述技术方案中,ar2和ar3各自独立地选自氢、碳原子数为8-19的取代或未取代的苯基、碳原子数为12-16的取代或未取代的杂环芳基、或碳原子数为15-25的取代或未取代的稠环芳基。

在上述技术方案中,ar2和ar3各自独立地选自氢、碳原子数为10-16的取代或未取代的苯基。

在上述技术方案中,ar2和ar3各自独立地选自碳原子数为12-13的取代或未取代的苯基。

在上述技术方案中,ar2和ar3各自独立地选自式(a-1)至式(a-32)所示结构的任意一种:

其中x为碳或氮。

在上述技术方案中,所述有机发光化合物为下列结构中的任意一个:

一种有机发光化合物的制备方法,包括以下步骤:

将式(ii)结构的化合物和式(iii)结构的化合物混合反应,得到式(i)结构的化合物;

按照本发明,将式(ii)结构的化合物和式(iii)结构的化合物混合反应,得到式(i)结构的化合物。本发明中,所述式(ii)结构的化合物中r1和r2选择范围与前述化合物中的限定相同;所述式(iii)结构的化合物中ar1、ar2和ar3取代基的选择也与前述化合物限定相同,本发明对所述反应的条件没有特殊要求,本领域技术人员可以根据现有的反应选择合适的反应条件。此外,本发明对式(ii)结构的化合物与式(iii)结构的化合物的来源没有特殊限定,通过本领域公知的制备方法制得即可。

本发明还提供一种有机电致发光器件,其电子传输层材料为本发明所述的有机发光化合物。

本发明的有益效果是:

本发明提供的有机发光化合物,通过选择特定的母核结构以及取代基r1、r2、ar1、ar2和ar3,该化合物应用于有机电致发光器件后,使得制备的器件的发光效率提高,而且使用寿命长。

本发明提供的有机发光化合物的制备方法,其原料易得,制法简单,适于规模化生产。

具体实施方式

下面将结合具体实施例对本发明进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

化合物制备实施例

中间体的合成:

向烧瓶中加入1h-非那烯-1-酮(20g,111mmol),用四氢呋喃(554ml)溶解后于0℃缓慢滴加苯基溴化镁(36.9ml),并在室温搅拌24小时,反应结束后,用乙酸乙酯萃取有机层,得到的有机层用无水硫酸镁干燥除去残余水分,利用柱层析分离得中间体1(21.5g,75%)。

向烧瓶中加入中间体1(17.5g,67.7mmol)及溴苯(10.6,67.7mmol),用二氯甲烷(450ml)溶解,加入五氧化二磷的甲磺酸溶液(0.04ml,1.35mmol)滴加至反应液中,搅拌十分钟,反应结束后,加入碳酸氢钠溶液,用二氯甲烷萃取有机层,再用无水硫酸镁干燥去除残余水分,利用柱层析分离得到中间体2(24.2g,90%)。

向1l圆底烧瓶中依次加入中间体2(35.4g,89mmol),联硼酸频那醇酯(27g,106mmol),二(三苯基膦)二氯化钯(3.1g,4.45mmol),醋酸钾(koac)(22g,222mmol),及1,4-二氧六环(445ml)加热搅拌至回流3小时,混合物用二氯甲烷和去离子水萃取,二氯甲烷层用无水硫酸镁干燥后抽滤,得到的固体用三氯甲烷溶解后,通过柱层析分离得到中间体3-1(23.73g,60%)。

将上述反应的苯基溴化镁替换成参照中间体3-1的制备方法,按照相同摩尔量比制备得到中间体3-2

中间体5-1~中间体5-19的合成:

向2l圆底烧瓶中依次加入中间体3-1(34.66g,78mmol),2-溴硝基苯(18.7g,93mmol),四(三苯基膦)钯(3.6g,3.1mmol),碳酸钠(20.6g,195mmol),甲苯400ml,乙醇50ml及水100ml溶解后于130℃搅拌过夜,反应混合物用乙酸乙酯/h2o处理,再用无水硫酸镁干燥后减压蒸馏,粗品用二氯甲烷:正己烷进行柱层析分离,得到中间体5-1(25.7g,75%)。

中间体6-1~中间体6-19的合成:

向1l圆底烧瓶中依次加入中间体5-1(30g,57.8mmol),亚磷酸三乙酯200ml及邻二氯苯200ml,于150℃搅拌2小时,反应混合液旋蒸得到固体,粗品用二氯甲烷:正己烷进行柱层析分离得到中间体6-1(18.4g,78%)。

表1

参照中间体5-1和中间体6-1的制备方法,将反应物3和反应物4分别替换为上述表格的中记载的相应反应物,用相同摩尔量比制备得到中间体5-2~5-19、中间体6-2~中间体6-19。

目标化合物1~124的合成

向500ml圆底烧瓶中依次加入中间体6-1(8.4g,20.6mmol),2-溴-4,6-二苯基吡啶(7.7g,24.8mmol),醋酸钯(232mg,1.0mmol),2-双环己基膦-2',6'-二甲氧基联苯(850mg,2.0mmol),叔丁醇钠(5g,51.6mmol)及邻二甲苯200ml,于180℃搅拌2小时,反应混合物用乙酸乙酯/水进行后处理,用硫酸镁干燥除去残余水分后,减压蒸馏,粗品用二氯甲烷:正己烷进行柱层析分离得到目标化合物1,(7.21g,55%)。

表2

参照目标化合物1的制备方法,制备得到的目标化合物1-124分别标记为p1-p124,并进行质谱测试,数据列于表3。表3

有机电致发光器件制备

[实验例1-124]绿光有机电致发光器件(电子传输层)

首先,在玻璃基板中形成的氧化铟锡层(阳极)上面真空蒸镀厚度为60nm的4,4',4”-三[2-萘基苯基氨基]三苯基胺(以下简称为2-tnata)形成空穴注入层,在形成的空穴注入层上面真空蒸镀厚度为60nm的n,n'-二苯基-n,n'-(1-萘基)-1,1'-联苯-4,4'-二胺(以下简称为npd)来形成空穴传输层。接着,在上述空穴传输层上面真空蒸镀厚度为30nm的,以4,4'-二(9-咔唑)联苯为主体(以下简称为cbp),以三(2-苯基吡啶)合铱为掺杂的混合物为发光层,主体材料及掺杂材料重量比为95:5。紧接着,在上述发光层上面真空蒸镀厚度为10nm的双(2-甲基-8-羟基喹啉-n1,o8)-(1,1'-联苯-4-羟基)铝(以下简称balq)形成了空穴阻断层。在上述空穴阻断层上面真空蒸镀厚度为40nm的本发明的化合物p1-p124中的一个,来形成电子传输层。随后,在上述电子传输层中蒸镀厚度为0.2nm碱金属卤化物的氟化锂,形成了电子注入层。接着蒸镀厚度为150nm的铝形成了阴极,以此完成了有机电致发光器件的制备。

[比较例]

比较例(1)

除了电子传输层物质用比较化合物1来代替本发明的化合物之外,其他都与上述实验例同样的方法制备了有机电致发光器件。

<比较化合物1>alq3

比较例(2)

除了电子传输层物质用比较化合物2来代替本发明的化合物之外,其他都与上述实验例同样的方法制备了有机电致发光器件。

<比较化合物2>

比较例(3)

除了电子传输层物质用比较化合物3来代替本发明的化合物之外,其他都与上述实验例同样的方法制备了有机电致发光器件。

<比较化合物3>

对上述对比例和实施例制备的有机电致发光器件加以正向直流偏置电压,利用photoresearch公司的pr-650光度测量设备测定电致发光特性,并在5000cd/m2的基准灰度下利用mcscience公司制造的寿命测定装置测定了t95的寿命,测量结果记载于表4。

表4

从上述表4能看到,利用本发明的化合物作为有机电致发光器件(oled)中的电子传输层,比较以alq3作为比较化合物1作为有机电致发光器件(oled)中的电子传输层,体现了如下优势,更低的驱动电压、高的效率及高的寿命。

用本发明的化合物和比较化合物2,比较化合物3分别作为电子传输层制备的有机电致发光器件相比较而言,可知,当用了本发明中的化合物时,器件在收率和寿命上都有显著的改善。这可以说明为,本发明中的化合物相较比较化合物2和比较化合物3,较好地保持了空穴与电子的电荷平衡。

以上描述本发明优选的具体实施例,本行业的技术人员应该了解,本发明不受上述实施例的限制,在不脱离本发明精神和范围的前提下本发明还会有各种变化和改变,这些变化和改进都落入本发明要求保护的范围内。本发明要求保护范围由所附的权利要求书及其等效物的界定。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1