本发明涉及弱光致光子频率上转换技术领域,具体涉及一类基于邻菲啰啉金属配合物的三线态-三线态湮灭上转换光敏剂及其在生物分子检测方面的应用,以及一种双组份三线态-三线态湮灭上转换体系。
背景技术:
三线态-三线态湮灭(tta)上转换是由光敏剂和发光剂组成的双组份体系,通过dexter能量转移实现频率上转换。具体过程如下:i)光敏剂吸收激发光能量,将其储存至三线态;ii)经过三线态-三线态传输过程将能量传递至发光剂的三线态;iii)两个三线态激发态发光剂分子经过三线态-三线态湮灭过程,一个发光剂分子回到单线态基态,另一个获得它们的三线态能量被激发至更高的单线态激发态;iv)单线态激发态发光剂分子通过辐射跃迁回落至基态,发出延时荧光。
与传统的双光子吸收相比,tta上转换具有泵浦能量低、激发和发射波长可调等特点,在太阳能转换利用、信息存储和生物检测等方面具有潜在应用价值。在tta上转换体系中,光敏剂作为tta上转换的能量吸收窗口和能量传递者,其光物理性质对tta上转换性能具有至关重要的作用。因此,开发高效的tta上转换光敏剂是提高能量利用率,实现其应用价值的重要保证。
技术实现要素:
本发明的主要目的在于提供一种三线态-三线态湮灭上转换光敏剂及其应用,以克服现有技术中的不足。
为实现上述发明目的,本发明采用了如下技术方案:
本发明实施例提供了一种三线态-三线态湮灭上转换光敏剂,所述三线态-三线态湮灭上转换光敏剂的结构式如式i或式ii所示:
其中,m为过渡金属离子;
r包括4-(2,2-二苯乙烯基)苯基、蒽基、萘基、芘基、芴基、咔唑基和噻吩基中的任意一种;
n,n二齿配体包括2,2-联吡啶或1,10-邻菲啰啉;
x,x二齿配体包括1,10-邻菲啰啉衍生物。
本发明实施例还提供了一种双组份三线态-三线态湮灭上转换体系,包括三线态-三线态湮灭上转换光敏剂与发光剂,所述三线态-三线态湮灭上转换光敏剂为前述的三线态-三线态湮灭上转换光敏剂。
本发明实施例还提供了所述三线态-三线态湮灭上转换光敏剂于生物分子检测中的应用。
较之现有技术,本发明的有益效果在于:
(1)本发明实施例提供的基于邻菲啰啉的三线态-三线态湮灭(tta)上转换光敏剂,与发光剂可以组成双组份tta上转换体系,具有优异的弱光上转换效率。通过与发光剂之间的三线态能量转移,将长波长的光转换为短波长的光,这一过程只需通过泵浦光源光强为6mw·cm-2的弱光场实现。
(2)上转换体系泵浦光源光强低至6mw·cm-2,太阳光激发下即可实现获得上转换荧光,大大拓展了tta上转换的应用。
(3)本发明实施例提供的三线态-三线态湮灭(tta)上转换光敏剂,可以与生物分子发生相互作用,从而可以应用于tta上转换对生物分子的检测领域,对生物分子的检测分析具有潜在应用。
附图说明
图1是本发明实施例一的双组份tta上转换体系的上转换发光光谱图;
图2为实施例二的双组份tta上转换体系的上转换发光光谱图;
图3为实施例三的双组份tta上转换体系的上转换发光光谱图;
图4为实施例四的双组份tta上转换体系的上转换发光光谱图;
图5为实施例五的双组份tta上转换体系的上转换发光光谱图;
图6为实施例八的双组份tta上转换体系的上转换发光光谱图。
具体实施方式
针对现有技术的诸多缺陷,本案发明人经长期研究和大量实践,得以提出本发明的技术方案。如下将对该技术方案、其实施过程及原理等作进一步的解释说明。但是,应当理解,在本发明范围内,本发明的上述各技术特征和在下文(实施例)中具体描述的各技术特征之间都可以相互结合,从而构成新的或者优选的技术方方案。限于篇幅,在此不再一一累述。
作为本发明技术方案的一个方面,其所涉及的系一种三线态-三线态湮灭上转换光敏剂,所述三线态-三线态湮灭上转换光敏剂的结构式如式i或式ii所示:
其中,m为过渡金属离子;
r包括4-(2,2-二苯乙烯基)苯基、蒽基、萘基、芘基、芴基、咔唑基和噻吩基中的任意一种;
n,n二齿配体包括2,2-联吡啶或1,10-邻菲啰啉;
x,x二齿配体包括1,10-邻菲啰啉衍生物。
在一些实施方案中,当n1=2,n2=3时,m为钌离子或铱离子。
在一些实施方案中,当n1=1,n2=2时,m为铜离子。
在一些实施方案中,所述1,10-邻菲啰啉衍生物具有式iii、式iv、式v、式vi和式vii中任意一者所示的结构:
其中,r为4-(2,2-二苯乙烯基)苯基、蒽基、萘基、芘基、芴基、咔唑基和噻吩基中的任意一种。
在一些实施方案中,所述三线态-三线态湮灭上转换光敏剂具有viii、式ix、式x、和式xi和式xii中任意一者所示的结构:
本发明实施例还提供一种双组份三线态-三线态湮灭上转换体系,所述双组份三线态-三线态湮灭上转换体系包括三线态-三线态湮灭上转换光敏剂与发光剂,所述三线态-三线态湮灭上转换光敏剂为前述的三线态-三线态湮灭上转换光敏剂。
在一些实施方案中,所述三线态-三线态湮灭上转换光敏剂与发光剂的摩尔比为1∶20~200。
在一些实施方案中,所述发光剂的结构式如式xiii所示:
其中,r1为氢或甲基,r2为氯、氰基或羧基。
在一些实施方案中,所述双组份三线态-三线态湮灭上转换体系还包括介质,所述介质包括有机溶剂、微乳液、离子液和水中的任意一种或两种以上的组合。
进一步地,所述有机溶剂包括甲苯、n,n-二甲基甲酰胺(dmf)和二甲亚砜中的任意一种或两种以上的组合。
本发明实施例还提供了所述三线态-三线态湮灭上转换光敏剂于生物分子检测中的应用。
下面结合若干优选实施例及附图对本发明的技术方案做进一步详细说明,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。以下实施例中采用的实施条件可以根据实际需要而做进一步调整,未注明的实施条件通常为常规实验中的条件。
实施例1
光敏剂的分子结构式为:
发光剂的分子结构式为:
将tta上转换光敏剂与发光剂分散在dmf中,配成摩尔比为1∶0-1∶200的双组份tta上转换体系。经过脱气处理后,在弱光场泵浦下(激发波长:488nm,泵浦能量密度40mwcm-2)可获得462nm的蓝色上转换荧光。图1为上述双组份tta上转换体系的上转换发光光谱。图中依箭头方向依次表示摩尔比为1∶0、1∶20、1∶40、1∶60、1∶80、1∶100、1∶140、1∶180、1∶200的上转换光敏剂与发光剂配成的双组份tta上转换体系的上转换发光光谱。光敏剂与发光剂在最佳摩尔配比1∶200的上转换效率为6.4%。随着激光光源功率密度从6mw·cm-2~40mw·cm-2,可以观察到462nm的蓝色上转换荧光逐渐增强。
实施例2
光敏剂的分子结构式为:
发光剂的分子结构式为:
将tta上转换光敏剂与发光剂分散在dmf中,配成摩尔比为1∶0-1∶200的双组份tta上转换体系。经过脱气处理后,在弱光场泵浦下(激发波长:488nm,泵浦能量密度40mwcm-2)可获得462nm的蓝色上转换荧光。图2为上述双组份tta上转换体系的上转换发光光谱。图中依箭头方向依次表示摩尔比为1∶0、1∶20、1∶40、1∶60、1∶80、1∶100、1∶140、1∶180、1∶200的上转换光敏剂与发光剂配成的双组份tta上转换体系的上转换发光光谱。光敏剂与发光剂在最佳摩尔配比1∶200的上转换效率为3.1%。
实施例3
光敏剂的分子结构式为:
发光剂的分子结构式为:
将tta上转换光敏剂与发光剂分散在dmf中,配成摩尔比为1∶0-1∶200的双组份tta上转换体系。经过脱气处理后,在弱光场泵浦下(激发波长:488nm,泵浦能量密度40mwcm-2)可获得441nm的蓝色上转换荧光。图3为上述双组份tta上转换体系的上转换发光光谱。图中依箭头方向依次表示摩尔比为1∶0与1∶200的上转换光敏剂与发光剂配成的双组份tta上转换体系的上转换发光光谱。光敏剂与发光剂在最佳摩尔配比1∶200的上转换效率为2.2%。
实施例4
光敏剂的分子结构式为:
发光剂的分子结构式为:
将tta上转换光敏剂与发光剂分散在dmf中,配成摩尔比为1∶0-1∶165的双组份tta上转换体系。经过脱气处理后,在弱光场泵浦下(激发波长:488nm,泵浦能量密度40mwcm-2)可获得441nm的蓝色上转换荧光。图4为上述双组份tta上转换体系的上转换发光光谱。图中在波峰处从上至下依次是摩尔比为1∶165、1∶150、1∶135、1∶120、1∶105、1∶90、1∶75、1∶60、1∶45、1∶30的上转换光敏剂与发光剂配成的双组份tta上转换体系的上转换发光光谱。光敏剂与发光剂在最佳摩尔配比1∶120的上转换效率为20.2%。
实施例5
光敏剂的分子结构式为:
发光剂的分子结构式为:
将tta上转换光敏剂与发光剂分散在dmf/水中,配成摩尔比为1∶0-1∶150的双组份tta上转换体系。经过脱气处理后,在弱光场泵浦下(激发波长:488nm,泵浦能量密度40mwcm-2)可获得445nm的蓝色上转换荧光。图5为上述双组份tta上转换体系的上转换发光光谱。图中从上至下依次表示摩尔比为1∶150与1∶80的上转换光敏剂与发光剂配成的双组份tta上转换体系的上转换发光光谱。光敏剂与发光剂在最佳摩尔配比1∶150的上转换效率为15.4%。
实施例6
光敏剂的分子结构式为:
发光剂的分子结构式为:
将tta上转换光敏剂与发光剂分散在dmf中,配成1∶20-1∶100的双组份tta上转换体系。经过脱气处理后,在弱光场泵浦下(激发波长:488nm,泵浦能量密度40mwcm-2)可获得441nm的蓝色上转换荧光。
实施例7
光敏剂的分子结构式为:
发光剂的分子结构式为:
将tta上转换光敏剂与发光剂分散在dmf中,配成1∶20-1∶100的双组份tta上转换体系。经过脱气处理后,在弱光场泵浦下(激发波长:488nm,泵浦能量密度200mwcm-2)可获得441nm的蓝色上转换荧光。
实施例8
光敏剂的分子结构式为:
发光剂的分子结构式为:
通过tta上转换光敏剂与dna分子发生相互作用,将含有dna的光敏剂与发光剂结合构成上转换体系,图6为该上转换体系的上转换发光光谱,其上转换发光强度降低。图中从上至下依次表示摩尔比为1∶150、含有dna的1∶150的上转换光敏剂与发光剂配成的双组份tta上转换体系的上转换发光光谱。该结果说明通过tta上转换光敏剂与生物大分子相结合,可以将tta上转换技术应用于生物分子检测分析。
综上所述,本发明的基于邻菲啰啉配合物的tta上转换光敏剂与发光剂组成双组份tta上转换体系,具有优异的上转换发光效率;上转换体系泵浦光源光强低至6mw·cm-2;本发明公开的tta上转换光敏剂可以与生物大分子发生相互作用,在tta上转换对生物分子的检测分析中具有潜在应用。
此外,本案发明人还利用前文所列出的其它工艺条件等替代实施例1-8中的相应工艺条件进行了相应试验,所需要验证的内容和与实施例1-8产品均接近。故而此处不对各个实施例的验证内容进行逐一说明,仅以实施例1~8作为代表说明本发明申请优异之处。
需要说明的是,在本文中,在一般情况下,由语句“包括......”限定的要素,并不排除在包括所述要素的步骤、过程、方法或者实验设备中还存在另外的相同要素。
应当理解,以上所述实例仅为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人是能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所做的等效变换或修饰,都应涵盖在本发明的保护范围之内。