一种以含烯键芴为核心的化合物及其应用的制作方法

文档序号:21359485发布日期:2020-07-04 04:32阅读:180来源:国知局
一种以含烯键芴为核心的化合物及其应用的制作方法

本发明涉及半导体材料技术领域,尤其是涉及一种以含烯键芴为核心的化合物及其在有机电致发光器件上的应用。



背景技术:

当前,oled显示技术已经在智能手机,平板电脑等领域获得应用,进一步还将向电视等大尺寸应用领域扩展,但是,和实际的产品应用要求相比,oled器件的发光效率和使用寿命等性能还需要进一步提升。目前对oled发光器件提高性能的研究包括:降低器件的驱动电压、提高器件的发光效率、提高器件的使用寿命等。为了实现oled器件的性能的不断提升,不但需要从oled器件结构和制作工艺的创新,更需要oled光电功能材料不断研究和创新,创制出更高性能的oled功能材料。

应用于oled器件的oled光电功能材料从用途上可划分为两大类,分别为电荷注入传输材料和发光材料。进一步,还可将电荷注入传输材料分为电子注入传输材料、电子阻挡材料、空穴注入传输材料和空穴阻挡材料,还可以将发光材料分为主体发光材料和掺杂材料。

为了制作高性能的oled发光器件,要求各种有机功能材料具备良好的光电性能,譬如,作为电荷传输材料,要求具有良好的载流子迁移率,高玻璃化转化温度等,作为发光层的主体材料具有良好双极性,适当的homo/lumo能阶等。

构成oled器件的oled光电功能材料膜层至少包括两层以上结构,产业上应用的oled器件结构则包括空穴注入层、空穴传输层、电子阻挡层、发光层、空穴阻挡层、电子传输层、电子注入层等多种膜层,也就是说应用于oled器件的光电功能材料至少包括空穴注入材料、空穴传输材料、发光材料、电子传输材料等,材料类型和搭配形式具有丰富性和多样性的特点。另外,对于不同结构的oled器件搭配而言,所使用的光电功能材料具有较强的选择性,相同的材料在不同结构器件中的性能表现也可能完全迥异。

因此,针对当前oled器件的产业应用要求以及oled器件的不同功能膜层,器件的光电特性需求,必须选择更适合、性能更高的oled功能材料或材料组合,才能实现器件的高效率、长寿命和低电压的综合特性。就当前的oled显示照明产业的实际需求而言,目前oled材料的发展还远远不够,落后于面板制造企业的要求,作为材料企业开发更高性能的有机功能材料显得尤为重要。



技术实现要素:

针对现有技术存在的上述问题,本发明申请人提供了一种以含烯键芴为核心的化合物及其应用。本发明化合物以含烯键芴为核心,具有较高的玻璃化转变温度和分子热稳定性,合适的homo能级,通过器件结构优化,可有效提升oled器件的光电性能以及oled器件的寿命。

本发明的技术方案如下:一种以含烯键芴为核心的化合物,所述化合物的结构如通式(1)所示:

通式(1)中,虚线表示为两个基团以单键连接或不连接,且至少有一条虚线表示为两个基团连接;

m、n分别为0或1,且m+n≥1;

所述a、b、c、d分别为≥0的整数,且a+b+c+d≥1;

r5、r6分别独立的表示为通式(2)或通式(3)所示结构;

通式(2)中,x1、x2分别独立的表示为单键、-o-、-s-、-c(r7)(r8)-或-n(r9)-;且x1、x2不同时表示为单键;

通式(2)和通式(3)由*标记的两个相邻位置以并环方式与通式(1)中有*标记的两个相邻位置相连;

r1、r2、r3、r4分别独立地表示为氢原子、氕、氘、氚、氰基、卤素、c1-20的烷基、通式(4)或通式(5)所示结构,且至少有一个表示为通式(4)或者通式(5)所示结构;

r10、r11、r12分别独立地表示为氢原子、氕、氘、氚、氰基、卤素原子、c1-10烷基、胺基、取代或未取代的c6-30芳基、含有一个或多个杂原子取代或未取代的5-30元杂芳基;r10、r11、r12与通式(4)或通式(5)的连接方式有并环和取代两种方式;

通式(4)和通式(5)中,ar1、ar2分别独立地表示为单键、取代或未取代的c6-30亚芳基、含有一个或多个杂原子的取代或未取代的5-30元亚杂芳基;

所述x3、x4、x5分别独立的表示为单键、-o-、-s-、-c(r13)(r14)-或-n(r15)-;且x4、x5不同时表示为单键;

所述所述r7~r9、r13~r15分别独立的表示为c1-20的烷基、取代或未取代的c6-30芳基、含有一个或多个杂原子的取代或未取代的5-30元杂芳基;且r7与r8、r13与r14不成环或者相互键结成环;

通式(2)和通式(3)由*标记的两个相邻位置以并环方式与通式(1)以并环方式相连接;

上述可被取代基团被取代时的取代基任选自氕、氘、氚、卤素原子、氰基、c1-20的烷基、c6-30芳基、含有一个或多个杂原子的5-30元杂芳基一种或多种;

所述亚杂芳基或杂芳基中的杂原子选自n、o或s中的一种或多种。

作为本发明进一步改进,所述r10、r11、r12分别独立地表示为氢原子、氕、氘、氚、氰基、甲基、乙基、丙基、异丙基、丁基、叔丁基、戊基、己基、取代或未取代的苯基、取代或未取代的二联苯基、取代或未取代的三联苯基、取代或未取代的萘基、取代或未取代的萘啶基、取代或未取代的吡啶基、取代或未取代的蒽基、取代或未取代的菲基、通式(2)、通式(3)、通式(6)、通式(7)或通式(8)所示结构;

通式(2)中,x1、x2分别独立的表示为单键、-o-、-s-、-c(r7)(r8)-或-n(r9)-;且x1、x2不同时表示为单键;

通式(7)和通式(8)中,x6、x7、x8分别独立的表示为单键、-o-、-s-、-c(r16)(r17)-或-n(r18)-;且x6、x7不同时表示为单键;

ar3、ar4分别独立地表示为单键、取代或未取代的c6-30亚芳基、含有一个或多个杂原子的取代或未取代的5-30元亚杂芳基;

所述z表示为氮原子或c-h;

所述ra、rb分别独立的表示为取代或未取代的c6-30芳基、含有一个或多个杂原子的取代或未取代的5-30元杂芳基;

所述所述r7~r9、r16~r18分别独立的表示为c1-20的烷基、取代或未取代的c6-30芳基、含有一个或多个杂原子的取代或未取代的5-30元杂芳基;且r7与r8、r16与r17不成环或者相互键结成环;

在通式(2)和通式(3)由*标记的两个相邻位置以并环方式与通式(4)或通式(5)相连,通式(4)中可并环的位点为l1-l2、l2-l3、l3-l4、l'1-l'2、l'2-l'3、l'3-l'4所示相邻位置,通式(5)中可并环的位点为l5-l6、l6-l7或l7-l8所示相邻位置;

上述可被取代基团被取代时的取代基任选自氕、氘、氚、卤素原子、氰基、c1-20的烷基、c6-30芳基、含有一个或多个杂原子的5-30元杂芳基中的一种或多种;

所述亚杂芳基或杂芳基中的杂原子选自n、o或s中的一种或多种。

进一步的,所述a、b、c、d分别为0或1;所述r1、r2、r3、r4分别独立地表示为氢原子、氕、氘、氚、氰基、甲基、乙基、丙基、异丙基、丁基、叔丁基、戊基、己基、通式(4)或通式(5)所示结构,且r1、r2、r3、r4中至少有一个表示为通式(4)或通式(5)所示结构。

进一步的,当a+b+c+d=1时,所述x3、x4表示为单键,化合物选自如通式(i-1)至通式(i-28)所示结构;

作为本发明进一步改进,所述ar1、ar2、ar3、ar4别独立地表示为单键、取代或未取代的亚苯基、取代或未取代的亚萘基、取代或未取代的亚二联苯基、取代或未取代的亚三联苯基、取代或未取代的亚吡啶基、取代或未取代的亚萘啶基、取代或未取代的亚咔唑基、取代或未取代的亚二苯并呋喃基;

所述ra、rb分别独立的表示为取代或未取代的苯基、取代或未取代的联苯基、取代或未取代的咔唑基、取代或未取代的苯并呋喃基、取代或未取代的苯并噻吩基、取代或未取代的9,9-二甲基芴基、取代或未取代的9,9-二苯基芴基、取代或未取代的9,9-螺芴基、取代或未取代的吡啶基、取代或未取代的喹啉基、取代或未取代的异喹啉基、取代或未取代的嘧啶基、取代或未取代的菲基、取代或未取代的蒽基中的一种;

所述r7~r9、r13~r18分别独立地表示为甲基、乙基、丙基、异丙基、丁基、叔丁基、戊基、己基、环己基、取代或未取代的苯基、取代或未取代联苯基、取代或未取代的萘基、取代或未取代的吡啶基中的一种;

上述各基团被取代时的取代基选自氕、氘、氚、氟原子、氰基、苯基、联苯基、萘基、呋喃基、咔唑基、噻吩基或吡啶基中的一种或多种。

进一步,所述通式(1)为下列具体化合物中的任一种:

的一种。

一种有机电致发光器件,所述有机电致发光器件的阳极与阴极之间具有多层有机薄膜层,至少一层有机薄膜层含有所述以烯键芴为核心的化合物。

进一步,所述多层有机薄膜层包括电子阻挡层和/或空穴传输层,所述电子阻挡层和/或空穴传输层含有所述以烯键芴为核心的化合物。

进一步,所述多层有机薄膜层包括发光层,所述发光层含有所述以烯键芴为核心的化合物。

一种显示元件,所述显示元件含有所述的有机电致发光器件。

本发明还涉及一种所述的以含烯键芴为核心的化合物的应用,应用于制备有机电致发光器件

与现有技术相比,本发明有益的技术效果在于:

(1)本发明的化合物以含烯键芴为核心,连接给电子基团,具有高的三线态能级(t1),作为oled发光器件的电子阻挡层和/或空穴传输层的材料使用可有效阻挡发光层的激子能量传递至空穴传输层中,提高激子在发光层中的复合效率,提高能量利用率,从而提高器件发光效率。

(2)本发明的化合物使得电子和空穴在发光层的分布更加平衡,在恰当的homo能级下,提升了空穴注入和传输性能;在合适的lumo能级下,又起到了电子阻挡的作用,提升激子在发光层中的复合效率;可有效提高激子利用率和高荧光辐射效率,降低器件电压,提高器件的电流效率和寿命;从而更易于获得器件的高效率。说明本发明的化合物在oled发光器件中具有良好的应用效果,具有良好的产业化前景。

附图说明

图1为本发明所列举的材料应用于oled器件的结构示意图;

图中,1为透明基板层、2为ito阳极层、3为空穴注入层、4为空穴传输层、5为电子阻挡层、6为发光层、7为电子传输层、8为电子注入层、9为阴极反射电极层。

图2为本发明器件的电流效率随温度的变化曲线。

具体实施方式

下面结合附图和实施例,对本发明进行具体描述。

下述实施例中所有反应物均采购于烟台万润精细化工股份有限公司。

实施例1化合物7的合成:

将0.01mol反应物a-1和0.012mol反应物b-1溶解于150ml甲苯中,加入0.015mol的叔丁醇钾,在氮气的氛围下120℃反应24小时,取样点板,待反应完全后,冷却、过滤,将滤液旋蒸除去溶剂,粗产品过硅胶柱,得到化合物7,收率79.5%,hplc纯度99.15%;元素分析结构(c48h27no)理论值:c,90.97;h,4.29;n,2.21;测试值:c,90.94;h,4.28;n,2.25。hrms(ei):理论值为633.2093,实测值为633.2091。

实施例11化合物107的合成:

将0.01mol反应物a-9和0.012mol反应物b-9溶解于150ml甲苯/乙醇(v甲苯:v乙醇=5:1)混合溶液中,除氧后加入0.0002molpd(pph3)4和0.02molk2co3,在通入氮气的气氛下110℃反应24个小时,取样点板,待反应物反应完全后,冷却、过滤,将滤液旋蒸除去溶剂,粗产品过硅胶柱,得到化合物107;元素分析结构(分子式c56h31no2):理论值:c,89.70;h,4.17;n,1.87;测试值:c,89.71;h,4.16;n,1.84。hrms(ei):理论值为749.2355,实测值为749.2357。

重复实施例1或者实施例11的制备过程合成以下化合物;其中反应条件i表示制备过程与实施例1相同;反应条件ii表示制备过程与实施例11相同;不同之处在于使用下表1中所列出的反应物a和反应物b;

表1

上述反应中的反应物a的合成方法分别以反应物a-1,a-4为例,其他反应物a的合成方法类似,且原料购自中节能万润股份有限公司。

反应物a-1的合成:

具体合成步骤:将原料i-11.0mmol溶于3ml的thf,放置在-78℃下,向溶液里缓慢的滴加2mol/l的tms-chn2的乙醚溶液0.5ml直至原料i-1的颜色消失,将反应液升温至-45℃,接着将溶于3mlthf的原料ii-1,滴加至反应液中,10分钟后,将反应液升至0℃,并且向反应液中滴加tbaf(1mol/l,thf)2ml。将反应液旋蒸除去溶剂,粗产品过硅胶柱,得到反应物a-1;元素分析结构(分子式c30h17br):理论值:c,78.78;h,3.75;br,17.47;测试值:c,78.77;h,3.74;br,17.49。hrms(ei):理论值为456.0514,实测值为456.0511。

反应物a-4的合成:

具体合成步骤:将原料i-21.0mmol溶于3ml的thf,放置在-78℃下,向溶液里缓慢的滴加2mol/l的tms-chn2的乙醚溶液0.5ml直至原料i-1的颜色消失,将反应液升温至-45℃,接着将溶于3mlthf的原料ii-2,滴加至反应液中,10分钟后,将反应液升至0℃,并且向反应液中滴加tbaf(1mol/l,thf)2ml。将反应液旋蒸除去溶剂,粗产品过硅胶柱,得到反应物a-4;元素分析结构(分子式c30h19br):理论值:c,78.44;h,4.17;br,17.39;测试值:c,78.42;h,4.18;br,17.40。hrms(ei):理论值为458.0670,实测值为458.0657。

本发明的有机化合物在发光器件中使用,可以作为电子阻挡层或空穴传输层材料使用。对本发明化合物7、化合物9、化合物24、化合物35、化合物42、化合物47、化合物59、化合物62、化合物81、化合物90、化合物107、化合物142、化合物161、化合物164、化合物182、化合物186、化合物205、化合物228、化合物250、化合物267、化合物286、化合物304、化合物323和化合物340分别进行t1能级、热性能、homo能级的测试,检测结果如表2所示。

表2

注:三线态能级t1是由日立的f4600荧光光谱仪测试,材料的测试条件为2*10-5mol/ml的甲苯溶液;玻璃化温度tg由示差扫描量热法(dsc,德国耐驰公司dsc204f1示差扫描量热仪)测定,升温速率10℃/min;热失重温度td是在氮气气氛中失重1%的温度,在日本岛津公司的tga-50h热重分析仪上进行测定,氮气流量为20ml/min;最高占据分子轨道homo能级是由电离能量测试系统(ips3)测试,测试为大气环境;空穴迁移率:将材料制作成单电荷器件,用sclc方法测定。

由上表2数据可知,本发明的有机化合物具有较为合适的能级,可应用于电子阻挡,本发明以含烯键芴为核心的有机化合物具有较高的空穴迁移率及较高的热稳定性,使得所制作的含有本发明有机化合物的oled器件效率和寿命均得到提升。

以下通过器件实施例1-26和器件比较例1详细说明本发明合成的化合物在器件中作为空穴传输材料的应用效果。器件实施例2-26以及器件比较例1与器件实施例1相比,所述器件的制作工艺完全相同,并且所采用了相同的基板材料和电极材料,电极材料的膜厚也保持一致,所不同的是器件中电子阻挡层材料发生了改变。器件叠层结构如表3所示,各器件的性能测试结果见表4和表5。

器件实施例1

透明基板层1/ito阳极层2/空穴注入层3(hat-cn,厚度10nm)/空穴传输层4(ht-1,厚度60nm)/电子阻挡层5(化合物1,厚度20nm)/发光层6(gh1、gh2和gd-1按照45:45:10的重量比混掺,厚度40nm)/空穴阻挡/电子传输层7(et-1和liq,按照1:1的重量比混掺,厚度35nm)/电子注入层8(lif,厚度1nm)/阴极层9(mg和ag,按照9:1的重量比混掺,厚度80nm)。

具体制备过程如下:

如图1所示,透明基板层1为透明pi膜,对ito阳极层2(膜厚为150nm)进行洗涤,即依次进行碱洗涤、纯水洗涤、干燥,再进行紫外线-臭氧洗涤以清除透明ito表面的有机残留物。在进行了上述洗涤之后的ito阳极层2上,利用真空蒸镀装置,蒸镀膜厚为10nm的hat-cn作为空穴注入层3使用。接着蒸镀60nm厚度的ht-1作为空穴传输层4。随后蒸镀20nm厚度的化合物1作为电子阻挡层5。上述空穴传输材料蒸镀结束后,制作oled发光器件的发光层6,其结构包括oled发光层6所使用gh-1、gh-2作为主体材料,gd-1作为掺杂材料,掺杂材料掺杂比例为10%重量比,发光层膜厚为40nm。在上述发光层6之后,继续真空蒸镀电子传输层材料为et-1和liq,该材料的真空蒸镀膜厚为35nm,此层为空穴阻挡/电子传输层7。在空穴阻挡/电子传输层7上,通过真空蒸镀装置,制作膜厚为1nm的氟化锂(lif)层,此层为电子注入层8。在电子注入层8上,通过真空蒸镀装置,制作膜厚为80nm的mg:ag电极层,此层为阴极层9使用。如上所述地完成oled发光器件后,用公知的驱动电路将阳极和阴极连接起来,测量器件的电流效率以及器件的寿命。

按照上述步骤完成电致发光器件的制作后,测量器件的效率数据和光衰寿命,其结果见表4所示。相关材料的分子结构式如下所示:

表3

各器件实施例和器件比较例1的效率和寿命数据见表4所示。

表4

注:lt97指的是在电流密度为10ma/cm2情况下,器件亮度衰减到97%所用时间;

寿命测试系统为韩国脉冲科学m600型oled器件寿命测试仪。

由表4的器件数据结果可以看出,本发明的有机发光器件无论是在效率还是寿命均相对于已知材料的oled器件获得较大的提升。

进一步的本发明材料制备的oled器件在低温下工作时效率也比较稳定,将器件实施例6、15、25和器件比较例1在-10~80℃区间进行效率测试,所得结果如表5和图2所示。

表5

从表5和图2的数据可知,器件实施例6、15、25为本发明材料和已知材料搭配的器件结构,与器件比较例1相比,不仅低温效率高,而且在温度升高过程中,效率平稳升高。

以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1