本发明涉及半导体
技术领域:
,尤其涉及一种以咔唑衍生物为核心的有机化合物及其在有机电致发光器件上的应用。
背景技术:
:有机电致发光(oled:organiclightemissiondiodes)器件技术既可以用来制造新型显示产品,也可以用于制作新型照明产品,有望替代现有的液晶显示和荧光灯照明,应用前景十分广泛。oled发光器件犹如三明治的结构,包括电极材料膜层以及夹在不同电极膜层之间的有机功能材料,各种不同功能材料根据用途相互叠加在一起共同组成oled发光器件。oled发光器件作为电流器件,当对其两端电极施加电压,并通过电场作用有机层功能材料膜层中的正负电荷时,正负电荷进一步在发光层中复合,即产生oled电致发光。当前,oled显示技术已经在智能手机,平板电脑等领域获得应用,进一步还将向电视等大尺寸应用领域扩展,但是,和实际的产品应用要求相比,oled器件的发光效率和使用寿命等性能还需要进一步提升。目前对oled发光器件提高性能的研究包括:降低器件的驱动电压、提高器件的发光效率、提高器件的使用寿命等。为了实现oled器件的性能的不断提升,不但需要从oled器件结构和制作工艺的创新,更需要oled光电功能材料不断研究和创新,创制出更高性能的oled功能材料。应用于oled器件的oled光电功能材料从用途上可划分为两大类,分别为电荷注入传输材料和发光材料。进一步,还可将电荷注入传输材料分为电子注入传输材料、电子阻挡材料、空穴注入传输材料和空穴阻挡材料,还可以将发光材料分为主体发光材料和掺杂材料。为了制作高性能的oled发光器件,要求各种有机功能材料具备良好的光电性能,譬如,作为电荷传输材料,要求具有良好的载流子迁移率,高玻璃化转化温度等,作为发光层的主体材料具有良好双极性,适当的homo/lumo能阶等。构成oled器件的oled光电功能材料膜层至少包括两层以上结构,产业上应用的oled器件结构则包括空穴注入层、空穴传输层、电子阻挡层、发光层、空穴阻挡层、电子传输层、电子注入层等多种膜层,也就是说应用于oled器件的光电功能材料至少包括空穴注入材料、空穴传输材料、发光材料、电子传输材料等,材料类型和搭配形式具有丰富性和多样性的特点。另外,对于不同结构的oled器件搭配而言,所使用的光电功能材料具有较强的选择性,相同的材料在不同结构器件中的性能表现也可能完全迥异。因此,针对当前oled器件的产业应用要求以及oled器件的不同功能膜层,器件的光电特性需求,必须选择更适合、性能更高的oled功能材料或材料组合,才能实现器件的高效率、长寿命和低电压的综合特性。就当前的oled显示照明产业的实际需求而言,目前oled材料的发展还远远不够,落后于面板制造企业的要求,作为材料企业开发更高性能的有机功能材料显得尤为重要。技术实现要素:本发明的目的是提供一种咔唑衍生物结构的化合物。本发明的化合物以咔唑衍生物为核心,化合物具有较高的玻璃化温度和分子热稳定性,有效的保证了材料的稳定性,防止器件长时间工作发生材料膜相态分离和材料分解。该材料还具有合适的homo、lumo能级和载流子迁移率,能够和eb、et材料进行良好的器件能级匹配,降低器件驱动,从而降低器件的热效率,提升器件寿命。本发明的技术方案如下:一种以咔唑为核心的有机化合物,该化合物的结构如通式(1)所示:通式(1)中,l表示为单键、取代或未取代的亚苯基、取代或未取代的亚二联苯基、取代或未取代的亚三联苯基、取代或未取代的亚萘基、取代或未取代的亚吡啶基、取代或未取代的亚二苯并呋喃基、取代或未取代的亚咔唑基、取代或未取代的亚二苯并噻吩基、取代为未取代的亚萘啶基;r1表示为通式(2)所示结构:通式(2)中,i表示为0或1;z表示为氮原子或c-r4;且与基团l键合的情况下,z为碳原子;基团l连接在通式(2)两侧任意碳原子上;r2、r3分别独立的表示为通式(3)所示结构:r2通过l3-l4键与通式(1)并环连接;r3通过l1-l2键与通式(1)并环连接;x、x1、x2分别独立的表示为单键、-o-、-s-、-c(r5)(r6)-或-n(r7)-;x1、x2不同时为单键;所述z1表示为氮原子或c-r8;所述r4、r8分别独立的表示为氢原子、氘、氰基、卤素原子、c1-10烷基、取代或未取代的c6-30芳基、含有一个或多个杂原子的取代或未取代的5~30元杂芳基中的一种;r5-r7分别独立的表示为c1-10烷基、取代或未取代的c6-30芳基、含有一个或多个杂原子的取代或未取代的5~30元杂芳基中的一种;所述取代的c6-30芳基和取代的5~30元杂芳基的取代基任选为氘、氰基、卤素、c1-10的烷基、c6-30芳基、含有一个或多个杂原子的5~30元杂芳基中的一种或几种;所述杂原子任选自氧原子、硫原子或氮原子中的一种或多种。作为本发明进一步改进,所述r4、r8分别独立的表示为氢原子、氘、氰基、氟原子、甲基、乙基、丙基、异丙基、丁基、叔丁基、戊基、己基、取代或未取代的苯基、取代或未取代的萘基、取代或未取代的萘啶基、取代或未取代的二联苯基、取代或未取代的三联苯基、取代或未取代的二苯并呋喃基、取代或未取代的咔唑基、取代或未取代的吡啶基;所述r5-r7分别独立的表示为甲基、乙基、丙基、异丙基、丁基、叔丁基、戊基、己基、取代或未取代的苯基、取代或未取代的萘基、取代或未取代的萘啶基、取代或未取代的二联苯基、取代或未取代的三联苯基、取代或未取代的二苯并呋喃基、取代或未取代的咔唑基、取代或未取代的吡啶基;所述可取代基团的取代基任选自甲基、乙基、丙基、异丙基、丁基、叔丁基、戊基、己基、苯基、萘基、萘啶基、吡啶基、二联苯基、三联苯基、咔唑基、呋喃基或二苯并呋喃基中的一种或多种。进一步优选,所述x2表示为单键。进一步优选,所述i表示为1,x表示为单键或氧原子。进一步优选,所述r1分别表示为:中的一种。进一步优选,所述有机化合物的具体结构式为以下结构中的任一种:中的一种。作为本发明进一步改进,本发明所述化合物的制备方法为:具体制备方法如下:250ml的三口瓶,在通入氮气的气氛下,加入中间体a、中间体b或原料i、叔丁醇钾、pd2(dba)3、三苯基膦及150ml溶剂甲苯,加热回流12小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,得到中目标产物;所述中间体b(或原料i)和中间体a的摩尔比为1.0-3.0:1,叔丁醇钾与中间体a的摩尔比为1-5:1,pd2(dba)3与中间体a的摩尔比为0.01~0.03:1,三苯基膦与中间体a摩尔比为0.01-0.03:1。作为本发明的进一步改进是提供上述以咔唑为核心的有机化合物在有机电致发光器件中的应用。作为本发明的进一步改进是提供一种有机电致发光器件,包含发光层,所述有机电致发光器件的发光层含有上述以咔唑为核心的有机化合物。作为本发明的进一步改进是提供一种照明或显示元件,所述照明或显示元件包括所述的有机电致发光器件。本发明有益的技术效果在于:本发明化合物结构分子内包含电子给体(donor,d)与电子受体(acceptor,a),d-a结构可以增加轨道重叠、提高发光效率,同时连接芳香杂环基团以获得homo、lumo空间分离的电荷转移态材料,实现小的s1态和t1态的能级差,从而在热刺激条件下易于实现反向系间窜越。本发明化合物以咔唑衍生物为母核,再连接芳香杂环基团,具备很强的刚性,破坏了分子对称性,从而破坏分子的结晶性,避免了分子间的聚集作用。所述化合物结构分子内包含咔衍生物作为电子给体(donor,d),有利于空穴在发光层中的传输。连接的杂环基团是电子受体(acceptor,a),它有利于电子在发光层中的传输。咔唑衍生物内部的氮原子是饱和原子,具有很强的刚性,还有利于提高母核化合物三重态能级,电子给体和电子受体的组合可以提高激子的复合效率,降低启动电压,提高器件性能。以咔唑衍生物为骨架的母核具有较高的三重态能级,使化合物三重态激子局限在发光层中,提高发光效率,本发明化合物适合作为发光层材料使用。本发明的有机电致发光器件可以应用在照明或显示原件,使器件的电流效率,功率效率和外量子效率均得到很大改善;同时,对于器件寿命提升非常明显,在oled发光器件中具有良好的应用效果,具有良好的产业化前景。附图说明图1为本发明所列举的材料应用于oled器件的结构示意图;其中,1为透明基板层,2为ito阳极层,3为空穴注入层,4为空穴传输层,5为电子阻挡层,6为发光层,7为电子传输层,8为电子注入层,9为阴极反射电极层。图2为本发明器件实施例与比较例1的oled器件在-10至80℃区间的电流效率。具体实施方式下面结合附图和实施例,对本发明进行具体描述。实施例1:中间体a的合成中间体a-1的合成(1)在250ml的三口瓶中,在氮气保护下,加入0.01mol原料d-1,0.015mol原料e-1,用甲苯和乙醇的混合溶剂溶解(其中甲苯90ml,乙醇45ml),然后加入含有0.03molna2co3水溶液(2m),通氮气搅拌1h,然后加入0.0001molpd(pph3)4,加热回流15h,取样点板,反应完全。自然冷却、过滤、滤液旋蒸、残余物过硅胶柱,得中间体c-1;hplc纯度97.7%,收率85.9%;元素分析结构(分子式c24h13no4):理论值c,75.98;h,3.45;n,3.69;o,16.87;测试值:c,75.96;h,3.44;n,3.67;o,16.88。esi-ms(m/z)(m+):理论值为379.08,实测值为379.05。(2)在250ml的三口瓶中,在氮气保护下,加入0.02mol中间体c-1,用100ml邻二氯苯溶解,加入0.03mol三苯基膦,在170~190℃下搅拌反应12~16h,反应结束后冷却至室温,过滤,滤液减压旋蒸,过中性硅胶柱,得中间体a-1;hplc纯度96.5%,收率78.6%;元素分析结构(分子式c24h13no2):理论值c,82.98;h,3.77;n,4.03;o,9.21;测试值:c,82.96;h,3.75;n,4.01;o,9.23。esi-ms(m/z)(m+):理论值为347.09,实测值为347.11。中间体a-1的合成分为两步:由原料d-1和原料e-1合成中间体c-1;中间体c-1经成环反应形成中间体a-1。其他中间体a的制备方法与中间体a-1的制备方法类似,本发明用到的中间体a的具体结构如表1所示。表1实施例2:中间体b的合成中间体b-11的合成(1)在250ml三口瓶中,通入氮气,将10.0mol原料f-2,12.0mol原料g-1,0.3gpd(dppf)cl2,30.0mmol醋酸钾加入100ml的1,4-二恶烷中,在130℃下,反应5小时。通过硅胶柱层析分离纯化得到中间体h-2,hplc纯度99.8%,收率60.5%。元素分析结构(分子式c18h20bclo2):理论值c,68.72;h,6.41;b,3.44;cl,11.27;o,10.17;测试值:c,68.75;h,6.42;b,3.46;cl,11.25;o,10.18。esi-ms(m/z)(m+):理论值为314.12,实测值为314.16。(2)称取11.11mol中间体h-2和7.40mol原料i-11,用体积比为3:1:1的甲苯/水/乙醇混合溶液溶解;再加入0.012molpd(oac)2、7.21mmolcs2co3和14.42mmolxphos;在氮气保护、120℃条件下,微波反应3小时。反应结束后,用二氯甲烷萃取得到有机层,再用无水mgso4干燥,进一步通过柱层析方法分离纯化得到中间体b-11,hplc纯度99.8%,收率66%。元素分析结构(分子式c28h21clo):理论值c,82.24;h,5.18;cl,8.67;o,3.91;测试值:c,82.25;h,5.17;cl,8.65;o,3.93。esi-ms(m/z)(m+):理论值为408.13,实测值为408.15。中间体b-11的合成分为两步:由原料f-2和原料g-1合成中间体h-2;中间体h-2和原料i-11合成中间体b-11。其他中间体b的制备方法与中间体b-11的制备方法类似,本发明用到的中间体b的具体结构如表2所示。表2实施例3:化合物1的合成具体制备方法如下:250ml的三口瓶,在通入氮气的气氛下,加入0.01mol中间体a-1,0.012mol的原料i-1,0.03mol叔丁醇钾,1×10-4molpd2(dba)3,1×10-4mol三苯基膦,150ml甲苯,加热回流12小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物;hplc纯度98.7%,收率85.9%;元素分析结构(分子式c37h21no3):理论值c,84.24;h,4.01;n,2.65;o,9.10;测试值:c,84.26;h,4.02;n,2.64;o,9.11。esi-ms(m/z)(m+):理论值为527.15,实测值为527.18。实施例4:化合物4的合成具体制备方法如下:250ml的三口瓶,在通入氮气的气氛下,加入0.01mol中间体a-2,0.015mol的原料i-2,0.03mol叔丁醇钾,1.5×10-4molpd2(dba)3,1.2×10-4mol三苯基膦,150ml甲苯,加热回流12小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物;hplc纯度98.9%,收率85.8%;元素分析结构(分子式c40h25nos2):理论值c,80.10;h,4.20;n,2.34;o,2.67;s,10.69;测试值:c,80.11;h,4.22;n,2.35;o,2.64;s,10.66。esi-ms(m/z)(m+):理论值为599.14,实测值为599.18。实施例5:化合物8的合成具体制备方法如下:250ml的三口瓶,在通入氮气的气氛下,加入0.01mol中间体a-3,0.016mol的原料i-2,0.03mol叔丁醇钾,1.6×10-4molpd2(dba)3,1.4×10-4mol三苯基膦,150ml甲苯,加热回流12小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物;hplc纯度98.9%,收率86.9%;元素分析结构(分子式c46h37no):理论值c,89.14;h,6.02;n,2.26;o,2.58;测试值:c,89.15;h,6.03;n,2.28;o,2.54。esi-ms(m/z)(m+):理论值为619.29,实测值为619.25。实施例6:化合物10的合成具体制备方法如下:250ml的三口瓶,在通入氮气的气氛下,加入0.01mol中间体a-4,0.018mol的原料i-3,0.03mol叔丁醇钾,1.8×10-4molpd2(dba)3,1.6×10-4mol三苯基膦,150ml甲苯,加热回流12小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物;hplc纯度98.7%,收率86.7%;元素分析结构(分子式c53h32n6o):理论值c,82.63;h,4.62;n,10.71;o,2.04;测试值:c,82.65;h,4.64;n,10.73;o,2.06。esi-ms(m/z)(m+):理论值为768.26,实测值为768.35。实施例7:化合物18的合成具体制备方法如下:250ml的三口瓶,在通入氮气的气氛下,加入0.01mol中间体a-5,0.014mol的原料i-4,0.03mol叔丁醇钾,1.4×10-4molpd2(dba)3,1.3×10-4mol三苯基膦,150ml甲苯,加热回流12小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物;hplc纯度98.6%,收率86.5%;元素分析结构(分子式c48h37n3o):理论值c,85.81;h,5.55;n,6.25;o,2.38;测试值:c,85.83;h,5.56;n,6.27;o,2.34。esi-ms(m/z)(m+):理论值为671.29,实测值为671.25。实施例8:化合物31的合成具体制备方法如下:250ml的三口瓶,在通入氮气的气氛下,加入0.01mol中间体a-6,0.015mol的原料i-5,0.03mol叔丁醇钾,1.5×10-4molpd2(dba)3,1.2×10-4mol三苯基膦,150ml甲苯,加热回流12小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物;hplc纯度98.5%,收率86.2%;元素分析结构(分子式c49h27no4):理论值c,84.83;h,3.92;n,2.02;o,9.22;测试值:c,84.85;h,3.93;n,2.03;o,9.24。esi-ms(m/z)(m+):理论值为693.19,实测值为693.22。实施例9:化合物47的合成具体制备方法如下:250ml的三口瓶,在通入氮气的气氛下,加入0.01mol中间体a-7,0.016mol的原料i-6,0.03mol叔丁醇钾,1.6×10-4molpd2(dba)3,1.4×10-4mol三苯基膦,150ml甲苯,加热回流12小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物;hplc纯度98.2%,收率86.1%;元素分析结构(分子式c50h29no3):理论值c,86.81;h,4.23;n,2.02;o,6.94;测试值:c,86.82;h,4.24;n,2.05;o,6.91。esi-ms(m/z)(m+):理论值为691.21,实测值为691.22。实施例10:化合物55的合成具体制备方法如下:250ml的三口瓶,在通入氮气的气氛下,加入0.01mol中间体a-8,0.015mol的原料i-7,0.03mol叔丁醇钾,1.5×10-4molpd2(dba)3,1.3×10-4mol三苯基膦,150ml甲苯,加热回流12小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物;hplc纯度98.6%,收率86.3%;元素分析结构(分子式c48h35n3o):理论值c,86.07;h,5.27;n,6.27;o,2.39;测试值:c,86.05;h,5.24;n,6.25;o,2.41。esi-ms(m/z)(m+):理论值为669.28,实测值为669.22。实施例11:化合物101的合成具体制备方法如下:250ml的三口瓶,在通入氮气的气氛下,加入0.01mol中间体a-9,0.014mol的原料i-8,0.03mol叔丁醇钾,1.4×10-4molpd2(dba)3,1.2×10-4mol三苯基膦,150ml甲苯,加热回流12小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物;hplc纯度98.4%,收率85.7%;元素分析结构(分子式c50h32n2o2):理论值c,86.68;h,4.66;n,4.04;o,4.62;测试值:c,86.65;h,4.64;n,4.03;o,4.64。esi-ms(m/z)(m+):理论值为692.25,实测值为692.22。实施例12:化合物102的合成具体制备方法如下:250ml的三口瓶,在通入氮气的气氛下,加入0.01mol中间体a-10,0.012mol的原料i-8,0.03mol叔丁醇钾,1.2×10-4molpd2(dba)3,1.1×10-4mol三苯基膦,150ml甲苯,加热回流12小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物;hplc纯度98.6%,收率85.4%;元素分析结构(分子式c47h26n2o4):理论值c,82.68;h,3.84;n,4.10;o,9.37;测试值:c,82.65;h,3.82;n,4.08;o,9.39。esi-ms(m/z)(m+):理论值为682.19,实测值为682.22。实施例13:化合物105的合成具体制备方法如下:250ml的三口瓶,在通入氮气的气氛下,加入0.01mol中间体a-11,0.014mol的原料i-8,0.03mol叔丁醇钾,1.4×10-4molpd2(dba)3,1.2×10-4mol三苯基膦,150ml甲苯,加热回流12小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物;hplc纯度98.5%,收率85.7%;元素分析结构(分子式c43h24n2o4):理论值c,81.63;h,3.82;n,4.43;o,10.12;测试值:c,81.65;h,3.83;n,4.45;o,10.10。esi-ms(m/z)(m+):理论值为632.17,实测值为632.22。实施例14:化合物161的合成具体制备方法如下:250ml的三口瓶,在通入氮气的气氛下,加入0.01mol中间体a-13,0.015mol的中间体b-13,0.03mol叔丁醇钾,1.5×10-4molpd2(dba)3,1.2×10-4mol三苯基膦,150ml甲苯,加热回流12小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物;hplc纯度98.8%,收率86.1%;元素分析结构(分子式c50h31no3):理论值c,86.56;h,4.50;n,2.02;o,6.92;测试值:c,86.55;h,4.48;n,2.05;o,6.90。esi-ms(m/z)(m+):理论值为693.23,实测值为693.22。实施例15:化合物170的合成具体制备方法如下:250ml的三口瓶,在通入氮气的气氛下,加入0.01mol中间体a-14,0.012mol的中间体b-14,0.03mol叔丁醇钾,1.2×10-4molpd2(dba)3,1.1×10-4mol三苯基膦,150ml甲苯,加热回流12小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物;hplc纯度98.6%,收率86.3%;元素分析结构(分子式c60h38n4o):理论值c,86.72;h,4.61;n,6.74;o,1.93;测试值:c,86.71;h,4.59;n,6.72;o,1.91。esi-ms(m/z)(m+):理论值为830.30,实测值为830.32。实施例16:化合物190的合成具体制备方法如下:250ml的三口瓶,在通入氮气的气氛下,加入0.01mol中间体a-15,0.013mol的中间体b-17,0.03mol叔丁醇钾,1.3×10-4molpd2(dba)3,1.1×10-4mol三苯基膦,150ml甲苯,加热回流12小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物;hplc纯度98.5%,收率86.5%;元素分析结构(分子式c55h31no4s):理论值c,82.38;h,3.90;n,1.75;o,7.98;s,4.00;测试值:c,82.39;h,3.91;n,1.78;o,7.96;s,4.01。esi-ms(m/z)(m+):理论值为801.20,实测值为801.15。实施例17:化合物192的合成具体制备方法如下:250ml的三口瓶,在通入氮气的气氛下,加入0.01mol中间体a-16,0.012mol的原料i-1,0.03mol叔丁醇钾,1.2×10-4molpd2(dba)3,1.0×10-4mol三苯基膦,150ml甲苯,加热回流12小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物;hplc纯度98.8%,收率86.5%;元素分析结构(分子式c43h26n2o2):理论值c,85.69;h,4.35;n,4.65;o,5.31;测试值:c,85.68;h,4.33;n,4.66;o,5.33。esi-ms(m/z)(m+):理论值为602.20,实测值为602.15。实施例18:化合物193的合成具体制备方法如下:250ml的三口瓶,在通入氮气的气氛下,加入0.01mol中间体a-17,0.014mol的原料i-8,0.03mol叔丁醇钾,1.4×10-4molpd2(dba)3,1.2×10-4mol三苯基膦,150ml甲苯,加热回流12小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物;hplc纯度98.5%,收率86.2%;元素分析结构(分子式c49h29n3o2):理论值c,85.07;h,4.23;n,6.07;o,4.63;测试值:c,85.09;h,4.25;n,6.09;o,4.61。esi-ms(m/z)(m+):理论值为691.23,实测值为691.20。实施例19:化合物194的合成具体制备方法如下:250ml的三口瓶,在通入氮气的气氛下,加入0.01mol中间体a-17,0.015mol的原料i-18,0.03mol叔丁醇钾,1.5×10-4molpd2(dba)3,1.3×10-4mol三苯基膦,150ml甲苯,加热回流12小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物;hplc纯度98.7%,收率86.3%;元素分析结构(分子式c48h28n4o2):理论值c,83.22;h,4.07;n,8.09;o,4.62;测试值:c,83.23;h,4.09;n,8.11;o,4.60。esi-ms(m/z)(m+):理论值为692.22,实测值为692.20。实施例20:化合物195的合成具体制备方法如下:250ml的三口瓶,在通入氮气的气氛下,加入0.01mol中间体a-18,0.013mol的原料i-8,0.03mol叔丁醇钾,1.3×10-4molpd2(dba)3,1.2×10-4mol三苯基膦,150ml甲苯,加热回流12小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物;hplc纯度98.9%,收率86.7%;元素分析结构(分子式c43h24n2o3):理论值c,83.75;h,3.92;n,4.54;o,7.78;测试值:c,83.77;h,3.93;n,4.56;o,7.75。esi-ms(m/z)(m+):理论值为616.18,实测值为616.20。实施例21:化合物196的合成具体制备方法如下:250ml的三口瓶,在通入氮气的气氛下,加入0.01mol中间体a-19,0.015mol的中间体b-18,0.03mol叔丁醇钾,1.5×10-4molpd2(dba)3,1.2×10-4mol三苯基膦,150ml甲苯,加热回流12小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物;hplc纯度98.6%,收率86.1%;元素分析结构(分子式c68h40n2o3):理论值c,87.53;h,4.32;n,3.00;o,5.14;测试值:c,87.55;h,4.33;n,3.03;o,5.11。esi-ms(m/z)(m+):理论值为932.30,实测值为932.25。实施例22:化合物198的合成具体制备方法如下:250ml的三口瓶,在通入氮气的气氛下,加入0.01mol中间体a-20,0.016mol的中间体b-19小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物;hplc纯度98.3%,收率86.5%;元素分析结构(分子式c61h43n3o):理论值c,87.85;h,5.20;n,5.04;o,1.92;测试值:c,87.87;h,5.21;n,5.06;o,1.90。esi-ms(m/z)(m+):理论值为833.34,实测值为833.31。实施例23:化合物200的合成具体制备方法如下:250ml的三口瓶,在通入氮气的气氛下,加入0.01mol中间体a-15,0.014mol的原料i-6,0.03mol叔丁醇钾,1.4×10-4molpd2(dba)3,1.2×10-4mol三苯基膦,150ml甲苯,加热回流12小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物;hplc纯度98.6%,收率86.2%;元素分析结构(分子式c50h29no3):理论值c,86.81;h,4.23;n,2.02;o,6.94;测试值:c,86.83;h,4.24;n,2.04;o,6.93。esi-ms(m/z)(m+):理论值为691.21,实测值为691.25。实施例24:化合物201的合成具体制备方法如下:250ml的三口瓶,在通入氮气的气氛下,加入0.01mol中间体a-21,0.012mol的原料i-21,0.03mol叔丁醇钾,1.2×10-4molpd2(dba)3,1.0×10-4mol三苯基膦,150ml甲苯,加热回流12小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物;hplc纯度98.5%,收率86.6%;元素分析结构(分子式c41h22n4o2s):理论值c,77.59;h,3.49;n,8.83;o,5.04;s,5.05;测试值:c,77.61;h,3.52;n,8.84;o,5.02;s,5.03。esi-ms(m/z)(m+):理论值为634.15,实测值为634.18。实施例25:化合物204的合成具体制备方法如下:250ml的三口瓶,在通入氮气的气氛下,加入0.01mol中间体a-22,0.013mol的原料i-8,0.03mol叔丁醇钾,1.3×10-4molpd2(dba)3,1.2×10-4mol三苯基膦,150ml甲苯,加热回流12小时,取样点板,反应完全;自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物;hplc纯度98.9%,收率86.7%;元素分析结构(分子式c42h23n3o3):理论值c,81.67;h,3.75;n,6.80;o,7.77;测试值:81.68;h,3.77;n,6.82;o,7.75。esi-ms(m/z)(m+):理论值为617.17,实测值为617.20。有机化合物在发光器件中使用,具有高的玻璃转化温度(tg)和三线态能级(t1),合适的homo、lumo能级,可作为发光层主体材料使用。对本发明实施例制备的化合物及现有材料分别进行热性能、t1能级以及homo能级测试,结果如表3所示。表3注:三线态能级t1是由日立的f4600荧光光谱仪测试,材料的测试条件为2*10-5的甲苯溶液;玻璃化转变温度tg由示差扫描量热法(dsc,德国耐驰公司dsc204f1示差扫描量热仪)测定,升温速率10℃/min;最高占据分子轨道homo能级是由电离能量测试系统(ips-3)测试,测试为大气环境。由上表数据可知,本发明的化合物具有高的玻璃化转变温度,可提高材料膜相态稳定性,进一步提高器件使用寿命;同时,具有较小的单线态-三线态能级差,这使得应用本发明化合物作为主体材料的能量传递更加充分;本发明化合物含有电子给体与电子受体,使得应用本发明化合物的oled器件电子和空穴达到平衡状态,保证了电子和空穴的复合率,从而提升了oled器件的效率和寿命。同时本发明材料具有合适的homo能级可以解决载流子的注入问题,可降低器件电压;因此,本发明的有机材料在应用于oled器件的发光层后,可有效提高器件的发光效率及使用寿命。以下通过器件实施例1-27和器件比较例1详细说明本发明合成的oled材料在器件中的应用效果。本发明所述器件实施例2~27、器件比较例1与器件实施例1相比,所述器件的制作工艺完全相同,并且所采用了相同的基板材料和电极材料,电极材料的膜厚也保持一致,所不同的是器件实施例2~27为使用本发明所述材料作为发光层主体材料应用。各实施例所得器件的结构组成如表4所示。各实施例所得器件的电流效率、寿命的测试结果如表5所示。所得器件的效率衰减系数φ的测试结果如表6所示。器件实施例1使用透明玻璃作为基板层1,在其上涂覆厚度为150nm的ito,作为阳极层2,对其进行洗涤,即依次进行碱洗涤、纯水洗涤,然后干燥,再进行紫外线-臭氧洗涤以清除透明ito表面的有机残留物。在经洗涤的ito阳极层2上,利用真空蒸镀装置,蒸镀厚度为10nm的hat-cn作为空穴注入层3。接着蒸镀厚度为60nm的ht-1作为空穴传输层4。然后蒸镀厚度为10nm的eb-1作为电子阻挡层5。随后,在该电子阻挡层上进行真空蒸镀得到厚度为25nm的发光层6,所述发光层使用主体材料为制备实施例3所制备的化合物1,掺杂材料为bd,化合物1与bd的质量比为95:5。然后,在发光层上继续真空蒸镀厚度为35nm的et-1和liq作为电子传输层7,et-1和liq的质量比为1:1。接着,在该电子传输层上真空蒸镀厚度为1nm的氟化锂(lif)作为电子注入层8。最后,在电子注入层上真空蒸镀厚度为100nm的铝(al)作为阴极层9。相关材料的分子结构式如下所示:如上所述地完成oled发光器件后,用公知的驱动电路将阳极和阴极连接起来,测量器件的电流效率,发光光谱以及器件的寿命。用同样的方法制备的器件实施例和比较例如表4所示;所得器件的电流效率、电压和寿命的测试结果如表5所示。所得器件的效率衰减系数φ的测试结果如表6所示。表4表5注:寿命测试系统为本发明所有权人与上海大学共同研究的oled器件寿命测试仪。由表5的器件数据结果可以看出,与比较例1相比,本发明的有机发光器件无论是在效率还是寿命均相对于已知材料的oled器件获得较大的提升。为了比较不同器件在高电流密度下效率衰减的情况,定义效率衰减系数φ进行表示,它表示驱动电流为100ma/cm2时器件的最大效率μ100与器件的最大效率μm之差与最大效率之间的比值,φ值越大,说明器件的效率滚降越严重,反之,说明器件在高电流密度下快速衰降的问题得到了控制。对器件实施例1-24和比较例1分别进行效率衰减系数φ的测定,检测结果如表6所示:表6器件实施例编号效率衰减系数φ器件实施例编号效率衰减系数φ器件实施例10.21器件实施例150.21器件实施例20.23器件实施例160.24器件实施例30.22器件实施例170.22器件实施例40.25器件实施例180.24器件实施例50.20器件实施例190.25器件实施例60.21器件实施例200.21器件实施例70.22器件实施例210.23器件实施例80.21器件实施例220.22器件实施例90.20器件实施例230.20器件实施例100.24器件实施例240.23器件实施例110.21器件实施例250.24器件实施例120.22器件实施例260.25器件实施例130.20器件实施例270.19器件实施例140.23比较例10.40从表6的数据来看,通过实施例和比较例的效率衰减系数对比我们可以看出,本发明的有机发光器件能够有效地降低效率滚降。进一步的本发明材料制备的oled器件在低温下工作时效率也比较稳定,将器件实施例3、7、21和器件比较例1在-10~80℃区间进行效率测试,所得结果如表7和图2所示。表7从表7和图2的数据可知,器件实施例3、7、21为本发明材料和已知材料搭配的器件结构,和器件比较例1相比,不仅低温效率高,而且在温度升高过程中,效率平稳升高。最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制。本领域技术人员在不脱离本发明技术方案的宗旨和范围的情况下,对本发明的技术方案进行的修改或者等同替换,均应涵盖在本发明的权利要求范围当中。当前第1页12