一种生物基木塑复合材料及其制备方法与流程

文档序号:18232579发布日期:2019-07-24 08:25阅读:210来源:国知局
一种生物基木塑复合材料及其制备方法与流程

本发明属于木塑复合材料制备领域,涉及一种生物基木塑复合材料及其制备方法。



背景技术:

木塑复合材料是一种新型绿色环保型复合材料,是将木纤维或者植物纤维浸渍在其他高分子有几单体或者预聚物中,经过物理化学方法聚合形成的改性材料。木纤维表面存在大量的极性官能团,在木塑复合材料的制备过程中,木纤维中存在大量的羟基具有较高的亲水性能,而热塑性树脂基体为憎水性树脂,两者之间存在较高的界面能差,很难充分的融合;并且由于木纤维表面大量的羟基容易形成氢键,不能在热塑性树脂中分散均匀,同时木纤维与热塑性树脂之间作用力较低,在外力的作用下,木纤维很容易从基体树脂中拔出,进而导致木塑材料的机械性能稳定性变差,同时由于木纤维的韧性和强度较低,在与热塑性树脂混合后,使得复合材料的局部机械性能较差,韧性较差,不耐用。

现有的木塑复合材料制备过程中通常是将木纤维经过碱处理后提高其粗糙性能,然后再与聚合物进行复合,由于聚合物树脂具有疏水性,而木纤维具有较高的亲水性,因此两者不能很好的融合,通常是在其中加入界面相容剂,提高两者的融合均匀性,使得聚合物树脂能够均匀融合在木纤维中,通过聚合物树脂的粘合性能与木纤维复合,并且聚合物树脂填充在木纤维之间,进而提高木塑材料的紧密性,提高了木塑复合材料的力学强度,并且降低了木塑材料的吸水率,防止木塑材料吸水膨胀变形腐烂,但是由于木纤维结构本身经过处理后具有较高的孔道结构,造成其木纤维基体本身的力学强度降低,并且吸水性能升高,通过复合后的木塑复合材料的力学性能也同样降低,同时吸水性能也同样升高。



技术实现要素:

本发明的目的在于提供种生物基木塑复合材料及其制备方法,通过制备聚合物改性生物基木纤维,使得木纤维的表面接枝疏水性聚合物,通过聚合物填充木纤维表面的孔道结构,同时羟基化聚乙烯树脂和聚合物改性生物基木纤维中均含有羟基,同时聚合物改性生物基木纤维中接枝有疏水有机聚合物,羟基化聚乙烯树脂基体链为疏水聚合物,进而使得两者混炼时能够融合分散均匀,并且聚合物改性生物基木纤维表面含有的羟基和氨基通过二异氰酸酯与羟基化聚乙烯树脂上的羟基发生交联反应,形成致密的网状结构,提高了两者的结合作用力,进而提高了木塑复合材料的力学强度,并且接在交联过程中活性碳酸钙填充在网状结构空隙中,进一步提高了木塑复合材料的致密性,使得其力学强度升高,并且木纤维上的吸水羟基也通过通过交联发生反应,使得吸水基团减少,进而使得吸水性能进一步降低,解决了现有的木塑复合材料制备过程中使用的木纤维结构本身经过处理后具有较高的孔道结构,造成其木纤维基体本身的力学强度降低,并且吸水性能升高,通过复合后的木塑复合材料的力学性能也同样降低,同时吸水性能也同样升高的问题。

本发明的目的可以通过以下技术方案实现:

一种生物基木塑复合材料,包括如下重量份的各组分:

羟基化聚乙烯树脂23-28份、聚合物改性生物基木纤维50-56份、二异氰酸酯13-16份、滑石粉5-7份、活性碳酸钙3-5份;

羟基化聚乙烯树脂的具体制备过程如下:将一定量的低密度聚乙烯树脂加入氯苯溶剂中,升温至90-100℃搅拌至树脂完全溶解,然后持续向反应容器中通氮气20-30min,接着在氮气保护下向反应容器中加入引发剂,搅拌混合均匀后向其中逐滴加入烯丙醇,滴加完全后升温至120℃恒温反应5-6h,然后进行过滤除去其中的溶剂,洗涤后烘干得到羟基化聚乙烯树脂;其中引发剂为过氧化苯甲酰,每克低密度聚乙烯树脂中加入烯丙醇1.23-1.26g,加入引发剂0.41-0.43g;引发剂产生的自由基夺取低密度聚乙烯树脂上的叔碳氢和烯丙基氢,同时引发剂产生的自由基夺取烯丙醇中烯丙基上的氢,使得低密度聚乙烯树脂链上和烯丙基醇上均生成自由基,通过自由基聚合反应使得烯丙醇接枝在低密度聚乙烯树脂上,进而使得低密度聚乙烯树脂上引入羟基;

聚合物改性生物基木纤维的具体制备过程如下:

步骤1:将生物质原料清洗干净后烘干并粉碎,然后将粉碎的生物质原料加入浓度为55%的氢氧化钠溶液中,常温下搅拌处理60-65h,将处理后的生物质原料用盐酸溶液洗涤至中性,在50-60℃的烘箱中,得到预处理木纤维粉末;将木粉、稻壳和秸秆粉末加入一定浓度的碱液中,其中的木质素、果胶和半纤维素等低分子杂质被溶解除去,剩余的木纤维表面变粗糙,形成多孔结构,为后期反应提供作用位点;其中生物质原料为木粉、稻壳和秸秆中的一种或多种;每克粉碎的生物质原料中加入浓度为55%的氢氧化钠溶液20-25mL;

步骤2:将一定量的油胺和丙酮加入反应釜中,同时向其中加入环氧氯丙烷,升温至60-70℃回流反应8-10h,然后向反应釜中加入步骤1中制备的预处理木纤维粉末,升温至110-115℃回流反应10-12h,接着进行过滤后用盐酸洗涤至中性,然后进行烘干,得到接枝木纤维;其中油胺和环氧氯丙烷的物质的量之比为1.03-1.05:1,每千克环氧氯丙烷中加入预处理木纤维粉末320-323g;油胺中的氨基与环氧氯丙烷中的环氧基团进行开环反应,如图1所示,进入使得油胺链接枝在环氧氯丙烷上,由于木纤维链上含有伯醇活性醇基,能够与环氧氯丙烷上的烷基氯进行取代反应,进而使得油胺开环后的环氧氯丙烷接枝在木纤维链上,进而使得木纤维链上引入不饱和双键;

步骤3:将步骤2中制备的接枝木纤维和水加入反应釜中,同时向其中加入过氧化苯甲酰,同时向反应釜中通入氮气20-30min,然后停止通氮气控制反应釜的温度升高至90-95℃,接着同时向反应容器中逐滴加入乙烯基三甲氧基硅烷和甲基丙烯酸五氟丙酯,边滴加边剧烈搅拌,滴加完全后恒温反应1-1.5h,然后升温至120-130℃回流反应5-6h,接着进行过滤洗涤干燥得到聚合物改性生物基木纤维;其中每千克接枝木纤维中加入乙烯基三甲氧基硅烷121-123g,加入基丙烯酸五氟丙酯115-119g,加入过氧化苯甲酰158-162g;由于油胺开环后的环氧氯丙烷接枝在木纤维链上,进而使得木纤维链上引入不饱和双键,其中的不饱和双键在引发剂的作用下与乙烯基三甲氧基硅烷和甲基丙烯酸五氟丙酯进行自由基聚合反应,在木纤维上生成聚合物,由于木纤维经过处理后表面变粗糙,形成多孔结构,进而使得形成的聚合物填充在多孔功能结构中,同时由于聚合物单体中含有氟元素和硅元素,进而能够提高聚合物的耐高温性能、耐水性、耐老化性能和抗污性能,同时由于聚合物的填充使得制备的聚合物改性生物基木纤维的强度和韧性增大。

一种生物基木塑复合材料的制备方法,具体制备过程如下:

第一步,将羟基化聚乙烯树脂、聚合物改性生物基木纤维加入100-110℃的高速混合机中在1200-1300r/min的转速下混合5-10min,然后向其中加入滑石粉和活性碳酸钙,控制转速和温度不变,搅拌混合10-15min;

第二步,将第一步高速混合机中混合完全后的物料加入塑炼机中,同时向其中加入二异氰酸酯,在120-130℃下炼制20-30min,然后升温至150-160℃炼制5-10min,接着将炼制后的物料通过160-180℃的双螺杆挤出机,经过特定端面的模具成型为一定断面的型材,即为生物基木塑复合材料。其中羟基化聚乙烯树脂和聚合物改性生物基木纤维中均含有羟基,同时聚合物改性生物基木纤维中接枝有有机聚合物,进而使得羟基化聚乙烯树脂和聚合物改性生物基木纤维的结构相似,进而使得两者混炼时能够融合分散均匀,同时由于羟基化聚乙烯树脂上含有羟基,聚合物改性生物基木纤维中的木纤维链上含有羟基,同时木纤维接枝的聚合物上也含有环氧氯丙烷开环后的羟基以及油胺接枝后的氨基,羟基和氨基均能够与二异氰酸酯进行反应,进而使得羟基化聚乙烯树脂和聚合物改性生物基木纤维通过二异氰酸酯进行交联聚合,使得木纤维和羟基化聚乙烯树脂之间的作用力增强,能够有效地防止木纤维与热塑性树脂之间作用力较低,在外力的作用下,木纤维很容易从基体树脂中拔出,进而导致木塑材料的机械性能稳定性变差的问题,同时交联过程中将活性碳酸钙包覆其中,进而使得木塑材料的强度增大,并且通过交联固定,能够有效防止活性碳酸钙在复合材料长期使用过程中通过外力摩擦作用溢出,进而导致木塑材料的机械性能降低;其中二异氰酸酯为甲苯二异氰酸酯和异佛尔酮二异氰酸酯中的一种;

本发明的有益效果:

本发明通过制备聚合物改性生物基木纤维,使得木纤维的表面接枝疏水性聚合物,通过聚合物填充木纤维表面的孔道结构,同时羟基化聚乙烯树脂和聚合物改性生物基木纤维中均含有羟基,同时聚合物改性生物基木纤维中接枝有疏水有机聚合物,羟基化聚乙烯树脂基体链为疏水聚合物,进而使得两者混炼时能够融合分散均匀,提高了聚合物填充木纤维与羟基化聚乙烯树脂之间的均匀混合性,并且聚合物改性生物基木纤维表面含有的羟基和氨基通过二异氰酸酯与羟基化聚乙烯树脂上的羟基发生交联反应,形成致密的网状结构,提高了两者的结合作用力,进而提高了木塑复合材料的力学强度,并且接在交联过程中活性碳酸钙填充在网状结构空隙中,进一步提高了木塑复合材料的致密性,使得其力学强度升高,并且木纤维上的吸水羟基也通过通过交联发生反应,使得吸水基团减少,进而使得吸水性能进一步降低,解决了现有的木塑复合材料制备过程中使用的木纤维结构本身经过处理后具有较高的孔道结构,造成其木纤维基体本身的力学强度降低,并且吸水性能升高,通过复合后的木塑复合材料的力学性能也同样降低,同时吸水性能也同样升高的问题。

本发明在聚合物改性生物基木纤维和羟基化聚乙烯树脂交联过程中将活性碳酸钙包覆其中,进而使得木塑材料的强度增大,并且通过交联固定,能够有效防止活性碳酸钙在复合材料长期使用过程中通过外力摩擦作用溢出,进而导致木塑材料的机械性能降低的问题。

本发明制备的聚合物改性生物基木纤维和羟基化聚乙烯树脂通过二异氰酸酯进行交联聚合,使得木纤维和羟基化聚乙烯树脂之间的作用力增强,能够有效地防止木纤维与热塑性树脂之间作用力较低,在外力的作用下,木纤维很容易从基体树脂中拔出,进而导致木塑材料的机械性能稳定性变差的问题。

附图说明

为了便于本领域技术人员理解,下面结合附图对本发明作进一步的说明。

图1为本发明聚合物改性生物基木纤维反应过程中局部反应结构式。

具体实施方式

请参阅图1结合如下实施例进行详细说明:

实施例1:

羟基化聚乙烯树脂的具体制备过程如下:将1kg低密度聚乙烯树脂加入10L氯苯溶剂中,升温至90-100℃搅拌至树脂完全溶解,然后持续向反应容器中通氮气20-30min,接着在氮气保护下向反应容器中加入0.41kg引发剂,搅拌混合均匀后向其中逐滴加入1.23kg烯丙醇,滴加完全后升温至120℃恒温反应5-6h,然后进行过滤除去其中的溶剂,洗涤后烘干得到羟基化聚乙烯树脂。

聚合物改性生物基木纤维的具体制备过程如下:

步骤1:将木粉、稻壳和秸秆清洗干净后烘干并粉碎,然后将1kg粉碎的生物质原料加入20L浓度为55%的氢氧化钠溶液中,常温下搅拌处理60-65h,将处理后的生物质原料用盐酸溶液洗涤至中性,在50-60℃的烘箱中,得到预处理木纤维粉末;

步骤2:将2.75kg油胺和丙酮加入反应釜中,同时向其中加入0.93kg环氧氯丙烷,升温至60-70℃回流反应8-10h,然后向反应釜中加入297.6g步骤1中制备的预处理木纤维粉末,升温至110-115℃回流反应10-12h,接着进行过滤后用盐酸洗涤至中性,然后进行烘干,得到接枝木纤维;

步骤3:将1kg步骤2中制备的接枝木纤维和20L水加入反应釜中,同时向其中加入158g过氧化苯甲酰,同时向反应釜中通入氮气20-30min,然后停止通氮气控制反应釜的温度升高至90-95℃,接着同时向反应容器中逐滴加入121g乙烯基三甲氧基硅烷和115g甲基丙烯酸五氟丙酯,边滴加边剧烈搅拌,滴加完全后恒温反应1-1.5h,然后升温至120-130℃回流反应5-6h,接着进行过滤洗涤干燥得到聚合物改性生物基木纤维。

实施例2:

一种生物基木塑复合材料的制备方法,具体制备过程如下:

第一步,将2.3kg实施例1中制备的羟基化聚乙烯树脂、5kg实施例1中制备的聚合物改性生物基木纤维加入100-110℃的高速混合机中在1200-1300r/min的转速下混合5-10min,然后向其中加入0.5kg滑石粉和0.3kg活性碳酸钙,控制转速和温度不变,搅拌混合10-15min;

第二步,将第一步高速混合机中混合完全后的物料加入塑炼机中,同时向其中加入1.3kg异佛尔酮二异氰酸酯,在120-130℃下炼制20-30min,然后升温至150-160℃炼制5-10min,接着将炼制后的物料通过160-180℃的双螺杆挤出机,经过特定端面的模具成型为一定断面的型材,即为生物基木塑复合材料。

实施例3:

一种生物基木塑复合材料的制备方法,具体制备过程如下:

第一步,将2.3kg聚乙烯树脂、5kg实施例1中制备的聚合物改性生物基木纤维加入100-110℃的高速混合机中在1200-1300r/min的转速下混合5-10min,然后向其中加入0.5kg滑石粉和0.3kg活性碳酸钙,控制转速和温度不变,搅拌混合10-15min;

第二步,将第一步高速混合机中混合完全后的物料加入塑炼机中,同时向其中加入1.3kg甲苯二异氰酸酯,在120-130℃下炼制20-30min,然后升温至150-160℃炼制5-10min,接着将炼制后的物料通过160-180℃的双螺杆挤出机,经过特定端面的模具成型为一定断面的型材,即为生物基木塑复合材料。

实施例4:

一种生物基木塑复合材料的制备方法,具体制备过程如下:

第一步,将2.3kg实施例1中制备的羟基化聚乙烯树脂、5kg实施例1中制备的预处理木纤维粉末加入100-110℃的高速混合机中在1200-1300r/min的转速下混合5-10min,然后向其中加入0.5kg滑石粉和0.3kg活性碳酸钙,控制转速和温度不变,搅拌混合10-15min;

第二步,将第一步高速混合机中混合完全后的物料加入塑炼机中,同时向其中加入1.3kg甲苯二异氰酸酯,在120-130℃下炼制20-30min,然后升温至150-160℃炼制5-10min,接着将炼制后的物料通过160-180℃的双螺杆挤出机,经过特定端面的模具成型为一定断面的型材,即为生物基木塑复合材料。

实施例5:

一种生物基木塑复合材料的制备方法,具体制备过程如下:

第一步,将2.3kg聚乙烯树脂、5kg实施例1中制备的预处理木纤维粉末加入100-110℃的高速混合机中在1200-1300r/min的转速下混合5-10min,然后向其中加入0.5kg滑石粉和0.3kg活性碳酸钙,控制转速和温度不变,搅拌混合10-15min;

第二步,将第一步高速混合机中混合完全后的物料加入塑炼机中,同时向其中加入1.3kg异佛尔酮二异氰酸酯,在120-130℃下炼制20-30min,然后升温至150-160℃炼制5-10min,接着将炼制后的物料通过160-180℃的双螺杆挤出机,经过特定端面的模具成型为一定断面的型材,即为生物基木塑复合材料。

实施例6:

在实施例2-5中制备的型材选取不同位置分别裁5个样条,然后利用万能力学试验机进行拉伸性能测试和弯曲性能测试,并计算其平均拉伸强度和平均弯曲强度,具体测试结果如表1所示:

表1实施例2-5中制备的木塑复合材料不同位置力学性能测定结果

由表1可知,实施例2中制备的木塑复合材料是由羟基化聚乙烯树脂和聚合物改性生物基木纤维通过与二异氰酸酯交联聚合制备,其中聚合物改性生物基木纤维是油胺开环后的环氧氯丙烷接枝在木纤维链上,进而使得木纤维链上引入不饱和双键,其中的不饱和双键在引发剂的作用下与乙烯基三甲氧基硅烷和甲基丙烯酸五氟丙酯进行自由基聚合反应,在木纤维上生成聚合物,由于木纤维经过处理后表面变粗糙,形成多孔结构,进而使得形成的聚合物填充在多孔功能结构中,同时由于聚合物单体中含有氟元素和硅元素,进而能够提高聚合物的耐高温性能、耐水性、耐老化性能和抗污性能,同时由于聚合物的填充使得制备的聚合物改性生物基木纤维的强度和韧性增大;进而提高了木塑复合材料的韧性;同时由于羟基化聚乙烯树脂和聚合物改性生物基木纤维中均含有羟基,并且聚合物改性生物基木纤维中接枝有有机聚合物,进而使得羟基化聚乙烯树脂和聚合物改性生物基木纤维的结构相似,进而使得两者混炼时能够融合分散均匀,同时由于羟基化聚乙烯树脂上含有羟基,聚合物改性生物基木纤维中的木纤维链上含有羟基,同时木纤维接枝的聚合物上也含有环氧氯丙烷开环后的羟基以及油胺接枝后的氨基,羟基和氨基均能够与二异氰酸酯进行反应,进而使得羟基化聚乙烯树脂和聚合物改性生物基木纤维通过二异氰酸酯进行交联聚合,使得木纤维和羟基化聚乙烯树脂之间的作用力增强,同时交联过程中将活性碳酸钙包覆其中,进而使得木塑材料的强度增大,并且通过交联固定,能够有效防止活性碳酸钙在复合材料长期使用过程中通过外力摩擦作用溢出,进而导致木塑材料的机械性能降低;实施例3中通过聚乙烯树脂与聚合物改性生物基木纤维复合制备,聚合物改性生物基木纤维中虽然含有疏水聚合物能够与聚乙烯树脂融合,但是木纤维上仍含有一定量的亲水羟基,进而使得两者之间融合不彻底均匀,同时由于聚乙烯醇上没有羟基,其中聚合物改性生物基木纤维上接枝的聚合物上的羟基和氨基之间通过二异氰酸酯发生自身交联聚合,并没有提高聚乙烯醇和聚合物改性生物基木纤维之间的复合作用力,进而没有提高制备的木塑复合材料的强度;同时实施例4中制备的木塑复合材料是通过羟基化聚乙烯树脂与预处理木纤维混合制备,由于预处理木纤维表面有空隙,虽然能够与羟基化聚乙烯树脂融合,但是预处理木纤维基体本身的强度较低,导致制备的木塑复合纤维的力学性能降低,同时实施例5中制备的木塑复合纤维则是通过聚乙烯树脂和预处理木纤维复合制备,由于聚乙烯树脂为疏水性树脂,而预处理木纤维为亲水性基体,两者不能很好的融合,由于木纤维的韧性和强度较低,在与热塑性树脂混合后,使得复合材料的局部机械性能较差,韧性较差,不耐用。

实施例7:

按照GB/T1034-2008标准规定,把实施例2-5中制备的木塑复合材料裁成10mm×10mm×4mm的样条,在常温下浸泡24h,测定木塑复合材料样条浸泡前后的质量,计算其吸水率=(M-M0)/M0×100%,其中M0为木塑复合材料吸水前的质量,M为木塑复合材料吸水后的质量,实施例2-5中制备的木塑复合材料的吸水率计算结果如表2所示:

表2:实施例2-5中制备的木塑复合材料的吸水率

由表2可知,实施例2中制备的木塑复合材料的吸水率低至1.19%,由于实施例2中的木塑复合材料是由羟基化聚乙烯树脂与聚合物改性生物基木纤维通过二异氰酸酯交联聚合制备,交联过程中两者形成紧密的网状结构,其中网状结构内部通过活性碳酸钙填充,并且由于聚合物改性生物基木纤维本身木纤维上的空隙通过接枝聚合物填充,使得改性后的木纤维表面为紧密的结构,进而使得制备的木塑复合材料结构紧密,使得木塑复合材料的吸水性降低,并且吸水基团羟基通过二异氰酸酯交联,进一步降低了木塑复合材料的吸水性能;同时实施例3中制备的木塑复合材料是通过聚乙烯树脂与聚合物改性生物基木纤维复合制备,由于聚乙烯树脂没有改性,因此在加入二异氰酸酯时只有聚合物改性生物基木纤维之间交联,而聚乙烯树脂与聚合物改性生物基木纤维之间仍有一定的间隙,进而使得其吸水率升高;对于实施例4中的木塑复合材料是由羟基化聚乙烯树脂与预处理木纤维复合制备,其中预处理木纤维表面本身含有较大的孔洞,虽然与羟基化聚乙烯树脂进行交联,但是其内部的孔道结构仍存在,进而使得其吸水性升高;对于实施例5中制备的木塑复合材料,是由聚乙烯树脂与预处理木纤维复合制备,由于聚乙烯树脂具有疏水性,而预处理木纤维具有亲水性,两者不能完全融合,同时由于木纤维本身含有较大的孔洞结构,造成制备的木塑复合材料含有大量的孔道,进而使得其吸水率升高。

以上公开的本发明优选实施例只是用于帮助阐述本发明。优选实施例并没有详尽叙述所有的细节,也不限制该发明仅为所述的具体实施方式。显然,根据本说明书的内容,可作很多的修改和变化。本说明书选取并具体描述这些实施例,是为了更好地解释本发明的原理和实际应用,从而使所属技术领域技术人员能很好地理解和利用本发明。本发明仅受权利要求书及其全部范围和等效物的限制。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1