本发明涉及润滑剂技术领域,特别涉及一种离子液体及其制备方法和作为水基润滑添加剂的应用。
背景技术:
当前,世界石油资源正以惊人的速度被消耗,同时,大量石油资源的使用会带来一定的环境污染,将会对环境造成严重威胁,这已成为亟待解决的重大问题。多年来,人们一直在努力寻找有效的方法来替代润滑领域的石油。水是一种可回收的自然资源,具有成本低、无毒、环境友好、冷却性能优良、导热性能好等优点。自20世纪90年代初以来,水基润滑剂在机械加工、金属切削、机械传动和生物润滑等领域得到了广泛的应用。然而,由于水基润滑剂的表面张力低、粘度差,其润滑性能比油弱。水基润滑剂即使在低速下也难以形成有效的润滑膜,并且常常伴有对摩擦表面的强烈腐蚀。为了制备满足工业应用需要的水基润滑剂,研究人员添加各种功能性水溶性润滑添加剂以提高其摩擦学性能。近年来,水基润滑油添加剂的制备越来越受到重视。然而,这些添加剂的使用往往伴随着复杂的制备和对环境的污染。因此,开发性能优良、制备工艺极其简单的水溶性润滑油添加剂就显得尤为重要。
离子液体(il)又称之为室温熔融盐,是指一类在室温和接近室温下完全由阴阳离子组成的有机液态物质。离子液体有着蒸气压低、导电性高、金属盐溶解性高和高极性等诸多优点,使其在润滑领域都有着广泛的应用,可以作为纯润滑剂、润滑添加剂、润滑薄膜和导电润滑脂等使用。而离子液体作为润滑剂添加剂可分为油基添加剂和水基添加剂两种,其中离子液体作为油基添加剂在实际使用时,存在着环境污染、可降解性差和具有生态毒性危害人类健康的问题。这些缺点不符合当前环境友好和资源再生的发展趋势,相对而言,离子液体作为水基润滑添加剂时,其原料方便易得且来源广泛,不易燃烧,环保,冷却性优良。但是,目前能够作为水基润滑添加剂的离子液体较少。因此,开发高性能、合成步骤简单、成本低的水溶液润滑离子液体添加剂具有重要意义。
技术实现要素:
有鉴于此,本发明的目的在于提供一种质子型离子液体及其制备方法和作为水基润滑添加剂的应用。本发明提供的质子型离子液体具有优异的减磨抗磨性能,且水溶性好,制备方法简单,成本低。
为了实现上述发明目的,本发明提供以下技术方案:
本发明提供了一种质子型离子液体,结构通式为a+b-,其中a+为有机阳离子,b-为有机阴离子;所述有机阳离子为醇胺类阳离子;所述有机阴离子为磷酸酯类阴离子或磺酸类阴离子。
优选的,所述醇胺类阳离子包括二甲基乙醇胺阳离子、二乙氨基乙醇阳离子、n-丁基二乙醇胺阳离子或三乙醇胺阳离子。
优选的,所述磷酸酯类阴离子包括二(2-乙基己基)磷酸酯阴离子、磷酸二丁酯阴离子、二乙基磷乙酸阴离子、亚磷酸二丁酯阴离子、磷酸乙酯阴离子、磷酸二乙酯阴离子或磷酸二甲酯阴离子。
优选的,所述磺酸类阴离子为十二烷基苯磺酸阴离子或乙基磺酸阴离子。
本发明提供了上述方案所述质子型离子液体的制备方法,包括以下步骤:
将有机阳离子部分和有机阴离子部分等摩尔比混合后进行热处理,得到质子型离子液体;所述有机阳离子部分为醇胺;所述有机阴离子部分为磷酸酯或磺酸。
优选的,所述热处理的温度为60~120℃,时间为10~20h。
优选的,所述热处理后还包括:将所得热处理产物进行真空干燥;所述真空干燥的温度为70~90℃,时间为11~13h。
本发明提供了上述方案所述质子型离子液体作为水基润滑添加剂的应用。
优选的,所述应用的方法为:将所述质子型离子液体和水混合;所述质子型离子液体在水中的质量分数为0.1~5%。
本发明提供了一种质子型离子液体,结构通式为a+b-,其中a+为有机阳离子,b-为有机阴离子;所述有机阳离子为醇胺类阳离子;所述有机阴离子为磷酸酯类阴离子或磺酸类阴离子。醇胺的分子结构中的氮原子上存在孤对电子,其具有一定的弱碱性,而磷酸酯和磺酸结构中的羟基具有一定的弱酸性,有机阴阳离子结构中的氢质子和羟基之间存在一定的相互作用,从而形成质子型离子液体;这种离子液体的阴阳离子间质子能够快速转移,从而在离子液体中形成了质子供体和质子受体,进而在离子液体中形成氢键网络。
本发明提供了上述方案所述质子型离子液体的制备方法,本发明提供的制备方法过程简单易操作,不需要离子交换、分离、纯化等复杂步骤,而且合成原料来源广泛,成本低,
本发明提供了上述方案所述质子型离子液体作为水基润滑添加剂的应用,本发明提供的离子液体具有优良的减磨抗磨性能和较高的承载能力,还具有优异的化学稳定性,将其添加到水中可以显著提高水的润滑性能,能够使接触区形成有效的润滑膜,且在应用过程中具有一定的抗腐蚀性,将本发明提供的质子型离子液体作为水基润滑添加剂使用,有望提升水基润滑剂的综合性能。
具体实施方式
本发明提供了一种质子型离子液体,结构通式为a+b-,其中a+为有机阳离子,b-为有机阴离子;所述有机阳离子为醇胺类阳离子;所述有机阴离子为磷酸酯类阴离子或磺酸类阴离子。
在本发明中,所述醇胺类阳离子包括二甲基乙醇胺阳离子、二乙氨基乙醇阳离子、n-丁基二乙醇胺阳离子或三乙醇胺阳离子。
所述二甲基乙醇胺阳离子的结构式为
所述二乙氨基乙醇阳离子的结构式为
所述n-丁基二乙醇胺阳离子的结构式为
所述三乙醇胺阳离子的结构式为
在本发明中,所述磷酸酯类阴离子包括二(2-乙基己基)磷酸酯阴离子、磷酸二丁酯阴离子、二乙基磷乙酸阴离子、亚磷酸二丁酯阴离子、磷酸乙酯阴离子、磷酸二乙酯阴离子或磷酸二甲酯阴离子。
所述二(2-乙基己基)磷酸酯阴离子的结构式为
所述磷酸二丁酯阴离子的结构式为
所述二乙基磷乙酸阴离子的结构式为
所述亚磷酸二丁酯阴离子的结构式为
所述磷酸乙酯阴离子的结构式为
所述磷酸二乙酯阴离子的结构式为
所述磷酸二甲酯阴离子的结构式为
在本发明中,所述磺酸类阴离子为十二烷基苯磺酸阴离子或乙基磺酸阴离子,所述十二烷基苯磺酸阴离子的结构式为
本发明提供的质子型离子液体具体可以由任意上述阳离子和任意上述阴离子组合而成,得到的质子型离子液体在常温下均为液态。
本发明提供的质子型离子液体以醇胺为有机阳离子,以磷酸酯或磺酸为有机阴离子,醇胺的分子结构中的氮原子上存在孤对电子,其具有一定的弱碱性,而磷酸酯或磺酸结构中的羟基具有一定的弱酸性,有机阴阳离子结构中的氢质子和羟基之间存在一定的相互作用,从而形成质子型离子液体;本发明提供的离子液体阴阳离子间质子能够快速转移,从而在离子液体中形成了质子供体和质子受体,进而在离子液体中形成氢键网络,氢键网络的形成使其水溶性更好,同时,氢键网络的存在使得在摩擦的过程中会有水化层的存在,这种水化层有利于减摩抗磨作用,从而有较好的润滑性能。
本发明提供了上述方案所述离子液体水基润滑添加剂的制备方法,包括以下步骤:
将有机阳离子部分和有机阴离子部分等摩尔比混合后进行热处理,得到质子型离子液体。
在本发明中,所述有机阳离子部分为醇胺;所述有机阴离子部分为磷酸酯或磺酸,所述醇胺、磷酸酯和磺酸的具体种类根据上述方案所述有机阳离子和有机阴离子的种类进行选择即可。在本发明中,所述热处理的温度优选为60~120℃,更优选为70~100℃,所述热处理的时间优选为10~20h,更优选为12h。
在本发明中,所述热处理后优选还包括:将所得热处理产物进行真空干燥;所述真空干燥的温度优选为70~90℃,更优选为80℃,所述真空干燥的时间优选为11~13h,更优选为12h。在本发明中,所述热处理过程中空气中的水可能会吸附在质子型离子液体表面,本发明通过真空干燥确保所得质子型离子液体中的水分被完全去除。
本发明提供的制备方法步骤简单,容易操作,无需离子交换、分离、纯化等复杂步骤,仅需直接将有机阳离子部分和有机阴离子部分加热混合,二者即可发生相互作用形成质子型离子液体。
本发明提供了上述方案所述离子液体作为水基润滑添加剂的应用,所述应用的方法优选为:将所述质子型离子液体和水混合;所述质子型离子液体在水中的质量分数优选为0.1~5%,更优选为0.5~4%,进一步优选为1~3%。
本发明提供的质子型离子液体添加到水中可以显著提高水的润滑性能,使接触区能够形成有效的润滑膜;本发明提供的离子液体具有优良的减磨抗磨性能和较高的承载能力,还具有优异的化学稳定性、热稳定性和一定的抗腐蚀性能,而且合成原料来源广泛,成本低,容易合成,将其作为水基润滑添加剂使用,有望提升水基润滑剂的综合性能。
下面结合实施例对本发明提供的方案进行详细的说明,但是不能把它们理解为对本发明保护范围的限定。
实施例1
三乙醇胺二(2-乙基己基)磷酸酯离子液体的制备:将0.74594g(0.005mol)三乙醇胺与1.6121g(0.005mol)二(2-乙基己基)磷酸酯加入到100ml圆底烧瓶中,在80℃下搅拌12h,之后再在真空干燥箱中80℃干燥12h,即可得到离子液体,所得离子液体的核磁数据如下:
1hnmr(400mhz,dmso)δ:3.69-3.72(m,6h),3.55-3.58(t,j=7.2hz,4h),3.17-3.18(m,6h),1.24-14.41(m,18h),0.82-0.88(m,12h).
13cnmr(100mhz,dmso)δ:66.44,66.39,55.93,39.82,29.78,28.51,23.08,22.56,22.56,13.94,10.85.
以质量分数为1%的浓度将所得离子液体添加在水中并溶解均匀,采用德国optimol油脂公司生产的srv-iv微振动摩擦磨损试验机评价所得离子液体作为水基润滑添加剂的润滑性能;选取水作为对照样;测试条件为:载荷100n,温度25℃,频率25hz,振幅1mm,实验时间30min;试验上试球为φ10mm的aisi52100钢球;钢/钢摩擦副中,下试样为φ24mm、厚度7.9mm的aisi52100钢块,硬度为800hv;下试样的磨损体积由bruker-npflex三维光学轮廓仪测得。
测试结果:平均摩擦系数为0.1281,平均磨损体积为0.32×10-3μm3。
实施例2
二乙氨基乙醇二(2-乙基己基)磷酸酯离子液体的制备:将0.5859g(0.005mol)二乙氨基乙醇与1.6121g(0.005mol)二(2-乙基己基)磷酸酯加入到100ml圆底烧瓶中,在80℃下搅拌12h之后再在真空干燥箱中80℃干燥12h,即可得到离子液体,所得离子液体的核磁数据如下:
1hnmr(400mhz,dmso)δ:3.70-3.72(t,j=8.0hz,2h),3.64-3.67(t,j=7.2hz,4h),3.04-3.10(m,6h),1.18-1.40(m,24h),0.81-0.87(m,12h).
13cnmr(100mhz,dmso)δ:66.26,55.75,53.28,46.88,39.89,29.83,28.53,23.11,22.56,19.68,13.84,10.78.
以质量分数为1%的浓度将所得离子液体添加在水中并溶解均匀,按照实施例1中的方法评价所得离子液体作为水基润滑添加剂的润滑性能,测试条件和实施例1一致,测试结果为:平均摩擦系数为0.1311,平均磨损体积为0.32×10-3μm3。
实施例3
n-丁基二乙醇胺与二(2-乙基己基)磷酸酯离子液体的制备:将0.80625g(0.005mol)n-丁基二乙醇胺与1.6121g(0.005mol)二(2-乙基己基)磷酸酯加入到100ml圆底烧瓶中,在80℃下搅拌12h之后再在真空干燥箱中80℃干燥12h,即可得到离子液体,所得离子液体的核磁数据如下:
1hnmr(400mhz,dmso)δ:3.72-3.74(t,j=8.0hz,4h),3.62-3.68(t,j=7.2hz,4h),3.14(t,j=8.0hz,4h),3.06-3.10(t,j=8.0hz,2h),1.64-1.66(t,j=8.0hz,2h),1.24-1.41(m,20h),0.81-0.91(m,15h).
13cnmr(100mhz,dmso)δ:66.34,55.80,55.27,53.40,39.94,29.80,28.53,25.51,23.09,22.57,19.55,13.85,13.46,10.77.
然后以质量分数为1%的浓度将所得离子液体添加在水中并溶解均匀,按照实施例1中的方法评价所得离子液体作为水基润滑添加剂的润滑性能,测试条件和实施例1一致,测试结果为:平均摩擦系数为0.1251,平均磨损体积为0.18×10-3μm3。
实施例4
三乙醇胺与磷酸二丁酯离子液体的制备:将0.74594g(0.005mol)三乙醇胺与1.05105g(0.005mol)磷酸二丁酯加入到100ml圆底烧瓶中吗,在80℃下搅拌12h之后再在真空干燥箱中80℃干燥12h,即可得到离子液体,所得离子液体的核磁数据如下:
1hnmr(400mhz,dmso)δ:3.70-3.72(t,j=8.0hz,6h),3.55-3.57(t,j=7.2hz,4h),3.19-3.25(t,j=8.0hz,6h),1.24-1.31(m,8h),0.81-0.87(m,6h).
13cnmr(100mhz,dmso)δ:69.36,66.38,55.90,29.80,13.93,10.84.
以质量分数为1%的浓度将所得离子液体添加在水中并溶解均匀,按照实施例1中的方法评价所得离子液体作为水基润滑添加剂的润滑性能,测试条件和实施例1一致,测试结果为:平均摩擦系数为0.256,平均磨损体积为1.59×10-3μm3。
实施例5
三乙醇胺十二烷基苯磺酸离子液体的制备:将0.74594g(0.005mol)三乙醇胺与1.718g(0.005mol)十二烷基苯磺酸加入到100ml圆底烧瓶中,在80℃下搅拌12h之后再在真空干燥箱中80℃干燥12h,即可得到离子液体,所得离子液体的核磁数据如下:
1hnmr(400mhz,dmso)δ:7.66-7.68(d,2h),7.32-7.34(d,2h),3.65-3.67(t,j=7.2hz,6h),3.29-3.31(t,j=8.0hz,6h),2.64-2.66(t,3h),1.63-1.65(t,3h),1.26(s,18h),0.88-0.90(t,3h).13cnmr(100mhz,dmso)δ:145.33,142.21,129.37,129.18,128.23,128.15,66.35,59.46,35.78,32.45,31.92,30.82,30.26,29.96,29.68,29.55,29.34,29.13,22.73,14.23.
以质量分数为1%的浓度将所得离子液体添加在水中并溶解均匀,按照实施例1中的方法评价所得离子液体作为水基润滑添加剂的润滑性能,测试条件和实施例1一致,测试结果为:平均摩擦系数为0.153,平均磨损体积为0.42×10-3μm3。
实施例6
三乙醇胺乙基磺酸离子液体的制备:将0.74594g(0.005mol)三乙醇胺与0.55065g(0.005mol)乙基磺酸加入到100ml圆底烧瓶中,在80℃下搅拌12h之后再在真空干燥箱中80℃干燥12h,即可得到离子液体,所得离子液体的核磁数据如下:
1hnmr(400mhz,dmso)δ:3.65-3.88(t,j=7.2hz,6h),3.27-3.29(m,8h),1.23-1.24(t,3h).13cnmr(100mhz,dmso)δ:66.96,59.32,42.59,13.41.
以质量分数为1%的浓度将所得离子液体添加在水中并溶解均匀,按照实施例1中的方法评价所得离子液体作为水基润滑添加剂的润滑性能,测试条件和实施例1一致,测试结果为:平均摩擦系数为0.186,平均磨损体积为1.03×10-3μm3。
耐腐蚀性测试:
对实施例1~4制备得到的离子液体进行耐腐蚀实验,以水作为对照,腐蚀试验根据国标(gb6144-85)中的泡片试验进行,并得出腐蚀等级;实施例1~4所得离子液体的粘度、密度和腐蚀等级数据见表1;
表1实施例1~4所得离子液体的粘度、密度和腐蚀等级
表1中:a表示不生锈,光亮如新;b表示锈蚀,但有轻微的光亮损失;c表示轻度锈蚀,轻度失光;d表示严重生锈或严重失光。
根据表1可以看出,本发明制备的离子液体作为水基润滑添加剂使用,具有良好的耐腐蚀性。
承载能力测试:
测试实施例1~4制备的离子液体的在不同压力下的摩擦系数,以水作为对照,测试过程中压力每两分钟增加50n,结果显示本发明合成的样品与水相比,在较高的载荷下都有较小较平稳的摩擦系数(摩擦系数均维持在0.15以下),尤其是实施例1制备的三乙醇胺二(2-乙基己基)磷酸酯离子液体在700n的作用下仍能保持良好的性能,这说明本发明制备的离子液体作为水基润滑添加剂使用具有较高的承载能力。
根据以上实施例可知,本发明提供的离子液体水基润滑添加剂具有很小且平稳的摩擦系数和优异的减摩抗磨性能,且具有良好的耐腐蚀性和较高的承载能力,而且合成原料来源广泛,成本低,容易合成,作为水基润滑添加剂应用具有广阔的前景。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。