本发明涉及一种锰络合物,具体就是一种(rc,sp)-n-5,6,7,8-四氢喹啉基-1-(2-二苯基膦基)二茂铁基乙基胺锰络合物、制备方法,以及做为催化剂在催化不对称氢转移还原潜手性酮制备手性醇中的应用,属于有机合成技术领域。
背景技术:
芳香酮不对称氢化的产物-光学活性芳香醇在药物、香料等精细化工领域中有广泛应用。可用作治疗神经系统、心血管等疾病手性药物的重要中间体。如(r)-氟西汀、肾上腺素类、(r)-沙丁胺醇等,因此,开发高效的不对称催化合成手性醇的反应对学术界和工业界都具有重要意义。过渡金属催化潜手性酮的不对称氢化反应已成为获得手性醇的重要途径,在不对称催化氢化领域,虽然已经有很多关于手性配体和手性金属催化剂的报道,但整体而言,由于手性醇的底物众多,而高选择性手性催化剂作用的底物有限,真正高效的配体以及手性催化剂还远远不能满足人类对手性醇的需求。因此开发新的高效不对称氢化潜手性酮的反应体系一直是有机化学的重要课题。在过去的几十年间,贵金属如钌、铱、铑和非贵金属如铁、铜、钴等配合物在不对称催化领域都取得了重要研究进展,其中,noyori等发展的手性双膦配体的钌-双膦-双胺络合物,周其林院士开发的螺环pnn型铱催化剂最为著名。尽管芳香酮的不对称催化氢化反应研究已经比较成熟,但是继续开发新的高效、高选择性的贵金属手性催化剂用于新的潜手性酮的不对称氢化依然是21世纪研究热点。为了降低生产成本及重金属在药物中的残留,第一过渡系金属廉价且毒性较低的优势近来受到学术界和工业化学界的广泛关注,近几年,在地壳中储存丰富的金属铁、钴、锰等进入我们的视野,非贵金属催化不对称氢化和氢转移反应逐渐成为新的研究热点。用第一过渡金属fe,mn,co配合物代替贵金属配合物在均相催化领域取得重大进展,成为21世纪的一个新趋势。锰因为它的天然丰度高和生物相容性,成为一个特别有吸引力的候选金属。锰金属配合物最近在加氢和脱氢反应中表现出令人印象深刻的活性,尤其是在氢化方面,表现出高催化活性,高选择性,迅速成为研究的热点。2017年,m.l.clarke报道[mn(pnn)(co)3](angew.chem.int.ed.2017,56,5825–5828)其结构如下式1所示,与含有平面手性中心的二茂铁配体形成的络合物,在酮和酯的氢化方面的研究,1%mol锰催化剂在50bar氢气压力下,50℃反应16小时对酮进行不对称氢化,转化率可达到99%,ee值最高可达97%,同时可以对酯进行氢化还原。m.beller报道了(angew.chem.int.ed.2017,56,11237–11241.)[mn(pnp’)(br)(co)2]与含有平面手性中心二茂铁配体形成的络合物在酮不对称氢化方面的研究。其结构如下式2所示,酮的转化率可达到96%,光学纯度ee值最好84%。
但锰金属配合物催化酮不对称氢化酮仍远未达到令人满意的活性、选择性以及适用的底物范围,仍需要开展进一步研究。
技术实现要素:
本发明目的在于提供一种锰络合物、制备方法及其在催化酮的不对称氢转移还原制备手性醇中的应用。
本发明提供的锰络合物的结构如下式b所示:
本发明提供式b化合物的制备方法,包括如下步骤:将(rc,sp)-n-5,6,7,8-四氢喹啉基-1-(2-二苯基膦基)二茂铁基乙基胺、mn(co)5br在甲苯中进行反应,得到式b所示化合物,其反应式如下:
本发明的制备方法,反应物式a(rc,sp)-n-5,6,7,8-四氢喹啉基-1-(2-二苯基膦基)二茂铁基乙基胺与mn(co)5br的投料摩尔比为1.1:1.0。
本发明的制备方法,反应的温度为110℃回流,回流时间为16小时。
本发明的制备方法,反应在有机溶剂中进行,所述有机溶剂为甲苯。
本发明的制备方法,所述反应优选在惰性气体氛围中进行,例如在氮气氛围下进行。
本发明还提供(rc,sp)-n-5,6,7,8-四氢喹啉基-1-(2-二苯基膦基)二茂铁基乙基胺配体,化合物式a的制备方法,包括如下步骤:将1-s-二苯基膦-2-r-胺基乙基二茂铁、6,7-二氢喹啉-8(5h)-酮与三乙酰氧基硼氢化钠进行反应,得到式a化合物。
式a制备方法中,所述1-s-二苯基膦-2-r-胺基乙基二茂铁与6,7-二氢喹啉-8(5h)-酮的投料摩尔比为1:1.1。
式a制备方法中,所述1-s-二苯基膦-2-r-胺基乙基二茂铁与三乙酰氧基硼氢化钠的投料摩尔比为1:5。
式a制备方法中,所述反应的时间为6小时,可视反应情况延长反应时间。
式a制备方法中,所述缩合反应的温度为室温(20-30℃)。
式a制备方法中,所述反应在有机溶剂中进行,所述有机溶剂为1,2-二氯乙烷。
式a制备方法中,所述方法还包括如下步骤:
将反应液用饱和nahco3溶液猝灭,加水稀释,用乙酸乙酯(3x30ml)萃取,萃取液用无水硫酸钠干燥,旋干得粗品。用乙酸乙酯:石油醚=1:10过柱子得橘黄色固体的纯品。
本发明还提供一种(rc,sp)-n-5,6,7,8-四氢喹啉基-1-(2-二苯基膦基)二茂铁基乙基胺锰络合物的应用,具体就是用于催化不对称氢转移还原羰基酮制备手性醇。以(rc,sp)-n-5,6,7,8-四氢喹啉基-1-(2-二苯基膦基)二茂铁基乙基胺锰配合物为催化剂,碱类物质为助催化剂,在有机溶剂中,对酮进行不对称氢化还原制备手性醇,其中以式b配合物为催化剂进行反应式(2)所示由酮还原成醇。
所述反应可以为模板反应。
式(2)中的r1和r2不同,为烷基或芳基,其中,r1或是氢原子,烷基、芳基或具有取代基,烷基的碳数1-20、芳基的碳数6-18。
其反应溶剂为异丙醇,氢供体为异丙醇。催化剂与底物的摩尔比为0.1-2%。助催化剂为碱类物质如氢氧化钾、氢氧化钠,甲醇钠,乙醇钠,氢化钠,叔丁醇钠,叔丁醇钾,其中最佳叔丁醇钾。温度为0-80℃,最佳为20℃;反应时间为0.5-3小时,最佳2小时。
本发明取得以下有益效果:
1.本发明提供了(rc,sp)-n-5,6,7,8-四氢喹啉基-1-(2-二苯基膦基)二茂铁基乙基胺锰络合物以及制备方法,具有反应周期短、操作条件简单等优点。该类非贵金属催化剂与贵金属催化剂相比,具有成本低、性能稳定、催化活性高的特点。
2.本发明采用廉价手性金属锰催化不对称氢转移反应制备手性醇,具有成本低、高效、高选择性和环境友好特点,为手性锰金属催化剂用于手性醇的工业化生产奠定了基础。
具体实施方式
以下结合具体实施例对本发明作进一步阐述,但本发明并不限于以下实施例。所述方法如无特别说明均为常规方法。所述原材料如无特别说明均能从公开商业途径而得。
实施例1制备式a所示配体(rc,sp)-n-5,6,7,8-四氢喹啉基-1-(2-二苯基膦基)二茂铁基乙基胺
5,6,7,8-四氢喹啉-(5h)-酮(0.30g,2.0mmol),(rc,sp)-1-(2-二苯基膦基)二茂铁基乙胺(0.72g,1.7mmol,0.9当量)和三乙酰氧基硼氢化钠(1.84g,8.0mmol,4当量)在氮气下装入圆底烧瓶中,并将内容物在30ml无水1,2-二氯乙烷(dce)中于30℃搅拌6h,n2保护。用饱和nahco3溶液淬灭后,用乙酸乙酯(3×30ml)萃取混合物,分离有机相,用水(2×50ml)洗涤并用无水mgso4干燥。过滤后,减压蒸发混合物,得到固体残余物,通过硅胶色谱法用石油醚/乙酸乙酯(v/v=1:10)作为洗脱液纯化。标题配体以浅黄色粉末(0.50g,52%)。熔点:96~100℃。[α]25d=-283°(c=0.6,氯仿),经nmr、x-单晶衍射、元素分析确定该结构。
结构确证数据如下:
1hnmr(400mhz,cdcl3)1.26(s,1h,ch2),1.37(dt,j=12.1,5.9hz,1h,ch2),1.53(dq,j=13.8,6.6hz,1h,ch2),1.66(d,j=6.3hz,3h,ch3),1.71(q,j=5.5hz,2h,ch2),2.32(dt,j=16.7,5.9hz,1h,ch2),2.51–2.39(m,1h,ch),3.74(s,1h,hfc),3.84(d,j=5.2hz,1h,mech),3.99(s,5h,hfc),4.29–4.19(m,2h,hfc),4.54(s,1h,nh),7.01–6.89(m,4h,hphandhpy),7.18–7.05(m,3h,hph),7.35(d,j=4.8hz,3h,hph),δ7.55(dt,j=7.9,3.6hz,2h,hph),8.27(d,j=4.7hz,1h,hpy).
31p{1h}nmr(202mhz,cdcl3)δ-23.26
13cnmr(100mhz,cdcl3)δ18.14,19.39,27.29,28.58(d,j=2.4hz),47.89,54.68,68.91,(d,j=9.1hz)69.14,69.61,(d,j=4.2hz),71.27(d,j=4.8hz),74.66(d,j=7.9hz),99.42,121.36,127.23(d,j=24.7hz),127.48(d,j=6.0hz),128.02,129.03,132.30,(d,j=7.9hz),135.51(d,j=21.5hz),138.15(d,j=8.8hz),136.63,140.57,146.71,157.98,(d,j=9.0hz),.
元素分析:c33h33fen2p(554.173)理论值:c,72.80,h,6.11,n,5.15%;实验值:c,70.03,h,6.260,n,4.643%。
实施例2制备式b所示(rc,sp)-n-5,6,7,8-四氢喹啉基-1-(2-二苯基膦基)二茂铁基乙基胺锰络合物
将mn(co)5br(67.0mg,0.24mmol)和(rc,sp)-n-5,6,7,8-四氢喹啉基-1-(2-二苯基膦基)二茂铁基乙基胺(150.0mg,0.27mmol)加到到圆底烧瓶,在氮气下加入20ml无水甲苯中在110℃搅拌反应16h。将反应混合物冷却至室温并真空浓缩。将残余物溶于二氯甲烷(3ml)中。加入正己烷(50ml),并通过移液管小心除去沉淀物以上的溶液。用石油醚(2×50ml)以类似的方式再次洗涤沉淀两次,然后减压干燥,得到mn-1,为黄色固体(160.0mg,90%)。经nmr、x-单晶衍射、元素分析确定该结构结构,确证数据如下:
1hnmr(500mhz,cdcl3)δ0.89(s,1h,ch2),1.28(s,1h,ch2),1.52(s,3h,ch3),1.93(s,2h,ch2),2.19(s,1h,ch),2.95–2.74(m,2h,ch2),3.76(s,1h,mech),4.20(d,j=62.3hz,6h,hfc),4.47(s,2h,hfc),5.28(s,1h,nh),7.08(d,j=37.9hz,4h,hph),7.46(d,j=56.7hz,6h,hph),8.44(s,2h,hpy),9.12(s,1h,hpy).
13cnmr(125mhz,cdcl3)δ22.10,22.52,27.50,28.96,53.22,63.21,69.50,69.99,70.43,70.49,123.34,127.39,127.47,127.69,127.76,128.24,129.86,130.59,130.66,135.71,135.80,136.87,142.87,143.30,151.51,159.43,191.24co,191.37co.
31p{1h}nmr(202mhz,cdcl3)δ55.12.
红外光谱:ir(cm.-1)νc=o,1926.95;1845.94。
元素分析:c35h32brfemnn2o2p(734.314)理论值:c,54.73;h,4.40;n,3.57%;实验值:c57.17;h4.52;n3.81%。
实施例3利用(rc,sp)-n-5,6,7,8-四氢喹啉基-1-(2-二苯基膦基)二茂铁基乙基胺锰络合物为催化剂,叔丁醇钾助催化剂,在异丙醇中催化不对称氢化苯乙酮,化学反应式和结果见下表1.
表1对苯乙酮的立体选择性还原手性苯乙醇优化
a实验条件:苯乙酮(1mmol),[mn](1-2%mol),叔丁醇钾(10-20%mmol),异丙醇(30ml).温度(0-82℃).b通过gc测定苯乙酮的收率。c使用手性hplc测量ee。
从表中可以看出最佳反应条件为:异丙醇中,温度20℃,s/c为50。
a)将苯乙酮(120mg,1.0mmol)和叔丁醇钾(22mg,0.2mmol)以及催化剂(7mg,0.01mmol)依次加入到50ml圆底烧瓶中,再向圆底烧瓶中加入30ml异丙醇,用氮气置换气体10次后搅拌反应,82℃反应120min后停止反应。用gc检测反应,测得转化率为78%。lc测得ee值为5%。
b)基本同本实施例中方法a),区别在于:反应温度为50℃。用gc检测反应,测得转化率为97%。lc得ee值为30%。
c)基本同本实施例中方法b),区别在于:反应时间为30min。用gc检测反应,测得转化率为96%。lc得ee值为57%。
d)基本同本实施例中方法c),区别在于:叔丁醇钾(11mg,0.1mmol),反应时间为120min。用gc检测反应,测得转化率为55%。lc得ee值为79%。
e)基本同本实施例中方法d),区别在于:催化剂(14.7mg,0.02mmol)。用gc检测反应,测得转化率为96%。lc得ee值为79%。
f)基本同本实施例中方法e),区别在于:反应时间为30min。用gc检测反应,测得转化率为98%。lc得ee值为63%。
g)基本同本实施例中方法f),区别在于:反应温度为30℃。用gc检测反应,测得转化率为97%。lc得ee值为79%。
h)基本同本实施例中方法g),区别在于:反应温度为20℃。用gc检测反应,测得转化率为20%。lc得ee值为84%。
i)基本同本实施例中方法h),区别在于:反应时间为120min。用gc检测反应,测得转化率为97%。lc得ee值为79%。
i)基本同本实施例中方法h),区别在于:反应温度为0℃。用gc检测反应,测得转化率为94%。lc得ee值为82%。
实施例4利用(rc,sp)-n-5,6,7,8-四氢喹啉基-1-(2-二苯基膦基)二
茂铁基乙基胺锰络合物为催化剂,叔丁醇钾为助催化剂对其他酮的不对称氢转移还原,结果见表2:
表2:在配合物的催化下用不同的酮在异丙醇溶剂中氢转移的结果
a)将1-乙酰基萘(0.17g,1mmol)和和叔丁醇钾(22mg,0.2mmol)以及催化剂(7mg,0.01mmol)依次加入到50ml圆底烧瓶中,再向圆底烧瓶中加入30ml异丙醇,用氮气置换气体10次后搅拌反应,反应温度为20度。反应2小时后停止反应。用gc检测反应,测得转化率为94%。lc测得ee值为93%。
b)基本同本实施例中方法a),区别在于:底物为2-乙酰基萘(0.17g,1mmol)。用gc检测反应,测得转化率为96%。lc得ee值为86%。
c)基本同本实施例中方法b),区别在于:底物为1-四氢萘酮(0.15g,1mmol)。用gc检测反应,测得转化率为74%。lc得ee值为28%。
d)基本同本实施例中方法c),区别在于:底物为对氟苯乙酮(0.14g,1mmol)。用gc检测反应,测得转化率为97%。lc得ee值为73%。
e)基本同本实施例中方法d),区别在于:底物为对氯苯乙酮(0.15g,1mmol)。用gc检测反应,测得转化率为98%。lc得ee值为75%。
f)基本同本实施例中方法e),区别在于:底物为对溴苯乙酮(0.20g,1mmol)。用gc检测反应,测得转化率为98%。lc得ee值为81%。
g)基本同本实施例中方法f),区别在于:底物为间溴苯乙酮(0.20g,1mmol)。用gc检测反应,测得转化率为98%。lc得ee值为79%。
h)基本同本实施例中方法g),区别在于:底物为对甲基苯乙酮(0.13g,1mmol)。用gc检测反应,测得转化率为98%。lc得ee值为79%。
i)基本同本实施例中方法h),区别在于:底物为亚苄基丙酮(0.15g,1mmol)。用gc检测反应,测得转化率为95%。lc得ee值为59%
j)基本同本实施例中方法i),区别在于:底物为对甲氧基苯乙酮(0.15g,1mmol)。用gc检测反应,测得转化率为80%。lc得ee值为86%。
k)基本同本实施例中方法j),区别在于:底物为2-乙酰基呋喃(0.11g,1mmol)。用gc检测反应,测得转化率为83%。lc得ee值为50%。
l)基本同本实施例中方法k),区别在于:底物为2-乙酰基噻吩(0.13g,1mmol)。用gc检测反应,测得转化率为89%。lc得ee值为64%。
m)基本同本实施例中方法l),区别在于:底物为苯丙酮(0.13g,1mmol)。用gc检测反应,测得转化率为77%。lc得ee值为96%。
n)基本同本实施例中方法m),区别在于:底物为2,2-二乙氧基苯乙酮(0.21g,1mmol)。用gc检测反应,测得转化率为98%。lc得ee值为94%。
o)基本同本实施例中方法n),区别在于:底物为3,5-二三氟甲基苯乙酮(0.26g,1mmol)。用gc检测反应,测得转化率为99%。lc得ee值为27%。
p)基本同本实施例中方法o),区别在于:底物为苯基(四氢-2h-吡喃-4-基)甲酮(0.19g,1mmol)。用gc检测反应,测得转化率为99%。lc得ee值为47%。
q)基本同本实施例中方法p),区别在于:底物为2-(三甲基乙酰基)噻吩(0.17g,1mmol)。用gc检测反应,测得转化率为98%。lc得ee值为64%。
以上是对本发明的实施方式进行的说明。但是本发明不限定于上述实施方式。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。